普洱茶色素提取、分级及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普洱茶属于后发酵茶,是中国特有的名优黑茶之一,具有多种特殊的保健功效,深受广大消费者欢迎。而普洱茶色素被认为是其药理作用的主要成分之一。目前,关于普洱茶色素的化学组成、性质及药理作用机理已成为普洱茶研究不可回避且十分重要的难题。本文着手研究普洱茶色素提取、分级及生物活性,以期对茶色素,尤其是对普洱茶色素依次用三氯甲烷、乙酸乙酯及正丁醇萃取后余下的水层(水溶性色素)的组成与性质复杂性的认识能较前人更为深入,并丰富茶叶科学的相关理论及合理阐明普洱茶色素药理作用的部分机理。本研究的主要结果如下:
     1.普洱茶色素提取工艺条件的响应面分析及其抗氧化性活性研究
     首次将普洱茶色素溶液与蒸馏水标准液的色差E值作为色素提取的评价指标,可以简单、安全和快速评价普洱茶色素在不同浸提条件下的效果差异。通过二次回归设计得到了普洱茶色素提取色差E与料液比、温度、浸提时间的回归模型,并研究了普洱茶色素对1,1-二苯基-2-苦基肼自由基(DPPH·)的清除作用。若仅从色素提取的色差E大小考虑,利用响应优化器得到色素提取的优化工艺参数为:液料比45:1(mL/g)、提取温度100℃、提取时间150 min,色素提取色差E为52.97,相对标准偏差为1.37%,与预测值相差1.3%,高出单因素试验和Box-Behnken组合中的最高色差E 4.73%。普洱茶色素对DPPH·自由基具有良好的清除能力,IC50值为30.83μg/mL,可作为天然抗氧化剂被进一步开发和利用。
     2.普洱茶色素粗提物的不同萃取物对二种消化酶活性的影响及性质分析
     普洱茶色素粗提物(水提物)依次用三氯甲烷、乙酸乙酯及正丁醇萃取后制备样品,首次测定各部分样品对α-葡萄糖苷酶和胰脂肪酶二种消化酶活性的影响。研究发现各部分样品对α-葡萄糖苷酶活性的影响程度不同,三氯甲烷层有轻微的激活作用,激活率为对照的8.33%,而水提物、乙酸乙酯萃取层、正丁醇萃取层及水层有显著的抑制作用,抑制率依次为52.29%、82.52%、65.84%、58.22%。各部分样品对胰脂肪酶活性均有抑制作用,三氯甲烷萃取层、乙酸乙酯萃取层、正丁醇萃取层、水层及水提物的抑制率依次为1.80%、13.65%、4.57%、7.55%、9.00%。在相同条件下对各萃取层进行色差参数测定、紫外-可见光谱扫描、傅立叶红外光谱扫描和ACQUITY UPLC-Xevo QTof MS分析,结果表明,各萃取层内在的化学成分在质和量上存在差异,从而决定了各萃取层对二种消化酶活性有不同影响。
     3.普洱茶水溶性色素的分级、性质及活性筛选研究
     首次采用羟丙基葡聚糖凝胶(Sephadex LH-20)柱层析对水溶性色素进行分级研究,以丙酮-水溶液进行洗脱,按照色素条带分别收集得到级分,并进一步研究它们的理化与光谱性质,及对α-葡萄糖苷酶和胰脂肪酶二种消化酶活性的抑制作用。结果表明,以40%丙酮-水溶液为洗脱剂,流速为0.05 BV/h时,水溶性色素的分级效果最好,柱中呈现6条明显的条带,它们的色差参数值、还原力、pH值、常规成分含量、稳定性、SHIMADZU UV-2550紫外-可见分光光度扫描图、SHIMADZU FTIR-8400S傅立叶变换红外光谱扫描图及ACQUITY UPLC-Xevo QTof MS分析结果等存在差异,进一步表征了普洱茶水溶性色素组成与性质的复杂性。研究还表明,水溶性色素的各级分对α-葡萄糖苷酶和胰脂肪酶二种消化酶活性均有抑制作用,其中以级分五的抑制效果最好。
     4.级分五对3T3-L1前脂肪细胞增殖、分化及分化中相关基因和蛋白质表达的影响
     以10μg/mL、20μg/mL、30μg/mL、50μg/mL和100μg/mL级分五分别处理3T3-L1前脂肪细胞24 h,能轻微地抑制细胞的增殖,与正常对照组比较差异不明显;处理48 h,上述各浓度对细胞的增殖均有抑制作用,与正常对照组比较,20μg/mL和30μg/mL处理组达到显著差异水平(P<0.05),50μg/mL和100μg/mL处理组达到极显著差异水平(P<0.01);处理72 h,各浓度对细胞的增殖均有抑制作用,与正常对照组比较,30μg/mL和100μg/mL处理组达到显著差异水平(P<0.05),其它处理组没有统计学差异。以10μg/mL、20μg/mL、30μg/mL、50μg/L和100μg/mL的级分五分别处理汇合后(约70%)的3T3-Ll前脂肪细胞48 h,均能增加活性氧的含量,其中以30μg/L处理组中活性氧含量最高,并且20μg/mL、30μg/mL、50μg/L和100μg/L处理组与对照组比较均达到极显著差异水平(p<0.01)。级分五抑制前脂肪细胞的增殖和诱导细胞内活性氧增加可能是其“减肥”机制之一,通过“减肥”来改善IR。
     10μg/mL、20μg/mL、30μg/mL、50μg/mL和100μg/mL级分五均对3T3-L1前脂肪细胞分化过程中的脂质集聚有明显的促进作用(与正常对照组比较P<0.01),且成量效关系,但脂质集聚效应低于罗格列酮组。与正常对照组比较,在以50μg/mL级分五刺激3T3-L1前脂肪细胞分化过程中,能明显下调PPARy2. C/EBPa和PTP1B mRNA及其蛋白质的表达,上调GLUT4 mRNA表达及下调GLUT4蛋白质的表达。级分五有可能通过下调PPARy2和C/EBPa蛋白质的表达来维持合理的脂类代谢平衡;下调PTP1B蛋白质的表达,激活胰岛素受体信号来促进GLUT4蛋白质向膜的转位以及葡萄糖的摄取,从而有可能改善胰岛素抵抗和防治MS的功效。
Pu-erh tea belongs to a post-fermented tea, which is one of the unique and famous dark tea in China. It is favored by the vast number of consumers because of its many special health functions. Tea pigments are regarded as one of the main compositions of the pharmacological action of pu-erh tea. At present, the research of chemical composition, nature and pharmacological mechanism of pu-erh tea pigments has become an inescapable and very important difficulty. The paper studied the pu-erh tea pigments extraction, fraction and bioactivity, hoping tea pigments, especially, including the water-soluble pigments which is the rest of the pu-erh tea pigments which were extracted by chloroform, ethyl acetate, n-butanol in turn, its complexity in composition and properties, could be better understood than ever before, and tea scientific theories will be enriched, part of pharmacological mechanism of pu-erh tea pigments is reasonably expounded. The main results are as follows:
     1 Response surface analysis of extraction technology of pu-erh tea pigments and its antioxidant activity
     Color difference value E with distilled water was regarded as evaluation index of pu-erh tea pigments extraction for the first time, which is a simple, safe and fast assessment for different effect of pu-erh tea pigment extraction under different conditions. Through the quadratic regression design, regression model was established between color difference value E of pu-erh tea pigment extraction and ratio of solvent to material, extraction temperature and time of extraction. 1,1-Diphenyl-2-picrylhydrazyl free radical (DPPH-)scavenging activity of the crude extract of pigment from pu-erh tea was also researched. If we only took into account color difference value E, the optimum conditions of pigment extraction were:ratio of solvent to material 45:1(v/w), extraction temperature 100℃and time of extraction 150 min. Under these conditions, color difference value E was up to 52.97, which is higher 4.73%than the highest one in both single-factor tests and Box-Behnken composition. And relative standard deviation of color difference value E was 1.37% and differential value was 1.3%compared to the forecast value. Pu-erh tea pigment has excellent scavenging ability of DPPH* and its IC50 value was 30.83μg·mL which suggested that pu-erh tea pigment can be used as a natural anti-oxidant for further development and utilization.
