金橘活性物质提取及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金橘属芸香科,富含挥发油、黄酮、柠檬苦素、果胶等生物活性成分,具有抗氧化、抑菌、抗癌、调节免疫、降脂及防治心脑血管疾病等多种功效,是一种具有很大开发潜力药用保健资源。本文以金橘为原料,分析其挥发性成分;探讨金柑黄酮类化合物和柠檬苦素类化合物的微波辅助萃取及超声波辅助萃取工艺;通过体外活性评价试验,探索金橘黄酮类粗提物及柠檬苦素类粗提物体外抗油脂氧化、抑制DNA氧化损伤、清除自由基和抑菌活性;通过小白鼠体内活性评价,研究金橘黄酮类粗提物抗衰老、降血脂、降血糖及对免疫功能和胃肠吸收功能的影响。试验旨在初步探明金橘的化学成分组成及其生理活性成分,为金橘的保健功能及药理功能开发提供依据。
     采用顶空-固相微萃取(HS-SPME)技术、气相色谱/质谱/计算机联用(GC/MS/DS)技术对金橘挥发性成分进行分析,研究了金橘用量、萃取时间及萃取温度对金橘中挥发性物质萃取的影响。优化后得到的萃取条件为:金橘果浆用量为5.0 g,萃取时间为25 min,萃取温度为45℃。本试验确定了45种化合物,三个品种的金橘挥发性成分中都分别含有烯、醇、酮、酯等化合物,以萜烯类化合物为主。
     在金橘黄酮微波辅助萃取工艺中,通过四元二次回归通用旋转组合试验构建模型。试验中所选参试因子对微波辅助萃取效率均有显著影响,其顺序依次为乙醇浓度>萃取时间>萃取温度>液料比。通过规划求解,对回归模型方程进行预测,并结合试验仪器参数设定要求,确定金橘黄酮微波辅助萃取的最优工艺条件为:乙醇浓度75%,萃取温度57℃,萃取时间37 min,液料比30:1。以试验验证,此条件下,金橘黄酮微波辅助萃取得率达到2.18±0.01%,平均回收率为98.46±1.05%,RSD=1.07%(n=5)。
     在金橘柠檬苦素超声波辅助萃取工艺中,通过四元二次回归通用旋转组合试验构建模型。试验中所选参试因子对超声波辅助萃取金橘柠檬苦素效率影响显著性顺序为超声波处理时间>超声波处理功率>浸提温度>液料比。经规划求解并结合实际,确定最优工艺条件为:超声波处理时间20 min,处理功率440 W,浸提温度59℃,液料比30:1,浸提60 mmin。验证试验证明,在此条件下萃取,柠檬苦素超声波辅助萃取得率达到3.26±0.03‰,平均回收率为98.03±1.55%,RSD=1.58%(n=5)。
     以金橘黄酮类及柠檬苦素类粗提物为原料,进行体外活性研究,结果显示:(1)金橘黄酮类粗提物在低浓度(0.16 mg/mL)时已表现出较好的抑制DNA氧化损伤活性;柠檬苦素类粗提物则在较高浓度(> 2.50 mg/mL)时,表现出抑制DNA氧化作用。(2)金橘黄酮类粗提物对羟自由基·OH、超氧阴离子自由基O2·和DPPH清除效果顺序为DPPH>·OH> O2·,半清除率浓度(IC50)分别为0.45mg/mL、0.53mg/mL和41.28 mg/mL.金橘柠檬苦素类粗提物对DPPH及·OH有清除作用,半清除率浓度分别为1.76 mg/mL和18.37 mg/mL。(3)金橘黄酮类及柠檬苦素类粗提物均有一定的抗油脂氧化作用,黄酮类粗提物与Vc及VE有协同增效作用;柠檬苦素类粗提物添加量为0.08%时,有微弱的抗油脂氧化活性,与Vc及VE无显著的协同增效作用。(4)金橘黄酮类粗提物对金黄色葡萄球菌、枯草杆菌、大肠杆菌及毛霉有一定的抑制作用,最小抑菌浓度(MIC)分别为0.63 mg/mL、1.25mg/mL、1.25 mg/mL和2.50 mg/mL;半抑菌率时间(IT50)分别为4.65 h、5.70 h、6.74 h和9.71 h。柠檬苦素类粗提物对枯草杆菌、金黄色葡萄球菌、大肠杆菌及黑曲霉有抑制作用;最小抑菌浓度(MIC)分别1.25 mg/mL、2.50 mg/mL、2.50 mg/mL和2.50 mg/mL;半抑菌率时间(IT50)分别为4.20 h、5.61 h、6.38 h和7.65 h。
     以金橘黄酮粗提物为原料,以小白鼠为试验对象,探讨不同产地金橘(湖南浏阳和江西遂川)对其生理活性的影响。结果显示:(1)试验组能够明显延长小鼠的生存寿命。80 mg/kg-bw剂量对血清SOD, MDA含量和平均寿命的影响具有显著性(PKumquat which belongs to rutaceae Fortunella is a quite potential medical resource due to its rich in easy volatile, flavones, limonin and pectin, and etc. In this study, the technical conditions of Microwave Extraction and Ultrasonic Extraction on flavones and limonin were discussed. Furthermore, the activities of antioxidation on oil and DNA, free radical scavenging and bacteriostasis of kumquat crude extracts were also identified through the experiment in vitro. The whole research was to prove up the chemical constituents and biological activities of kumquat so as to provide basis for exploiting the physiological and pharmacological function of kumquat. The main study contents and results are given as follows:
     The volatile composition of fresh kumquat (F. Crassifolia Swingle, F. Japonica Swingle and F. margarita Swingle) separated from Liuyang, Suichuan and Gui Lin was analyzed by Solid Phase Micro Extraction (SPME) coupled with GC/MS/DS. The optimal experiment parameters for SPME were:5.0g juice,25 min at 45℃. The experiment identified forty-five volatile components in total in the three kumquat samples. It contained alkenes, alcohols, ketones, esters and etc. Most of volatile components were Alkenes.