     2. The effects of different extracts of pigments crude extract of pu-erh tea on the activities of two kinds of digesting enzymes and their properties analysis
     Pigments crude extract (water extracts) of pu-erh tea were extracted by chloroform, ethyl acetate, n-butanol in turn. The effects of different fractions were investigated on the activities of a-glucosidase and pancreatic lipase. The results showed that different fractions of pu-erh tea pigments had different effects on a-glucosidase activity. The sample of chloroform fraction could increase a-glucosidase activity a little and the relative activation rate was 8.33%. However, The water extracts, the ethyl acetate fraction and n-butanol fraction and water fraction showed obvious inhibition, inhibition rates being 52.29%,82.52%,65.84%,58.22% respectively. All fractions of pu-erh tea could inhibit pancreatic lipase activity. And inhibiting rates of chloroform fraction, ethyl acetate fraction, n-butanol fraction and water fraction and the water extracts were 1.80%> 13.65%.4.57%.7.55%.9.00%. Through chromatism parameter determination, ultraviolet-visible spectroscopy scanning, Fourier infrared spectral scanning and ACQUITY UPLC-Xevo QTof MS analysis of different fractions in the same conditions, the results showed that differences of quality and quantity of their intrinsic chemical composition existed among different extraction fractions, which thus determined the varying effects of the different extraction fractions on activities of two types of enzymes.
     3 Study on fraction, correlative properties and activity screening of water-soluble pigments from pu-erh tea
     Water-soluble pigments was installed in hydroxypropyl glucan gel(Sephadex LH-20) column with acetone-aqueous solution for elution. The fractions of water-soluble pigments were collected respectively and their physico-chemical and spectral properties and the effects of different fractions on the activities of a-glucosidase and pancreatic lipase were futher studied. The results indicated that water-soluble pigments in pu-erh tea could be classified best, when 40% acetone-aqueous solution which is the optimum eluent was used, with a flow rate of 0.05 BV/h, for 6 obvious strips could be clearly seen in column. The differences exist in their chromatism parameter values, total reducing power, pH value, the content of conventional component, UV and IR spectroscopy scanning, stability and ACQUITY UPLC-Xevo QTof MS analysis. The study further demonstrated the complexity of compositions and properties of water-soluble pigments. Research also showed that all fractions of water-soluble pigments could inhibit the activities of a-glucosidase and pancreatic lipase, and inhibitory effect of fraction V among them is best.
     4 The effects of fraction V on proliferation and differentiation of 3T3-L1 preadipocytes and differentiation process related gene and protein expression
     10μg/mL,20μg/mL,30μg/mL,50p.g/mL and 100μg/mL fraction V respectively disposing 3T3-L1 preadipocytes for 24 hours could slightly inhibit cell proliferation which had no obvious difference with normal control group comparison. And then fraction V with different concentrations mentioned above disposing 3T3-L1 preadipocytes, cell proliferation was restrained after 48 hours and had significant difference (P<0.05) between normal control treatment group and 20μg/mL or 30μg/mL fraction V treatment group, and had very significant difference (P<0.01) between normal control treatment group and 50μg/mL or 100μg/mL fraction V treatment group; Under fraction V with various concentration disposing 3T3-L1 preadipocytes 72 hours, cell proliferation also was restrained, and had significant difference (P<0.05) between normal control treatment and 30μg/mL or 100μg/mL fraction V treatment group, and was not statistically significant between the other treatment group and normal control group.
     10μg/mL,20μg/mL,30μg/mL,50μg/mL and 100μg/mL fraction V respectively disposing 3T3-L1 preadipocytes (confluence about 70%) 48 hours, all can increase reactive oxygen content,30μg/mL fraction V treatment group among them had the highest level, and very significant difference (p<0.01VS.control group) exist in 20μg/mL,30μg/mL,50μg/mL and 100p,g/mL treatment group compared with control group.
     fraction V inhibiting cell proliferation and increasing reactive oxygen content might be one of its " weight loss " mechanism and the IR could improved through " weight loss ".
     lipid concentration was increased in the fraction V with various concentration (10μg/mL,20μg/mL,30μg/mL,50μg/mL and 100μg/mL) groups in the experiment respectively (p<0. 01VS. control group). However, lipid accumulation effect was lower than rosiglitazone group.50μg/mL fraction V significantly decreased the mRNA and protein expression of PPARy2, C/EBPa and PTP1B and GLUT4 protein expression, and increased GLUT4 mRNA expression. The fraction V may have function of maintaining reasonable lipid metabolism balance by decreasing mRNA and protein expression of PPARy2 and C/EBPa, and may decrease PTP1B protein expressions for activating the insulin receptor proteins to promote GLUT4 protein to the membrane transposition and glucose intake, which may improve insulin resistance and prevention of MS effect.
引文
[1]Takino,Y., Imagawa H., Horikawa, et al. studies on the machanism of catechins by tea oxidase. Formation of a crystalline reddish orange pigment of benzotropolone nature[J]. J Agric. Biol. Chem.,1963,27,319-321
    [2]Coxon D.T., Holms A, Ollis W D., et al. Theaflavic and epitheaflavic acid[J]. Tetrahedron Lett., 1970,60:5247-5250
    [3]Coxon D.T., Holms A, Ollis W D., et al. The constitution and configuration of the theaflavinpigments of black tea[J]. Tetrahederon Lett.,1970,60:5237-5240
    [4]Takino Y., Lmagawa H., Horikawa, et al. studies on the machanism of tea catechins:Parts IV, Formation of a categallin and pyrogallin, new compounds of benzotropolone nature derived fromepigallocatechin[J]. J Agric. Biol. Chem.,1964,28,125-130
    [5]Takino Y., Imagawa H., Horikawa, et al. studies on the machanism of tea catechins:Parts III, Formation of a reddish orange pigment and its special relationship to some benzotropolone derivatives[J]. J Agric. Biol. Chem.,1964,28,54-71
    [6]J. E. Berkowitz, P. Coggon and G. W. Sanderson. Formation of epitheaflavic acid and its transformation to thearubigins during tea fermentation[J]. Phytockemistry,1971,10:2271-2278
    [7]淹野庆则,泽哲夫,真田宏夫,等.Studies on the mechanism of the oxidation of tea catechins:part V[J]农芸化学会志(日本),1971,45:176-183
    [8]Sanderson, G W. the chemistry of tea and tea manufacturing[J]. Recent advances in phytochemistry,1972,5:247-316
    [9]Coggon P., Fairley C J., Millin D. J., et al. The biochemistry of tea fermentation:oxidative degallation and epimerization of the tea flavanol gallates[J]. J Agric. Food chem.1973,21:727-733
    [10]TakeoT. Phytochemistry[J].1981,20(9):2145-2147
    [11]Dix M.A., et al. Fermeatatio of tea in Aqueous Influence of Tea Peroxidase[J]. J Sci Food Agric.,1981,32:923-932
    [12]Bailey R G, Nursten H E, McDowell I, Isolation and Analysis of a Polymeric thearubigin from tea[J]. Sci Food Agric.,1992,59:365-375.
    [13]R. G Bailey, H. E. Nursten, I. McDowell. The chemical oxidation of catechins and other phenolics:a study of the formation of black tea pigments[J]. J Sci Food Agric.,1993,63:455-464
    [14]Davis A P, Y cai, A L Davis, et al. Ployphenol Dimmers of Black tea[J].1997,中国国际茶技术与茶文化交流会:8-10
    [15]Lewis J R, Davis A L, Ya Cai, et al. Theaflavate B, isotheaflavin-3'-O-gallate and Neoheaflavin-3'-O-gallate:three polyphenolic pigments from black tea[J]. phytochemistry,1998, 49(8):2511-2519
    [16]Xiaochun Wan, Harry E Nursten, Ya Cai, et al. A new type of tea pigment from the chemical oxidation of epicatechin gallate and isolated from tea[J]. J Sci Food Agric.,1997,74:401-408.
    [17]Roberts EAH, Catright RA, Oldschool M. Fractionation and paper chromatography of water soluble substances from manufactured tea[J]. J Sci Food Agric.,1957,8:72-80
    [18]Roberts E A H. The phenolic substances of manufacture tea. Ⅱ-Their origin as enzymic oxidation products in fermentation [J]. J Sci. Food Agric.,1958,9:212-216
    [19]萧伟样.制茶发酵中茶色素形成生化机理[J].福建茶叶,1988,(2):8-12
    [20]萧伟祥,钟瑾,萧慧.红茶色素形成机理和制取[J].茶叶科学,1997,17(]):1-8
    [21]Bailey RG, Nursten HE. Comparative study of the reversed phase high-performance liquid chromatography of black tea liquors with special reference to the thearubigins[J]. J Chromatogr., 1991,542:115-128
    [22]Nikolai Kuhnert, J.Warren Drynan, Jaczek Obuchiwicz, et al. Mass spectrometric chacharacterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation[J]. Rapid Communications in Mass Spectrometry,2010,14(23):3387-3404
    [23]宛晓春主编.茶叶生物化学(第三版)[M].北京:中国农业出版社,2003
    [24]Crispin D J. The separation of theaflavins on Sephadex LH-20[J]. J Chromatogr.,1971,54: 133-135
    [25]P. D Collier, T Bryce, R Mallows, et al. The theaflavins of black tea[J]. Tetrahedron,1973,29: 125-142.
    [26]竹尾忠一.茶黄素的分离与定量[J].茶叶技术研究,1973(45):46
    [27]Bajaj K L, Anan T, Tsushida T, et al. The effect of (-)-EC or the oxidation of TF by PPO from tea leaves[J]. Agric. Biol Chem,1987,51:1767-1772
    [28]Bailey R G, Nursten H E, et al. Use of an HPLC photodiode-array detector in a study of the nature of a black tea liquor[J]. J Sci food Agric.,1990,52:509-525
    [29]R.G. Baileya, H.E. Nurstena and I. McDowell. Comparative study of the reversed-phase high-performance liquid chromatography of black tea liquors with special reference to the thearubigins[J]. Journal of Chromatography,1991,542:115-128
    [30]Bee-Lan Lee, Choon-Nam Ong. Comparative analysis of tea catechins and theaflavins by high-performance liquid chromatography and capillary electrophoresis[J]. Journal of Chromatography A,881(2000):439-447
    [31]Xu Yi, Jin Yuxia, Wu Yuanyuan, et al. Isolation and purification of four individual theaflavins using semi-preparative high performance liquid chromatography[J]. Journal of Liquid Chromatography & Related Technologies,2010,33(20):1791-1801
    [32]Xueli Cao, John R Lewis and Yoichiro Ito. Application of high-Speed countercurrent Chromatography to the separation of black tea Theaflavins[J]. Journal of Liquid Chromatography & Related Technologies,2004,27(12):1893-1902
    [33]江和源,程启坤,杜琪珍.高速逆流色谱分离纯化茶黄素[J].天然产物研究与开发,2000,12(4):30-35
    [34]Qizhen Du, Heyuan Jiang, Yoichiro Ito. Separation of theaflavins of black tea:High-speed countercunrrent chromatography vs Sephadex LH-20 gel column chromatography[J]. Journal of Liquid Chromatography & Related Technologies,2001,24(15):2363-2369
    [35]杨子银,屠幼英,赵勤,等.高速逆流色谱分离茶黄素单体的初步研究[J].食品科学,2005,26(11):87-90
    [36]刘莉华.儿茶素及其氧化产物的分离制备、化学特性及对红茶品质的影响[D].安徽:安徽农业大学,2003
    [37]Kunbo Wang, Zhonghua Liu, Jian-an Huang, et al. Preparative isolation and purification of theaflavins and catechins by high-speed countercurrent chromatography [J]. Journal of Chromatography B,867(2008):282-286
    [38]Changjun Yang, Daxiang Li and Xiaochun Wan. Combination of HSCCC and Sephadex LH-20 methods:An approach to isolation and purification of the main individual theaflavins from black tea[J]. Journal of Chromatography B,2008,861(1):140-144
    [39]Kunbo Wang, Zhonghua Liu, Jian-an Huang, et al. TLC separation of catechins and theaflavins on polyamide plates[J]. Journal of Planar Chromatography-Modern TLC,2009,22(2): 97-100
    [40]Brown A, Eyton W, Holmes A, et al. Identification of the thearubigins as polymeric proanthocyanidins[J]. Nature,1969,221:742-744.