     In the research of flavones which come from kumquat by Microwave Extraction, the reduced regression equation of extraction process was determined by four factors quadratic regression rotation combination design. All the tested factors affected the yield significantly, with the order as ethanol concentration> extraction time> extraction temperature> ratio of solvents and material. Predicting the model through the Aprogram solution of Excel, and according to practical situation, the optimal process conditions for Microwave Extraction were as follows:ethanol concentration 76.7%, extraction temperature 57℃, extraction time 37 min, and ratio of solvents and material 30:1. The yield of kumquat flavones was 2.181±0.007%. The retrieving rate was 98.46±1.05%, RSD=1.07%(n=5).
     In the study of limonin which come from kumquat by Ultrasonic Extraction, the reduced regression equation of extraction process was determined through the quadratic regression general rotation design with four factors. All the tested factors affected the yield significantly, with the order as ultrasonic treatment time> ultrasonic treatment power> soaking temperature> ratio of solvents and material. Predicting the model through the Aprogram solution of Excel, and according to practical situation, the optimal process conditions for Ultrasonic Extraction were as follows:ultrasonic treatment time 20 min, ultrasonic treatment power 440 W, soaking temperature 59℃, ratio of material and solvents 30:1, and soaking time 60 min. The yield of kumquat limonin was 3.262±0.028%. The retrieving rate was 98.03±1.55%, RSD=1.58%(n =5).
     Experiments on in-vitro biological activity were made using the crude extracts of flavones and limonin as materials showed the results as follows:
     The experimental results of study on the antioxidation effect on DNA showed that the crude extracts of flavones had antioxidation on DNA, while the test sample was at concentration of 0.16 mg/mL. When the concentration of crude extracts of limonin was more than 2.50 mg/mL, it showed that crude extracts had antioxidation on DNA.
     In the experiment of scavenging on free radical in vitro, the crude extracts of flavones showed scavenging effect on hydroxyl radical(·OH), superoxide anion radical (O2·) and DPPH. The scavenging order was DPPH>·OH> O2·The half scavenging concentration (IC50) were 0.45 mg/mL,0.53 mg/mL, and 41.28 mg/mL respectively. It showed that the extracts had scavenging effect on DPPH and hydroxyl radical (·OH). The IC5o were 1.76 mg/mL and 18.37 mg/mL respectively.
     The results of experimental study on the antioxidation effect on oil showed that kumquat crude extracts had antioxidation characteristic. The crude extracts of flavones had synergistic action with Vc, VE The crude extracts of limonin showed weak antioxidation on oil, when the dosage was 0.08%. The crude extracts of flavones had not synergistic action with VC, VE.
     The antibacterial experiment in vitro showed that the crude extracts of flavones had inhibitory effect on Staphyloclccus aureus, Bacillus subtilis, Excherichia coli and Mucor racemosus. The inhibiting order of the crude extracts of kumquat flavones was S. aureus> B. subtilis> E. coli> M. racemosus. The minimum inhibition concentrations (MIC) were 0.63 mg/mL,1.25 mg/mL,1.25 mg/mL and 2.50 mg/mL respectively. The half inhibiting time (IT50) was given as below:4.65 h,5.70 h,6.74 h and 9.71 h. The crude extracts of limonin also had inhibitory effect on Staphyloclccus aureus, Bacillus subtilis, Excherichia coli, and Aspergillus niger. The inhibiting order was B. subtilis> S. aureus> E. coli> A.s niger. MICs were given as below:1.25 mg/mL,2.50 mg/mL,2.50 mg/mL and 2.50 mg/mL respectively. IT50 were 4.20 h, 5.61 h,6.38 h and 7.65 h.
     In this paper, research was also made which used crude flavones extracts from kumquat as materials while mice was used as experimental objects, in order to discussing the effect of different locality kumquat (Liuyang and Suichuan the breed is Fortunella Crassifolia Swingle) to the physiological effects of kumquat total flavones. The main study contents and results are given as follows:
     Compared with model group, the experimental groups could obviously prolong the life-span of mice. The 80 mg/kg·bw doses had markness (P<0.05) effect to SOD, MDA and average life-span; the 160 mg/kg·bw doses had greatly markness (P<0.01) effect.
     The 20 mg/kg·bw doses of Kumquat had markness effect (P<0.05) in lowering blood lipid; and the 80 mg/kg·bw doses of Kumquat had greatly markness effect (P<0.01) in lowering blood lipid.
     The regulating blood sugar effect of kumquat total flavones was as below: compared with model group, after 6 days, the 160 mg/kg·bw doses had markness effect (P<0.05) to the diabetes mice's blood sugar; after 17 days, this doses had great markness effect (P<0.01). The 80 mg/kg·bw doses had markness effect (P<0.05) to the diabetes mice's blood sugar after 17 days,however it had no obvious effect to the normal mice.