    [41]Krishnan R, Maru GB. Isolation and analyses of polymeric polyphenol fractions from black tea[J]. Food Chem.,2006,94(3):331-340
    [42]王华.茶红素分离制备及清除自由基活性的初步研究[M].合肥:安徽农业大学,2005
    [43]Hazarika M, Chakravarty K C, Mahanta P K. Studies on thearubigin pigments in black tea manufacturing systems[J]. J Sci Food Agric.,1984,35:1208-1218
    [44]Cattell D J, Nursten H E. Separation of thearubigins on Sephadex LH-20[J]. Phytochemistry, 1977,16:1269-1272
    [45]Cattell, D. J; Nursten, H. E. Fractionation and chemistry of ethyl acetate-soluble thearubigins from black tea[J]. Phytochemistry,1976,15:1967-1970
    [46]Degenhardt A, Engelhardt U H, Wendt A S, et al. Isolation of black tea pigments using high-speed countercurrent chromatography and studies on properties of black tea polymers[J]. J Sci. Food Agric.,2000,48:5200-5205
    [47]Degenhardt A, Engelhardt U H, Winterhalter P, et al. Centrifugal precipitation chromatography-a novel chromatographic system for fractionation of polymeric pigments from black tea and red wine[J]. J Agric., Food Chem.,2001,49(4):1730-1736
    [48]中国专利,CN1074618;中国专利,CN1989851;中国专利,CN1328092;中国专利,CN1635131;中国专利,CN1626668;中国专利,CN1826921
    [49]Hibasami H, Komiya T, Achiwa Y, et al. Black tea theaflavins induce programmed cell death in cultured human stomach cancer cells[J]. International Journal of Molecular Medicine 1998,1(4); 725-727
    [50]K Saeki, M Sano, T Miyase, et al. Apoptosis-inducing activity of polyphenol compounds derived from tea catechins in human histiolytic lymphoma U937 cells[J]. Biosci. Biotechnol. Biocheml,1999,63(3):585-587
    [51]Guang-Yu Yang, Jie Liao, et al. Effect of black and green tea polyphenols on c-jun phosphorylation and H2O2 production in transformed and non-transformed human bronchial cell lines:possible mechanisms of cell growth inhibition and apoptosis induction[J]. Carcubigenesis, 2002,11:2035-2039
    [52]A Dhawan, D Anderson, S de Pascual-Teresa, et al. Evaluation of the antigenotoxic potential of monomeric and dimeric flavanols, and black tea polyphenols against heterocyclic amine-induced DNA damage in human lymphocytes using the Comet assay[J]. Mutat. Res.,2002, 515(1-2):39-56
    [53]You-Ying TU, An-Bin TANG, and Naoharu Watanabe. The Theaflavin Monomers Inhibit the Cancer Cells Growth in Vitro[J]. Acta Biochimica et Biophysica Sinica 2004,36(7):508-512
    [54]Lodovicim M, Casalini C, Filippo D E, et al. Inhibition of 1,2-dimethylhydrazine-induced oxidative DNA damage in rat colon mucosa by black tea complex polyphenols[J]. Food Chem. Toxicol.2000,38(12):1085-1088
    [55]Jie BoLu, Chi-Tang Ho, Geetha Ghai, et al. Differential effects of theaflavin monogallates on cell growth,apoptosis, and Cox-2 gene expression in cancerous versus normal cell[J]. Cancer Research,2000,60(22):6455-6471
    [56]王坤波.茶黄素的酶促合成、分离鉴定及功能研究[D].湖南农业大学博士论文,2007
    [57]焦振泉,叶宏,郭云昌,等.茶色素对叙利亚地鼠胚胎正常细胞和癌前细胞生长选择性作用的机制研究[J].卫生研究,2008,37(3):294-298
    [58]Lakshmishri Lahiry, Baisakhi Saha, Juni Chakraborty, et al. Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis[J]. Apoptosis, Volume 13, Number 6,771-781, DOI:10.1007/s10495-008-0213-x
    [59]Alyssa G. Schucka, Miriam B. Ausubela, Harriet L. Zuckerbraun, et al. Theaflavin-3,3'-digallate, a component of black tea:An inducer of oxidative stress and apoptosis[J]. Toxicology in Vitro,2008,22(3):598-609
    [60]Trina Kundua, Subhabrata Deyb, Madhumita Roya, et al. Induction of apoptosis in human leukemia cells by black tea and its polyphenol theaflavin[J]. cancer letters,2005,230(1):111-121
    [61]Y C Liang, S Y Lin. Shiau,C T Ho. Inhibition of TPA-induced Protein kinase C and transcription activator Protein-1 binding activities by theaflavin-3-3'-digallate from black tea in NIH3T3 cells[J]. J Agric. Food Chem.1999,47(4):1416-1421
    [62]Chung J.K. Huang C.S. Inhibition of activator protein 1 activity ob cell growth by purified green tea and black tea polyphebols in H-rat-transformed cells structure-activity relationship and mechanisms involved[J]. Cancer Research 1999,59(18):4610-4617
    [63]Yu-Li Lin, Shu-Huei Tsai, Shoei-Yn Lin-Shiau, et al. Theaflavin-3,3-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-kB in macrophages[J]. European Journal of Pharmacology,1999,367:379-388
    [64]YC Liang, YC Chen, YL Lin, et al. Suppression of extracellar signals and cell proliferation by the black tea polyphenols, theaflavin-3,3'-digallate[J]. Carcinogenesis 1999,20(4):733-736
    [65]Sakamoto Kazuko. effects of thearubigin and genistein on human prostate tumor cell (PC-3) growth via cell cycle arrest. Cancer letters,2000,15(1):103-109
    [66]Sil H, Sen T, Moulik S, et al. Black tea polyphenol(theaflavin) downregulates MMP-2 in human melanoma cell line A375 by involving multiple regulatory molecules[J]. J Environ Pathol Toxicol Oncol.2010,29(1):55-68
    [67]Jiebo Lua, Alexander Gosslaua, Alice Yee-Chang Liu, et al. PCR differential display-based identification of regulator of G protein signaling 10 as the target gene in human colon cancer cells induced by black tea polyphenol theaflavin monogallate. European Journal of Pharmacology,2008, 601(1-3):66-72
    [68]Sengupta, Archana; Ghosh, Samit; Das, Rajat Kumar, et al. Chemopreventive potential of diallylsulfide, lycopene and theaflavin during chemically induced colon carcinogenesis in rat colon through modulation of cyclooxygenase-2 and inducible nitric oxide synthase pathways. European Journal of Cancer Prevention,2006,15(4):301-305.
    [69]Hideya Mizuno, Yong-Yeon Cho, Feng Zhu, et al. Theaflavin-3,3-digallate induces epidermal growth factor receptor downregulation[J]. Molecular Carcinogenesis,2006,45(3): 204-212
    [70]Sazuka M., Imazawa H., Shoji Y., et al. Inhibition of collagenases from mouse lung carcinoma cells by green tea catechins and black tea theaflavins[J]. Biosci. biotechnol. biochem. 1997,61:1504-1506
    [71]Catterall F, Copeland E, Clifford MN, et al. Contribution of theafulvins to the antimutagenicity of black tea:their mechanism of action[J]. Mutagenesis,1998,13(6):631-636
    [72]Mari MY, Hiroharu K, Nobufumi T, et al. Effects of tea polyphenols on the invasion and matrix metalloproteinase activities of human fibrosarcoma HT1080 cells[J]. J Agric. Food Chem. 47:2350-2354
    [73]Krishnan R, Mare GB. Inhibitory effect(s) of polymeric black tea polyphenol fractions on the formation of [3H]-B(a)P-derived DNA adducts[J]. J Agric. Food Chem.2004,52(13):4261-4269
    [74]Krishnan R, Maru GB. Inhibitory effect(s) of polymeric black tea polyphenols on the formation of B(a)P-derived DNA adducts in mouse skin[J]. J Environ. Pathol. Toxicol., Oncol., 2005,24(2):79-90
    [75]Morre D J, Morre D M. Tea catechin synergies in inhibition of cancer cell proliferation and of a cancer specific cell surface oxidizes(ECTO-NOX)[J]. Pharmcol Toxicol,2003,92 (5):234-241
    [76]Adhmi VM, Ahmad N, Mukhtar H. Molecular targets for green tea in prostate cancer prevention[J]. J Nutr,2003,133(7):2417S-2424S
    [77]Miller, N. J., Castelluccio, C., Tijburg, L., et al. The antioxidant properties of theaflavins and their gallate esters radical scavengers or metal chelators[J]. FEBS letters,1996,392(1):40-44
    [78]南条文雄.红茶的机能性[J]. New Food Industry 2000,42(5):49-55
    [79]Saha P, Das S. Regulation of hazardous exposure by protective exposure:modulation of phase II detoxification and lipid peroxidation by Camellia sinensis and Swertia chirata[J]. Teratog Carcinog Mutagen.2003, Suppll:313-322.
    [80]Saha P, Das S. Elimination of Deleterious Effects of Free Radicals in Murine Skin Carcinogenesis by Black Tea Infusion. Theaflavins & Epigallocatechin Gallate[J]. Asian Pac J Cancer Prev.2002,3(3):225-230.
    [81]谢笔钧,石煌,胡慰望,等.绿茶、乌龙茶、红茶中的主要组分和酚类化合物抑制氧合酶活性和抗油脂自动氧化特性的研究[J].天然产物研究与开发,1994,16(4):19-26
    [82]Vernon E, Steele, Gary J, et al. Comparative chemopreventive mechanisms of green tea, black tea and selected polyphenol extracts measured by in vitro bioassays[J]. Carcinogenesis, 2000,21(1):63-67
    [83]仲川清隆,等.食品机能研究法[M].东京,光琳书院,2000,241-245
    [84]Das M, Chaudhuri T, Goswami SK, et al. Studies with black tea and its constituents on leukemic cells and cell lines[J]. Exp Clin Cancer Res.2002,21(4):563-568
    [85]Mi-Yae Shon, Seok-Kyu Park, Sang-Hae Nam. Antioxidant Activity of Theaflavin and Thearubigin Separated from Korean Microbially Fermented Tea[J]. Journal of Food Science and Nutrition,2007,12(1):1-63
    [86]原征彦等.晨芸化学会志.1987,61:803-808
    [87]Zhen Yong-su, Chen Zongmao, Cheng Shu-jun, et al. Tea bioactivity and therapeutic potential[M]. Taylor&Francis, CRC press Inc.,2002
    [88]王文祥,苏畅,廖惠珍.茶色素(茶黄素含量大于60%)对胰岛素抵抗大鼠胰岛素受体的影响[J].茶叶科学,2008,28(6):455-458
    [89]David J. Maron, Guo Ping Lu, Nai Sheng Cai, et al. Cholesterol-Lowering Effect of a Theaflavin-Enriched Green Tea Extract[J]. Archive Internanl Medicine,2003,163:1448-1453
    [90]鲁奇良.茶色素治疗高纤维蛋白原和高脂血症的临床研究[J].国医论坛,2008,3(23):16
    [91]杨树久.茶色素对原发性肾病综合征患者血液流变学和血脂的影响观察[J].中国医药导报,2008,5(9):154
    [92]赵敏,姚优修,李婷,等.茶色素胶囊对家兔离体血管平滑肌张力的影响[J].中西医结合心老血管病杂志,2009,7(29):1448-1449
    [93]王文祥,苏畅,廖惠珍.茶色素对单纯性肥胖大鼠胰岛素抵抗的影响[J].实用预防医学,2008,15(5):1359-1360
    [94]李四季,庄稼,刘建虎,等.高脂血症患者茶色素治疗前后血脂及血流变指标观察[J].中国血液流变学杂志,2008,18(3):361-362
    [95]王文祥,汪洁英,李杏林,等.茶色素对Hcy致血管内皮损伤拮抗作用[J].中国公共卫生,2010,26(2):212-213
    [96]Mario A. Vermeer, Theo P. J. Mulder and Henri O. F. Molhuizen. Theaflavins from Black Tea, Especially Theaflavin-3-gallate, Reduce the Incorporation of Cholesterol into Mixed Micelles[J]. J Agric. Food Chem.,2008,56(24):12031-12036
    [97]Ikuo Ikeda, Takashi Yamahira, Masaki Kato, et al. Black-Tea Polyphenols Decrease Micellar Solubility of Cholesterol in Vitro and Intestinal Absorption of Cholesterol in Rats[J]. J Agric. Food Chem.,2010,58(15):8591-8595
    [98]F. Cai, C. Li, J. Wu. Modulation of the Oxidative Stress and Nuclear Factor κB Activation by Theaflavin 3,3'-gallate in the Rats Exposed to Cerebral Ischemia-Reperfusion[J]. Folia Biologica (Praha),2007,53:164-172
    [99]Chih-Li Lin, Hsiu-Chen Huang and Jen-Kun Lin. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells[J]. The Journal of Lipid Research, 2007,48:2334-2343
    [100]Wai Mun Loke, Julie M. Proudfoot, Jonathan M. Hodgson. Specific Dietary Polyphenols Attenuate Atherosclerosis in Apolipoprotein E-Knockout Mice by Alleviating Inflammation and Endothelial Dysfunction[J]. Arteriosclerosis, Thrombosis, and Vascular Biology.2010,30: 749-757
    [101]Maity S, Ukil A, Karmakar S, et al. Thearubigin, the major polyphenol of black tea, ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitis[J]. Eur. J Pharmacol., 2003,470(1-2):103-112
    [102]李立祥,萧伟祥.茶色素及茶黄素药理作用研究进展[J].福建茶叶,2002,4:35-37
    [103]Toda M, Okubo S, Hara Y, et al. Antibacterial and bactericidal activities of tea extracts and catechins against methicillin resistant Staphylococcus aureus[J]. Nippon saikingaku zasshi-Japanese journal of bacteriology, September 1991,46(5):839-845
    [104]陈冉冉,傅柏平.茶色素抑制变形链球菌的实验研究[J].口腔医学,2007,27(4):181-183
    [105]Young-A Song, Young-Lan Park, Sun-Hye Yoon, et al. Black tea polyphenol theaflavin suppresses LPS-induced ICAM-1 and VCAM-1 expression via blockage of NF-κB and JNK activation in intestinal epithelial cells[J]. Inflamm. Res. DOI 10.1007/s00011-010-0296-z. Published online:24 December 2010
    [106]Mou-Tuan Huang, Yue Liu, Divya Ramji, et al. Inhibitory effects of black tea theaflavin derivatives on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and arachidonic acid metabolism in mouse ears[J]. Molecular Nutrition & Food Research,2006,50(2):115-122
    [107]Kyoji Yoshino, Katsuko Yamazaki, Mitsuaki Sano. Preventive effects of black tea theaflavins against mouse type IV allergy[J]. Journal of the Science of Food and Agriculture,2010, 90(12):1983-1987
    [108]Mikio Nakayama, Kenji Suzuki, Masako Toda, et al. Inhibition of the infectivity of influenza virus by tea poiyphenols[J]. Antiviral Research,1993,21(4):289-299
    [109]Nakano M, Itoh Y, Mizuno T, et al. Proceeding of international symposium on tea sci[J]. Shizuoka Japan/The orgariging committee of ISTS,1992:282
    [110]Shuwen Liu, Hong Lu, Qian Zhao, et al. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41[J]. Biochimica et Biophysica Acta 1723(2005):270-281