     The effect of kumquat total flavones on the immunity system was tested, through evaluating the phagocytic function of monocyte macrophage, the ear tumefaction reduced by DNFB, swimming time, capacity of lacking of Oxygen, the index of thymus and spleen. The results were showed as below:compared with model group, the two middle doses had markness effect (P<0.05); the two higher doses had great markness effect (P<0.01).
     The effect of kumquat total flavones on the gastrointestinal absorption function was studied, the 80 mg/kg·bw doses had markness effect (P<0.05) to the diabetes mice's blood sugar doses had markness effect (P<0.05) while the 160 mg/kg-bw doses had great markness effect (P<0.01) on improving the gastrointestinal absorption function.
引文
[1]汪正范,色谱定性与定量[M].北京:化学工业出版社,2000.32-40.
    [2]汪正范,杨树民.色谱联用技术[M].北京:化学工业出版社,2000.60-63.
    [3]刘虎威.气相色谱方法及应用[M].北京:化学工业出版社,2000.66-69.
    [4]Arthur C, Killam L, Motlagh S, et al. Analysis of substituted benzene compounds in groundwater using solid-phase micro extraction[J]. Environ. Sci. Technol,1992, 26:979.
    [5]Motlanh S, Pawliszyn J. On-line monitoring of flowing samples using solid phase microextraction-gas chromatography[J]. Anal. Chem. Acca,1993,4:264-285.
    [6]Buchholz K, Pawliszyn J. Optimization of solid-phase microextraction conditions for determination of phenols[J]. Anal. Chem.,1994,66:160-167.
    [7]吴继红,张美莉,陈芳,等.固相微萃取GC-MS法测定不同苹果品种中主要芳香成分的研究[J].分析测试学报,2005,24(4):101-104.
    [8]Pan L, Adams M, Pawliszyn J. Determination of Fatty Acids Using Solid-Phase Microextraction[J]. Anal. Chem.,1995,67:4396-4403.
    [9]傅若农,色谱分析概论[M].北京:化学工业出版社,1999.56-61.
    [10]宁正祥.食品分析手册[M].北京:中国轻工业出版社,2001.88-93.
    [11]Lwashina T. The Structure and Distribution of the Flavonoids in Plants[J]. J. Plant Res,2000,113(3):289-299.
    [12]肖崇厚.中药化学[M].上海:上海科学技术出版社,1997.265-267.
    [13]谢棒祥,张敏红.生物类黄酮化合物的结构与生物活性的关系[J].动物营养学报,2003,15(2):11-15.
    [14]赵雪梅,朱大元,叶兴乾,等.柑桔属中类黄酮的研究进展[J].天然产物研究与开发,2002,14(1):89-91.
    [15]Neacsu M, Eklund PC, Sjoholm RE, et al. Antioxidant flavonoids from knotwood of Jack pine and European aspen[J]. Holz Roh Werkst,2007,65(1):1-6.
    [16]Stojanovic S, Sprinz H. Efficiency and Mechanism of the Antioxidant Action of trans-Resveratrol and its Analogues in theRadical Liposome Oxidation[J]. Archives of Biochemistry and Biophysics,2001,391(1):79-89.
    [17]凌关庭.抗氧化食品与健康[M].北京:化学工业出版社,2004.191.
    [18]潘一峰,瞿伟菁.越柑果渣中黄酮类成分抗氧化活性的研究[J].食品科学,2005,26(10):206-210.
    [19]龙春,高志强,宋仲容.银杏叶中有效成分的微波提取及抗氧化活性研究[J].云南大学学报(自然科学版),2006,28(12):248-251.
    [20]贾小影,闫伟.槭叶草对高脂血症大鼠降脂作用及其抗氧化作用的研究[J].特产研究,2005,2:41-45.
    [21]上原万里子.类黄酮的抗氧化作用[J].日本医学介绍,2005,26(4):155-157.
    [22]Carl L, John A, Polagrato, et al. Cocoa flavanols and cardiovascular health[J]. Phytochemistry Reviews,2002,1(5):231-240.
    [23]Assmam G. Atheroprotective effects of high-density [J]. Anna Rev Med,2003,54: 321-341.
    [24]方伟蓉,李运曼.龙血竭总黄酮对动物心肌缺血的保护作用[J].中国临床药理学与治疗学,2005,10(9):1020-1024.
    [25]杨明,隋殿军,朱姝,等.蜂胶总黄酮对大鼠心肌缺血再灌注损伤Fas、Bax和Bc1-2基因蛋白表达的影响[J].中国药理学通报,2005,21(7):799-802.
    [26]马善峰,关宿东,汪思应.大豆异黄酮对糖尿病大鼠心肌收缩性的影响[J].安徽医科大学学报,2005,40(3):214-218.
    [27]Fuhrman B,Aviram M. Flavonoids Protect LDL from Oxidation and Attenuate Atherosclerosis[J]. Curr Opin Lipidol,2001,12(1):41-48.
    [28]Jayasooriya AP, Sakono M, Yuizaki C. Effects of momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets[J]. Ethnophannacol,2001,72(2): 331-336.
    [29]Aviram M. Interaction of Oxidized Low Density I-ipoprotein with aerophages in Athero cerOsis and the An.tiatherogenicity of Antioxidants[J]. Eur J Clin Biochem,1996,34:599-609.