    [111]Chia-Nan Chen, Coney P C. Linl, Kuo-Kuei Huangl, et al. Inhibition of SARS-CoV3c-like Protease Activity by Theaflavin-3,3-digallate[J]. eCAM 2005,2(2):209-215
    [112]Satoh E, Ishii T, Shimizu Y, et al. Black tea extract, thearubigin fraction, counteract the effects of botulinum neurotoxins in mice[J]. Br. J Pharmacol.,2001,132(4):797-798
    [113]Satoh E, Ishii T, Shimizu Y, et al. The mechanism underlying the protective effect of the thearubigin fraction of black tea (Camellia sinensis) extract against the neuromuscular blocking action of botulinum neurotoxins[J]. Pharmacol. Toxicol.,2002,90(4):199-202
    [114]陈红伟.传统普洱茶与现代普洱茶[J].茶苑,2004(1):21-231
    [115]Jen-Kun Lin, Chih-Li Lin, Chih Liang, et al. Survey of Catechins, Gallic Acid, and Methylxanthines in Green, Oolong, Pu-erh, and Black Teas[J]. J Agric. Food Chem,1998, (46): 3635-3642
    [116]Yuegang Zuo, Hao Chen, Yiwei Deng. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector[J]. Talanta,2002(57):307-316
    [117]Pedro L Ferna Ndez, Fernando Pablos, Mariaa J Martian, et al. Study of Catechin and Xanthine Tea Profiles as Geographical Tracers[J]. J Agric., Food Chem,2002(50):1833-1839
    [118]Yuerong Liang, Lingyun Zhang, Jianliang Lu. A study on chemical estimation of pu-erh tea quality[J]. J Sci Food Agric.,2005(85):381-390
    [119]Yung-Sheng Lin, Yao-Jen Tsai, Jyh-Shyan Tsay, et al. Factors Affecting the Levels of Tea Polyphenols and Caffeine in Tea Leaves[J]. J Agric., Food Chem,2003(51):1864-1873
    [120]邵宛芳,M N Clifford, C Powell.红茶及普洱茶主要成分差异的初步研究[J].云南农业大学学报,1995,10(4):285-291
    [121]朱旗,M N Clifford,毛清黎,等.LC-MS分析普洱茶和茯砖茶与红茶成分的比较研究[J].茶叶科学,2006,26(3):191-194
    [122]Zhi-Hong Zhou, Ying-Jun Zhang, Mim Xu, et al. Puerins A and B, Two New 8-C Substituted Flavan-3-ols from Pu-er Tea[J]. J Agric. Food Chem,2005(53):8614-8617
    [123]林智,吕海鹏,崔文锐,等.普洱茶的抗氧化酚类化学成分的研究[J].茶叶科学,2006,26(2):112-116.
    [124]邹艳丽,董宝生,张伏全,等.普洱熟茶化学成分研究[J].云南化工,2009,36(2):10-13
    [125]折改梅,陈可可,张颖君,等.8-氧化咖啡因和嘧啶类生物碱在普洱熟茶中的存在[J].云南植物研究,2007,29(6):713-716
    [126]L S Hwang, L C Lin, N T Chen, et al. Hypolipidemic effect and antiatherogenic potential of Pu-Erh tea[J]. ACS Symp, Ser,2003(859):87-103
    [127]Deng-Jye Yang, Lucy Sun Hwang. Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea[J]. J Chromatography A,2006(1119):277-284
    [128]Kee-Ching Jeng, Chin-Shuh Chen, Yu-Pun Fang, et al. Effect of Microbial Fermentation on Content of Statin, GABA, and Polyphenols in Pu-Erh Tea[J]. J Agric. Food Chem.,2007,55(21): 8787-8792
    [129]赵燕,湛吉洪,刘箭卫.普洱茶抗龋作用的研究[J].牙病防治杂志,1993,1(1):17-19
    [130]何国藩,林月蝉,等.普洱茶对人血压心率及脑血流图的影响[J].中国茶叶,1995,(3):27-28
    [131]梁名志.漫谈古今神奇普洱茶药效[J].云南茶叶,1996,1(2):7-10
    [132]萧明熙.茶之降血脂与除口臭功效[A].海峡两岸茶叶可见学术研讨会论文集(内部资料),2000
    [133]刘亚林.普洱茶抑菌活性成分的研究[M].湖南农业大学硕土学位论文,2007
    [134]She-Ching Wu, Gow-Chin Yen, Bor-Sen Wang, et al. Antimutagenic and antimicrobial activities of pu-erh tea. LWT.2007,40:506-512
    [135]Delerive P, Martin-Nizard F, Chineni G, et al. peroxisome proliferators-activated receptor activators inhibit thrombin induced endot hel-in-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Cir Res,1999,85:394-402
    [136]何国藩,林月蝉.普洱茶对肠段的舒缩推进运动和胃蛋白酶分泌的影响[J].中国茶叶,1988,(2):6-8
    [137]吴文华.普洱茶调节血脂功能评价及其生化机理的研究[M].西南农业大学硕士学位论文,2005
    [138]张冬英.普洱茶降糖降脂活性成分的研究[D].湖南农业大学博士学位论文,2007
    [139]Kuan-Li Kuo, Meng-Shih Weng, Chun-Te Chiang, et al. Comparative Studies on the Hypolipidemic and Growth Suppressive Effects of Oolong, Black, Pu-erh, and Green Tea Leaves in Rats[J]. J Agric., Food Chem.2005,53,480-489
    [140]Chi-Hua Lu, Lucy Sun Hwang. Polyphenol Contents of Pu-Erh Teas and Their Abilities to Inhibit Cholesterol Biosynthesis in HepG2 Cell Line[J]. Food Chemistry,2008,111(1):67-71
    [141]Lin JK, Lin-Shiau SY. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols[J]. Mol Nutr Food Res.2006 Feb; 50(2):211-7. Review
    [142]Lin L.-C., Liuchang H.-C., Hwang L.-S., et al. The hypolipidemic and antioxidative effects of pu-erh tea[J]. Atherosclerosis,1998,136(1):44-44(1)
    [143]Yan Hou, Wanfang Shao, Rong Xiao, et al. Pu-erh tea aqueous extracts lower atherosclerotic risk factors in a rat hyperlipidemia model[J]. Experimental Gerontology,2009,44(6-7):434-439
    [144]Zhen-Hui Cao, Da-Hai Gu, Qiu-Ye Lin., et al. Effect of pu-erh tea on body fat and lipid profiles in rats with diet-induced obesity[J]. Phytotherapy Research,2011,25(2):234-238
    [145]Jiashun Gong, Chunxiu Peng, Ting Chen., et al. Effects of theabrownin from pu-erh tea on the metabolism of serum lipids in rats:Mechanism of Action[J]. Journal of Food Science,2010, 75(6):H182-H189
    [146]Yuan HuaBing; Zhong Jie; Yi Juan., et al. Effect of Pu-Erh tea on lipogenesis and expression of relative genes in obese rats fed with high fat diet[J]. Acta Nutrimenta Sinica,2009,31(2): 167-171
    [147]宋鲁彬.中国黑茶药理功能评价及活性物质研究[D].湖南农业大学博士论文,2008