    [30]Aviram M, Fuhrman B. Polyphenolic Flavonoids Inhibit acrophage-mediated Oxidation of LDL and Attenu-ate Atherogenesis[J]. Atherosclerosis,1998,137: 45-50.
    [31]郑高利,张信岳,郑经伟,等.葛根异黄酮降低雌性去势大鼠血胆固醇水平 [J].中药材,2002,25(4):273-274.
    [32]Pan W, Ikeda K, Takebe M. Genistein, daidzein and glycitein inhibit growth and DNA synthesis of aortic smooth muscle cells from stroke-prone spontaneously hypertensive rats [J]. Journal of Nutrition,2001,31(4):1154-1158.
    [33]Vicenzo C, Siovio C, Cinzia M, et al. Vasorelaxing effects of flavonoids: investigation on the possible involvement of potassium channels[J]. Naunyn-Schmiedeberg's Arch Pharmacol,2004,370(4):290-298.
    [34]王丽玲,焦必林,曾凡坤.保键功能因子—生物类黄酮[J].粮食与油脂,2004,(9):18-20.
    [35]Adnan Hasanoglu ME, Cengiz Ara MD, Suleyman Ozen MD, et al. Efficacy of Micronized Flavonoid Fraction in Healing of Clean and Infected Wounds [J]. International Journal of Angiology,2001,10(1):41-44.
    [36]Alina B, Anacona JR. Metal complexes of the flavonoid quercetin:antibacterial properties[J]. Transition Metal Chemistry,2001,26(1-2):20-23.
    [37]翟爱华,韩艳慧,杨健.麦胚黄酮抑菌作用的研究[J].黑龙江八一农垦大学学报,2005,17(5):69-72.
    [38]田.中忍.杏叶类黄酮对大鼠食后血糖升高的抑制作用[J].国外医学中医中药分册,2005,27(5):305.
    [39]俞灵莺,李向荣.植物黄酮类抗糖尿病及其并发症的研究进展[J].国外医学,2002,12(5):112-116.
    [40]Kritz-Silverstein D, Goodman-Gruen DL. Usual dietary isoflavone intake, bone mineral density, and bone metabolism in postmenopausal women[J]. Women Health Gend Based Med,2002,11(1):69-78.
    [4]]姚红,黄少华,苏子仁,等.葛根总黄酮对去卵巢大鼠骨密度及骨钙影响的实验研究[J].新中医,2005,37(2):92-93.
    [42]谈志龙,刑国胜,于顺禄,等.中药葛根对去卵巢大鼠骨代谢生化指标的影响[J].中国骨质疏松杂志,2003,9(2):108-110.
    [43]陈琦,薛存宽,沈凯,等.红车轴草异黄酮对去势大鼠骨质疏松影响的实验研究[J].中国药师,2005,8(7):58-62.
    [44]Wenzel U, Kuntz S. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells[J]. Cancer Res,2000,60(14):3823-3831.
    [45]Kuntz S, Wenzel U. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines[J]. Eur JNut,1999,38(3):133-142.
    [46]DiSilvestro RA, Godman J, Dyce E, et al. Soy isoflavone supplementation elevatesery throcyte superoxide dismutase, But not plasma ceruloplasmin in postmenopausal breast cancer survivors[J]. Breast Cancer Research and Treatment,2005,89(3):251-255.
    [47]Bomser J, Madhavi DL, Singletaty K, et al. In vitro anticancer activity of fruit extracts from Vaccinium species[J]. Planta Med,1996,62(3):212-216.
    [48]田爽.染料木黄酮对人卵巢癌细胞系抑制增殖和诱导凋亡发生的作用[J].国际肿瘤学杂志,2006,33(5):383-385.
    [49]张文萍,谈月娣,蒋丽珍.染料木黄酮诱导人卵巢癌H0-8910细胞凋亡的实验研究[J].同济大学学报(医学版),2006,27(3):10-12,16.
    [50]Yoshida M, Salai T, Hosokawa N, et al. The effect of quercetin on cell cycle progression and growth of human gastric cancer cells[J]. FEBS Lett,1990, 260(1):10-13.
    [51]Pianetti S, Guo S, Kavanagh KT, et al. Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells[J]. Cancer Res,2002,62(3):652-655.
    [52]Yoshida M, Yamamoto M, Nikaido T. Quercetin arrests human leukemic Tcells in late G1 phase of the cell cycle[J]. Cancer Res,1992,52(23):6676-6681.
    [53]张德权,台建祥,付勤.生物类黄酮的研究及应用概况[J].食品与发酵工业,2000,25(6):52-57.
    [54]王字翎,张艳,方明,等.白花蛇舌草总黄酮的免疫调节作用[J].中国药理学通报,2005,21(4):444-446.
    [55]Middleton EJ, Kandas W. Effects of flavonoids on immune and inflammatory cell functions[J]. Biochem pharmacol,1992,43(6):1167-1179.
    [56]安银岭.植物化学[M].哈尔滨:东北林业大学出版社,1996,180.
    [57]吴立军.天然药物化学(第四版)[M].北京:人民卫生出版社,2003.179.
    [58]Williamson G. The use of flavonoid aglycones in in vitro systems to test biological activities:based on bioavailability data, is this a valid approach?[J]. Phytochemistry Reviews,2002,1(1):215-222.
    [59]曾祥群.葛根总黄酮提取工艺[J].食品工业科技,2000,21(3):33-34.
    [60]游海,陶秉莹,张立麒.超临界萃取法从银杏叶中提取黄酮类化合物,萜内酯的工艺研究[J].南昌大学学报(工科版),2000,22(4):34-38.
    [61]Giannuzzo AN, Boggetti HJ, Nazareno MA, et al. Supercritical fluid extraction of naringin from the peel of Citrus paradise[J]. Phytochemical Analysis,2003, 14(4):221-223.
    [62]王晓,李林波,马小来,等.酶法提取山楂叶中总黄酮的研究.食品工业科技,2002,23(3):37-40.
    [63]Li MJ, You JY, Yao S, et al. Micriwave-assisted Extraction of Rutin and Quercetin from Flos Sophorae[J]. CHEM.RES.CHINESEU,2004,20(6):703-706.
    [64]Gao M, Liu CZh. Comparison of Techniques for the Extraction of Flavonoids from Cultured Cells of Saussurea medusa Maxim[J]. World Journal of Microbiology and Biotechnology,2005,21(8-9):1461-1463.
    [65]陈伟,刘青梅,杨性民,等.微波技术在杜仲黄酮提取工艺中的应用研究[J].食品科学,2006,27(10):285-288.
    [66]毕丽君,李慧.水芹中总黄酮类化合物最佳提取工艺的研究[J].食品科学,1999, (12):35-37.
    [67]刘树兴,魏丽娜,李红.超声法提取芦笋老茎中黄酮类物质的研究[J].食品科学,2006,27(11):360-363.
    [68]Sargenti SR, Vichnewski W. Sonication and liquid chromatography as a rapid technique for extraction and fractionation of plant material[J]. Phytochemical Analysis,2000,11(2):69-73.
    [69]张虹,张艳萍.柠檬苦素类似物的研究进展[J].’食品与发酵工业,2002,28(2):80-83.
    [70]Hasegawa S, Miyale M, Ozaki Y. Biochemistry of citrus oimonoids and their anticarcinogenic activity[J]. ACS symposium serise,1994,546:198-208.
    [71]李思义.柑桔柠檬苦素类似物[J].广西热作科技,1999, (2):21-25.
    [72]蔡护华,桥永文男.柑桔果实中柠檬苦素类化合物的研究现状与展望[J].植物学报,1996,38(4):328-336.
    [73]Miller EG, Gonzales-Sanders AP. Inhiition of hamster buccal pouch carcinogenesis by limonin 17-beta-D-glucopyra-noside[J]. Nutrition and Cancer, 1992,17(1):1-7.
    [74]Miller EG, Porter JL, Binnie WH, et al. Further studies on the anticancer activity of citrus limonoids[J]. Agric Food Chem,2004,52(15):4908-4920.
    [75]唐莉莉,曾祥斌,田庆国,等.柠檬苦素类化合物对人乳腺癌细胞(MCF-7)的生长抑制及细胞周期动力学的影响[J].无锡轻工大学学报,2001,20(2):205-207.
    [76]Poulose SM, Harris ED, Patil BS. Antiproliferative Effects of Citrus Limonoids Against Human Neuroblastoma and Colonic Adenocarcinoma Cells[J].Nutrition and Cancer,2006,56(1):103-112.
    [77]Bentley MD, Rajab MS. Limonoid model insect antifeedants[J]. Journal of Agricultural and Food Chemistry,1990,38(6):1400-1403.
    [78]Lowery DT, Isman MB. Antifeedant activity of extracts from neem, Azadirdchta indica, tostrawbery aphid, Chetosiphon fragaefolii[J]. Journal of Chenical Ecology,1993,19(8):1761-1773.
    [79]Nakatani M, Iwashita T, Naoki H, et al. Structure of a limonoid antifeedant from Trichilia roka[J].Phytochemistry,1985,24(1):195-196.
    [80]Yamasaki RB, Klocke JA. Strcture-bioactivity relationships of salannis as an anfifeedant against Colorado potato beetle (Lleptinotarsa decemlineata)[J]. Journal of Agricultural and Food Chemistry,1989,37(4):1118-1124.
    [81]Jimenex A, Mata R, Pereda-Mmiranda R, et al. Insecticidal Limonoids from Swietenia humilis AND Cedrela salvadorensis[J]. Journal of Chemical Ecology, 1997,23(5):1225-1234.
    [82]罗水中,潘利华,何建军,等.柑橘籽中柠檬苦素的提取与抑菌性研究[J].农产品加工·学刊,2006, (10):105-107.
    [83]Matsuda H, Yoshikawa M, linuma M, et al. Antinociceptive and Anti-inflammatory activities of limonin isolated from the fruits of Evodea rutaecarpa var. bodinieri[J]. Planta Medical,1998,64 (4):339-342.
    [84]Kumar M, Upreti RK. In vitro Effect of Azadirachin on Aerobic Bacteria of Rat Intestine[J]. Bull.Environ.Contam.Tosicla,2003,70(6):1205-1212.
    [85]贾冬英,姚开,谭敏,等.柚果皮生理活性物质研究进展[J].食品与发酵工业,2001,27(11):74-78.
    [86]孙崇德,陈昆松,戚行江,等.柑桔果实柠檬苦素类化合物的研究与应用[J].浙江农业学报,2002,14(5):297-302.
    [87]Hosoi S, Shimizu E, Usami N, et al. Isolation of cytochrome P450 3A (CYP3A) inhibitors from Hyuganatsu, Citrus tamurana Hort[J]. J Nat Med,2006,60(3): 240-242.