    [148]孙璐西,刘张惠泉,等.普洱茶之抗动脉硬化作用,2002年中国普洱茶国际学术研讨会论文集[M].云南人民出版社,2002年6月第1版:309-317
    [149]Liang Zhang, Zhi-Zhong Ma, Yan-Yun Ch, et al. Protective effect of a new amide compound from Pu-erh tea on human micro-vascular endothelial cell against cytotoxicity induced by hydrogen peroxide[J]. Fitoterapia,2011,82(2):267-271
    [150]Chiang CT, Weng MS, Lin-Shiau SY, et al. Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through downregulating Akt and JNK. signalings as demonstrated in human hepatoma HepG2 cells. Oncol Res.2006,16(3):119-28
    [151]揭国良,何普明,丁仁凤.普洱茶抗氧化特性的初步研究[J].茶叶,2005,31(3):162-165
    [152]GuoLiang Jie, Zhi Lin, LongZe Zhang, et al. Free Radical Scavenging Effect of Pu-erh Tea Extracts and Their Protective Effect on Oxidative Damage in Human Fibroblast Cells[J]. J Agric. Food Chem.,2006,54:8058-8064
    [153]吕海鹏.普洱茶化学成分与抗氧化活性研究[M].中国农业科学院硕士研究生论文,2005
    [154]Pin-Der Duh, Gow-Chin Yen, Wen-Jye Yen, et al. Effects of Pu-erh Tea on Oxidative Damage and Nitric Oxide Scavenging[J]. J Agric. Food Chem.2004,52:8169-8176
    [155]Bor-Sen Wanga, Hui Mei Yub, Lee-Wen Chang, et al. Protective effects of pu-erh tea on LDL oxidation and nitric oxide generation in macrophage cells. LWT.2008,41:1122-1132
    [156]Qian ZM, Guan J, Yang FQ, et al. Identification and Quantification of Free Radical Scavengers in Pu-erh Tea by HPLC-DAD-MS Coupled Online with 2,2'-Azinobis(3-ethylbenzthiazolinesulfonic acid) Diammonium Salt Assay[J]. J Agric., Food Chem.2008,11(6)
    [157]Jia Shun Gong. Antioxidant activity of extracts of pu-erh tea and its material[J]. Asian Journal of Agricultural Sciences,2009,1(2):48-54
    [158]高林瑞.普洱茶茶色素研究进展[J].热带农业科技,2005,28(3):35-37
    [159]黄意欢.茶学实验技术[M].北京:中国农业出版社,1995
    [160]Vattem D A, Lin Y T, Labber R G, et al. Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against select food borne pathogens[J]. Innovative Food Science and Emerging Technologies,2004(5):81-91
    [161]凌关庭.抗氧化食品与健康[M].北京:化学出版社,2004:344
    [162]梁月荣.红茶茶黄素类化合物的高相液相色谱-光电二极光管阵列检测[J].浙江农业大学学报,1992,18(5):70-74
    [163]王坤波,刘仲华,黄建安,等.高效液相色谱法测定红茶中的茶黄素[J].色谱,2004,22(2):151-153
    [164]夏文娟,张丽霞,史作安,等.毛细管电泳分析茶黄素的方法研究[J].茶叶科学,2006,26(2):147-153
    [165]方祥,李斌,陈栋,等.普洱茶功效成分及其品质形成机理研究进展[J].食品工业科技,2008,29(6):313-316
    [166]陈娜,侯艳,徐昆龙,等.云南普洱茶急性毒性研究[J].云南农业大学学报,2008,23(2):233-237
    [167]刘勤晋,陈文品,白文祥,等.普洱茶急性毒性安全性评价研究报告[J].茶叶科学,2003,23(2):141-145
    [168]陈文品,刘勤晋,白文祥,等.普洱茶遗传毒性安全性评价研究[J].茶叶科学,2005,25(3):208-212
    [169]龚加顺,陈文品,周红杰,等.云南普洱茶特征成分的功能与毒理学评价[J].茶叶科学,2007,27(3):201-210
    [170]周红杰,秘鸣,韩俊,等.洱茶的功效及品质形成机理研究进展[J].茶叶,2003,29(2):75-77
    [171]赵龙飞,周红杰,安文杰.云南普洱茶保健功效的研究[J].食品研究与开发,2005,26(2):114-118
    [172]张冬英,刘仲华.高通量筛选法对普洱茶降血糖血脂作用的研究[J].茶叶科,2005,26(1):49-53
    [173]吴文华.晒青毛茶和普洱茶降血脂作用比较试验[J].中国茶叶,2005(1):15
    [174]T T C Yang, M W L Koou. Hypochole Sterolemic Effects of Chinese Tea[J]. Pharmacological Research,1997,35(6):505-512
    [175]屠幼英,须海荣,梁惠玲,等.紧压茶对胰酶活性和肠道有益菌的作用[J].食品科学,2002,23(10):113-116
    [176]陈文峰,屠幼英,吴媛媛,等.黑茶紧压茶浸提物对胰蛋白酶活性的影响[J].中国茶叶,2002,24(3):16-17
    [177]吴媛媛,屠幼英,陈文峰,等.紧压茶对α-淀粉酶促活作用的研究[J].中国茶叶加工,2002,(1):38-39
    [178]刘建文.药理实验方法学-新技术与新方法(第二版)[M].北京:化学工业出版社,2007:254
    [179]叶应妩,王毓三主编.全国临床检验操作规程(第二版)[M].南京:东南大学出版社,1997:228-229
    [180]王坤波,刘仲华,黄建安.儿茶素体外氧化制备茶黄素的研究[J].茶叶科学,2004,24(1):53-59
    [181]钟萝.茶叶品质理化分析[M].上海:上海科学技术出版社,1989
    [182]姚毓婧.毛头鬼伞子实体多糖的提取、分离纯化、结构鉴定及免疫活性研究[D].南京农业大学硕十学位论文,2007
    [183]袁玉荪,朱婉华,陈钧辉.生物化学实验[M].北京:高等教育出版社,1998
    [184]吴航,冉祥海,张坤玉,等.红外光谱法研究交联淀粉的退化行为[J].高等学校化学学报,2006,27(4):775-778
    [185]朱惠菊,张卓勇.大黄的傅立叶变换红外光谱法快速鉴别[J].分析测试学报,2004,23(6):95-96
    [186]冀宪领,盖英萍,牟志关,等.白僵蚕的红外指纹图谱鉴别研究[J].光谱学与光谱分析,2007,27(1):66-69
    [187]Winkler F K, D'Arcy A, Hunziker W, et al. Structure of human pancreatic lipase[J]. Nature, 1990,343(6260):771-774
    [188]Hatano T, Yamashita A, Hashitomo T, et al. Flavan dimmers with lipase inhibitory activity from Cassia nomame[J]. Phytochem,1997,46(5):893-900
    [189]Horvathova K, Chalupa I, Sebova L, et al. Protective effect of quercetin and luteolin in human melanoma HMB-2 cells[J]. Mutat Res,2005,565(2):105-112
    [190]闫庆峰,杨达宽,黄云超,等.木犀草素对高脂血症大鼠血脂的影响[J].昆明医学院学报,2007,28(1):23-26
    [191]吕海鹏,林智,钟秋生,等.普洱茶E8组分的化学成分研究[J].茶叶科学,2010,30(6):423-428
    [192]Yen GC and Chen HY. Antioxidant activity of various teas extracts in relation to their antimutagenicity[J]. J Agric. Food Chem.,1995,43:27-32
    [193]Millin D J. Swaine D, Dix P L. Separation and classification of the brown pigments of aqueous infusions of black tea. J Agric. Food Chem.,1969,20:296-302
    [194]Gill JM, Malkova D. Physical activity, fitness and cardiovascular disease risk in adults: interactions with insulin resistance and obesity[J]. Clin Sci(Lond).2006 Apr,110(4):409-25