    [88]Jitpukdeebodintral S, Chantachum S, Ratanaphan A, et al. Preliminary study on immunomodulatory property of limonin from lime seeds[J]. Journal of Food, Agriculture & Environment,2005,3(2):109-111.
    [89]Mokbel SM, Suganuma T. Antioxidant and antimicrobial activities of the methanol extracts from pummelo (Citrus grandis Osbeck) fruit albedo tissues[J]. Eur Food Res Technol,2006,224(1):39-47.
    [90]Poulose SM, Harris ED, Patil BS. Citrus Limonoids Induce Apoptosis in Human Neuroblastoma Cells and Have Radical Scavenging Activity[J].The Joirnal of Nutrition,2005,135(4):870-877.
    [91]Raymond DB, Shin H.7α-Oxygoneoted Amonoids Limonoids from the rutaceae[J]. Phytochemistry,1982,21 (9):2349-2354.
    [92]田庆国,丁霄霖.甜橙种子中柠檬苦素类化合物的提取[J].林产化学与工业,1999,19(3):71-74.
    [93]Raymond DB, Shin H, Zareb H. Glucosides of acidic limonoids in citrus[J]. phytochemistry,1989,28 (10):2777-2781.
    [94]杨军,余德顺,莫彬彬,等.超临界C02萃取印楝种子中印楝素的研究[J].精细化工,2003,20(9):513-518.
    [95]江定心,徐汉虹,杨晓光,等.超临界CO2流体萃取印楝种子中印楝素的研究[J].华南农业大学学报,2005,26(1):70-72.
    [96]赵淑英,宋湛谦,高兴祥,等.印楝素的萃取及其杀虫活性[J].农药,2005,44(6):280-282.
    [97]王秋芬,宋湛谦,赵淑英,等.超声波用于强化有机溶剂提取印楝素[J].林产化学与工业,2004,24(1):25-28.
    [98]宗乾收,林军,张征.印揀种仁中印楝素的微波萃取方法研究[J].农药,2004,43(5):230-232.
    [99]赵淑英,宋湛谦,高宏,等.微波辅助法提取印楝素的研究[J].林产化学与工业,2003,23(4):47-50.
    [100]中国科学院中国植物志编辑委员会.中国植物志(第43卷第2分册)[M].北京:科学出版社,1997.172.
    [101]方修贵,林媚,李嗣彪,等.金柑果实的综合开发利用[J].渐江柑橘, 2003,20(4):29-30.
    [102]陈金印,郭成志,刘后根,等.遂川金柑营养成分的分析研究[J].江西农业大学学报,1998,20(4):452-455.
    [103]方修贵,戚行江,胡安生.柑橘果实中抗癌活性物质的研究现状和前景[J].食品与发酵工业,2003,29(10):79-82.
    [104]刘启勋.金柑中的营养成分[J].食品与发酵工业,1990, (5):72-75.
    [105]Koyasako A, Bernhard R A. Volatile constituents of the essential oil of the kumquat[J]. Food Chem Sci.,1983,48:1807-1810.
    [106]Hyang-Sook Choi. Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil[J]. Agric. Food Chem.,2005,53:1642-1647.
    [107]杨燕军.金桔挥发油成分的GC-MC分析[J].中药材,1998,21(2):87-88.
    [108]Shimotoyodome A, Meguro S, Hase T, et al. Sulfated Polysaccharides, but Not Cellulose, Increase Colonic Mucus in Rats with Loperamide-Induced[J]. Constipation Digestive Diseases and Sciences,2001,46(7):1482-1489.
    [109]Hong MY. Relationship among colonocyte proliferation, differentiation, and apoptosis as a function of diet and carcinogen[J]. Nutr. Cancer,1997,28(1): 20-29.
    [110]俞根荣.低糖风味金柑脯的研制[J].中国果品研究,1997, (1):16-17.
    [111]涂宗财,叶青,曹树稳.低糖金柑罐头的研制[J].南昌大学学报,1994,16(2):98-101.
    [112]黄来发,胡标先,高桂香.天然保健饮料——金柑果茶研制报告[J].食品工业,1994,(3):12-13.
    [113]单 杨,李忠海.固相微萃取/气相色谱-质谱法分析温州蜜桔精油挥发性成分[J].食品科学,2006,27(11):421-424.
    [114]黄远征,陈全友.110个种和品种的柑橘属植物叶精油的化学成分[J].植物学报,1998,40(9):21-27.
    [115]Keen CL, Holt RR, Polagrato JA, et al. Cocoa flavanols and cardiovascular health[J]. Phytochemistry Reviews,2002,1(5):231-240.
    [116]张熊禄.微波法从柑桔皮中提取类黄酮[J].食品科学,2005,26(3)119-121.
    [117]王晓雷,朱春霞,吴军.枳实提取工艺中指标成分的选择[J].南京中医药大学学报,2005,21(5):331-332.
    [118]申严.枳实黄酮类成分的研究与开发[D].北京:首都师范大学,2004.
    [119]周瑞雪,阎志惠,刘恩荔,等.苦荞黄酮类化合物的提取工艺[J].中药材,2006,29(8):849-850.
    [120]李永红.印楝(Azadirachta indica)种仁中印楝素的提取及其杀虫活性研究[D].重庆:西南农业大学.2003.
    [121]刘亮,戚向阳,董绪燕.枳实副产物中柠檬苦素最佳提取条件的研究[J].农业工程学报,2006,22(7): 226-229.
    [122]Raman G, Choate M, Brodbelt JS, et al. Isolation and purification of closely related Citrus limonoid glucosides by flash chromatography[J]. Phytochemical Analysis,2005,16(3):155-160.
    [123]李永红,张毅,肖卫民,等.比色法测印楝种仁中柠檬苦素类物质的含量[J].西南农业大学学报,2003,25(3):150-152,156.
    [124]赵屹峰.甘草酸的超声波提取及抑菌作用[D].重庆:重庆大学,2002.10.
    [125]孙崇德,陈昆松,陈青俊,等.柑桔果实中天然柠檬苦素和诺米林的提取、鉴别与检测[J].中国食品学报,2004,4(1):6-11.
    [126]凌关庭.氧化·疾病·抗氧化(Ⅱ)[J].粮食与油脂,2003, (10):47-49.
    [127]范培红,娄红祥.葡萄籽多酚的分离鉴定及其对细胞DNA氧化损伤的防护作用[J].药学学报,2004,39(11):869-875.
    [128]Boyle SP, Dobson VL, Duthie SJ, et al. Absorption and DNA protective effects of flavonoid glycosides from an onion meal[J]. European Journal of Nutrition, 2000,39(5):213-223.
    [129]Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical-induced damage to DNA:Mechanismsand measurement[J]. Free Radical Biology & Medicine, 2002,32(11):1102-1115.
    [130]方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社,2002.143-147.
    [131]龙春,高志强,陈凤鸣,等.黄酮类化合物的结构—抗氧化活性关系研究进展[J].重庆文理学院学报(自然科学版),2005,5(2):13-17.
    [132]李建喜,杨志强,王学智.活性氧自由基在动物机体内的生物学作用[J],动物医学进展,2006,27(10):33-36.
    [133]孙晓萍.天然产物的提取及其抗自由基活性的研究[D].郑州:郑州大学,2004.14.
    [134]塔娜,李蜀眉,田维平,等.桔皮黄酮类化合物抗氧化活性的研究[J].内蒙古农业大学学报,2003,24(2):96-98.
    [135]文镜,贺素华,杨育颖,等.保健食品清除自由基作用的体外测定方法和原理[J].食品科学,2004,25(11):190-195.
    [136]吴雪辉,张远志,秦慧慧,等.板栗壳天然色素的抑菌和清除自由基作用研究[J].食品科技,2006, (6):133-136.
    [137]徐建国,胡青军.决明子水提物体外清除自由基活性的研究[J].食品科学,2006,27(6):73-76.
    [138]刘莉华,宛晓春,李大祥.黄酮类化合物抗氧化活性构效关系的研究进展(综述)[J].安徽农业大学学报,2002,29(3):265-270.
    [139]Bohm H, Boeing H, Hempel J, et al. Flavonole, Flavone und Anthocyaneals naturliche Antioxidantien der Nahrung und ihre mogliche Rolle bei der Pravention chronischer Erkrankungen[J]. Z Ernahrungswiss,1998,37(2): 147-163.
    [140]陈洁.油脂化学[M].北京:化学工业出版社,2004.82-110.
    [141]郭丽萍,卢家炯,陈山,等.香蕉提取物对油脂抗氧化作用的初步研究不[J].食品研究与开发,2006,27(3):169-173.
    [142]Bera D, Lahiri D, Nag A. Novel Natural Antioxidant for Stabilization of Edible Oil:The Ajowan (Carum copticum) Extract Case[J]. Journal of the American Oil Chemists'Society,2004,81(2):169-172.
    [143]张英.竹叶黄酮的生理与药理活性[J].世界竹藤通讯,2004,2(2):1-11.
    [144]中华人民共和国国家质量监督检验检疫总局.GB/T601-2002化学试剂标准滴定溶液的制备[S].北京:国家标准出版社,2002.5.
    [145]中国国家技术监督局.GB/T5538-1995油脂过氧化值测定[S].北京:国家标准出版社,1995.
    [146]闫向阳,杨喜平,刘建平.芹菜黄酮提取及其对油脂抗氧化性能研究[J].粮食与油脂,2006,(4):24-25.
    [147]张克梅,唐世洪,余估,等.生姜超临界CO2萃取物的抗氧化性研究[J].食品与科学,2005,26(11):90-93.
    [148]Milovanovic M, Picuric-Jovanovic K, Vucelic-Radovic B, et al. Antioxidant Effects of Flavonoids of Anthriscus sylvestris in Lard[J]. JAOCS,1996,73(6): 773-776.
    [149]黄池宝,罗宗铭.食品抗氧化剂的种类及其作用机理[J].广东工业大学学报,2001,18(3):77-80.
    [150]Das NP, Pereira TA. Effects of Flavonoids on Thermal Autoxidation of Palm Oil: Structure-Activity Relationships[J]. JAOCS,1990,67(4):255-258.
    [151]Tsimogiannis D, Oreopoulou V. Defining the Role of Flavonoid Structure on Cottonseed Oil Stabilization:Study of A-and C-Ring Substitution[J]. J Amer Oil Chem Soc,2007,84(2):129-136.
    [152]Brown JE, Khodr H, Hider RC, et al. Structural dependence of flavonoid interactions with Cu2+ions:implications for their antioxidant properties[J]. Biochemical Journal,1998,330 (3):1173-1178.