    [195]Miki T, Sakaue M, Kasuga M. In Vivo Administration of Glucosamine Inhibited Phosphatidylinositol 3-Kinase Activity without Affecting Tyrosine Phosphorylation of the Insulin Receptor or Insulin Receptor Substrate in Rat Adipocytes[J]. Kobe J Med Sci.2002,48(3-4): 105-114
    [196]Huang C, Somwar R, PatelN, et al. Sustained Exposure of L6 myotubes to High Glucose and Insulin Decreases Insulin-Stimulated GLUT4 Translocation but UPregulates GLUT4 Activity[J]. Diabetes.2002,51(7):2090-2098
    [197]周丽斌,陈名道,王晓,等.小檗碱对脂肪细胞分化的影响[J].中华医学杂志,2003,83(4):238-240
    [198]Spiegelman BM, Flier JS. Obesity and the relation of energy balance[J]. Cell,2001,104: 531-543
    [199]Prins JB, O'Rahilly S. Regulation of adipose cell number in man[J]. Clin Sci,1997,92:3-11
    [200]James WP, Rigby N, Leach R. Obesity and the metabolic syndrome:the stress on society[J]. Ann N Y Acad Sci.,2006,1083:1-10
    [201]季宇彬,何相晶,曲中原,等.活性氧诱导细胞凋亡的研究进展[J].中草药,2009,40(增刊):19-21
    [202]Feve B. Adipogenesis:cellular and molecular aspects[J]. Best Pract Res Clin Endocrinol Metab,2005,19(4):483-499
    [203]Bluher S, Kratzsch J, KIess W. Insulin-like growth factor I, growth hormone and insulin in white adipose tissue[J]. Best Pract Res Clin Endocrinol Metab,2005,19(4):577-587
    [204]Fajas L, Auboeuf D, RasPe E, et al. The organization, Promoter analysis, and expression of the human PPARgamma gene[J]. J Biol Chem.1997 Jul 25; 272(30):18779-89
    [205]Jessen BA, Stevens GJ. ExPression Profiling during adiPoeyte differentiation of 3T3-L1 fibroblasts[J]. Gene.2002; 299(1-2):95-100
    [206]Barlier-Mur AM, Chailley-Heu B, Pinteur C, et al. Maturational factors modulate transcription factors CCAAT/enhancer-binding proteins alpha, beta, delta, and peroxisome proliferator-activated receptor-gamma in fetal rat lung epithelial cells[J]. Am J ResPir Cell Mol Biol.2003 Nov:29(5):620-626
    [207]Hertz R, Berman 1, Keppler D, et al. Activation of gene transcription by prostacyclin analogues is mediated by the peroxisome-proliferators-activated receptor(PPAR)[J]. Eur J Biochem.1996:235(1-2):242-247
    [208]揭国良.普洱茶抗氧化作用及减肥作用的研究[D].浙江大学博士论文,2008
    [209]Savkur RS, Miller AR. Investigational PRAR-gamma agonists for the treatment of Type 2 diabetes[J]. Expert Opin Investig Drugs,2006,15(7):763-778
    [210]Wu Z, Rosen ED, Brun R, et al. Cross-regulation of C/EBPa and PPARy controls the transcriptional Pathway of adipogenesis and insulin sensitivity[J]. Mol Cell,1999,3:151-158
    [211]Argmann CA, Cock TA, Auwerx J. Peroxisome proliferator-activated receptor gamma:the more the merrier[J]. Eur J Clin Invest.2005; 35(2):82-92; discussion 80
    [212]Scheen, AJ. Combined thiazolidinedione-insulin therapy:should we be concerned about safety? Drug Saf.2004:27(12):841-856
    [213]Mingrone G, Rosa G, Rocco P, et al. Skeletal muscle triglycerides lowering is associated with net improvement of insulin sensitivity, TNF-a reduction and GLUT4 expression enhancement[J]. Int J Obes Relat Metab Disord,2002,26(9):1165-1172
    [214]MacLean P, Zheng D, Jones J, et al. Exercise-induced transcription of the muscle glucose transporter (GLUT4) gene[J]. Biochem Biophys Res Commun,2002,292(2):409-414
    [215]Ducluzeau P, Perretti N, Laville M, et al. Regulation by Insulin of Gene Expression in Human Skeletal Muscle and Adipose Tissue. Evidence for Specific Defects in Type 2 Diabetes[J]. Diabetes,2001,50(5):1134-1142
    [216]Pessler D, Rudich A, Bashan N. Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter[J]. Diabetologia,2001,44(12):2156-2164
    [217]Perrini S, Natalicchil A, Laviola L, et al. Dehydroepiandroster one Stimulates Glucose Uptake in Human and Murine Adipocytes by Inducing GLUT1 and GLUT4 Translocation to the Plasma Membrane[J]. Diabetes,2004,53(1):41
    [218]George S, Rochford J J, Wolfrum C, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2[J]. Science,2004,304(5675):1325
    [219]Sano H, Kane S, Sano E. et al. Insulin-stimulated phosphorylation of a rab GTPase-activating protein regulates GLUT4 translocation[J]. J Biol Chem,2003,278(17):14599
    [220]Taghibiglou C, Rashid-Kolvear F,Van Iderstine SC, et al. Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyorsine phosphatase 1B in a fructose-fed hamster mode of insulin r sistance[J]. J Biol Chem,2002,277:793-803
    [221]Hirata AE, Alvarez-Rojas F, Carvalheira JB, et al. Modulation of 1R/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats[J]. Life Sci,2003,73:1369-1381
    [222]Gum RJ, Gaede LL, Koterski SL, et al. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob[J]. Diabetes,2003,52:21-28
    [223]Goldstein BJ, Bittner-Kowalczyk A, White M F, et al. Tyorsine dephosphorylation and deactivation of insulin receptor substrate-1 by portein-tyorsine phosphatase 1B.Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein[J]. J Biol Chem, 2000,275:4283-4289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700