    [153]严赞开,胡春菊.橙皮甙的抑菌效果研究[J].西北农业学报,2004,13(2):87-89.
    [154]倪语星,王金良,徐英春.抗微生物药物敏感性试验规范[M].上海:上海科学技术出版社,2002.22.
    [155]国家药典委员会.中华人民共和国药典(2005版二部)[S].北京:化学工业出版社,2005.附录81.
    [156]马美湖.茶多酚复合剂对实验动物抗性效果与机理研究[D].长沙:湖南农业大学,2005.29.
    [157]Ulanowska K, Tkaczyk A, Konopa G, et al. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains[J]. Arch Microbiol,2006,1184(5):271-278.
    [158]马庆一,陈春涛,荆晓艳,等.橙皮甙等桔皮活性成分的提取和抑菌作用研究[J].食品科学,2004,25(12):112-115.
    [159]庄颖,赵红.大豆异黄酮对大鼠血脂和抗脂质过氧化作用的探讨[J].蚌埠医学院学报,2004,29(2):113-115.
    [160]赵玉琪,殷丽君.沙棘叶黄酮的提取及其对抗氧化性的影响[J].食品工业科技,2006,6:70-73.
    [161]姚平,刘烈刚.银杏黄酮对雌性小鼠酒精性氧化损伤的保护作用[J]. Acta Nutrimenta Sinica,2005,7(3):228-231.
    [162]朱思明,于淑娟,杨连生.橙皮苷及其衍生物抗氧化活性的机理分析[J].华南理工大学学报(自然科学版),2005,4:79-83.
    [163]江志平,肖立中.大豆异黄酮抑制去势兔动脉粥样硬化形成的实验研究.中西医结合心脑血管病杂志[J],2004,2(9):532-534.
    [164]戴伟,陈学智.银杏提取物及银杏黄酮调节大鼠血脂的效果研究[J].上海预防医学杂志,2003,15(6):262-263.
    [165]衣艳君.枸杞降血脂作用的实验研究[J].首都师范大学学报,2000,21(12):68-71.
    [166]温宇,卢慧玲.促酰化蛋白与促酰化蛋白受体[J]. Chin J Arterioscler, 2004,12(1):106-108.
    [167]叶春玲,庄岚,卢超霞,等.银杏叶提取物对2型糖尿病大鼠血管病变的保护作用[J].中药药理与临床,2006,22(3):69-71.
    [168]黄洪林,杨怀瑾,刘立超,等.栀子降血糖作用的实验研究[J].中药新药与临床药理,2006,17(1):1-3.
    [169]姚平,刘烈刚.银杏黄酮对雌性小鼠酒精性氧化损伤的保护作用[J].营养学报,2005,27(3):228-231.
    [170]金宗濂.保健食品的功能评价与开发[M].北京:中国轻工业出版社,2001.422-425.
    [171]赵兰.葛根膳食纤维功能评价的研究[D].长沙:中南林学院研究生部,2005.20.
    [172]郑建仙.功能性食品(Ⅲ M).北京:中国轻工业出版社,1999.495.[173]郭晓玲,李万里, 尉辉杰,等.鸡冠花黄酮化合物对糖尿病小鼠脾脏及巨噬细胞吞噬功能的影响[J].新乡医学院学报,2005,22(4):224-226.
    [174]谷新利,陈韩英.中药方剂中提取的多糖对家兔免疫功能的影响[J].畜牧与兽医,2005,37(12):17-20.
    [175]卢新华,何军山,朱湘忠.马齿苋多糖对小鼠免疫功能影响的研究[J].中药理与临床,2000,17(4):258-260.
    [176]郑建仙.功能性食品(Ⅲ M).北京:中国轻工业出版社,1999.104.
    [177]郑建仙.功能性食品(Ⅲ M).北京:中国轻工业出版社,1999.105-106.
    [178]佟继铭,佟悦.黄芩叶总黄酮抗炎及解热作用研究[J].中国民族民间医药杂志,1999,40:286-288.
    [179]Zhang RQ. Enhancement of immune function vitro fed high dose of soy daidzein [J]. Nutr Cancer,1997,29(1):24-28.
    [180]赵铁华,邓淑华,高巍.黄芩茎叶总黄酮对免疫功能影响的实验研究[J].中国中医药科技,2001,8(3):177-178.
    [181]洪雪娥,高荫榆,罗丽萍,等.薯蔓黄酮的抗疲劳作用研究[J].食品科学,2006,27(2):256-258.
    [182]李晓莉,王斌,苏喜生,等.银杏叶提取物对小鼠耐缺氧作用的影响[J].卫生研究,2000,29(3):190-191.
    [183]董立巍,王万银,岳义田,等.马齿苋总黄酮抗小鼠缺氧作用及其机制研究[J].中西医结合学报,2005,3(6):450-454.
    [184]戴汉慧,田庆伟,王永明,等.大豆异黄酮对衰老模型小鼠免疫功能的影响[J].中国食品添加剂,2003,5:50-54.
    [185]刘太明,蒋学华.黄芩苷和黄芩素大鼠在体胃、肠的吸收动力学研究[J].中国中药杂志,2006,31(12):999-1001.
    [186]官福兰,王汝俊.陈皮及橙皮甙对小鼠胃排空、小肠推进功能的影响[J].中药药理与临床,2002,18(3):7-9.
    [187]郑建仙.功能性食品(Ⅲ M).北京:中国轻工业出版社,1999.241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700