WAVE1在K562白血病细胞侵袭中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
WASP家族富含脯氨酸同源蛋白1(WASP-family verprolinhomologous protein 1,WAVE1)为近年来发现的新型肌动蛋白调节蛋白,在肌动蛋白聚合和细胞骨架重排中发挥重要作用。近年研究发现WAVE1在人类血液系统肿瘤细胞株中高表达。我们前期研究中发现WAVE1在儿童急性白血病患儿骨髓单个核细胞中高表达,并且与白血病病程相关,但其参与白血病致病的机制尚不清楚。已有研究发现了WAVE蛋白家族参与了实体肿瘤细胞的侵袭转移,但WAVE1是否参与与白血病细胞侵袭转移尚不清楚。
     本研究首先利用包含84个重要肿瘤通路基因的SuperArray PCR基因芯片研究了转染pcDNA3.1-WAVE1质粒后高表达WAVE1的白血病K562细胞系,发现转染后基质金属蛋白酶2(MMP-2)、基质金属蛋白酶9(MMP-9)、整合素β3(Integrin,beta 3)等与肿瘤细胞侵袭转移的相关基因表达明显上调。提示WAVE1可能参与了肿瘤侵袭转移。
     接着以表达上调最明显的MMP-2为研究对象发现:转染pcDNA3.1-WAVE1 24h及48h后K562细胞MMP-2 mRNA和蛋白表达水平明显上调,而转染WAVE1 siRNA 24h及48h后K562细胞MMP-2 mRNA及蛋白水平明显下调。说明WAVE1可能参与了MMP-2表达的调控。进一步研究发现WAVE1促进了K562细胞丝裂原激活的的蛋白激酶(MAPK)通路的细胞外信号调节激酶(ERK1/2)的磷酸化,WAVE1可能通过这一途径影响MMP-2的表达。
     通过免疫荧光技术发现WAVE1与MMP-2在K562细胞的细胞膜上存在共定位。
     最后利用transwell方法检测了WAVE1表达对K562细胞侵袭能力的影响,发现与对照组K562细胞相比转染pcDNA3.1-WAVE1后细胞侵袭能力增强,而转染WAVE1 siRNA干扰WAVE1表达后K562细胞侵袭能力减弱。
     综上,本研究证明了WAVE1参与了K562白血病细胞侵袭的过程,其机制可能和调控MMP-2的表达并与MMP-2协同作用促进了白血病细胞的侵袭转移有关。WAVE1可以作为抗白血病细胞侵袭的新靶点。
WASP-family verprolin-homologous protein 1(WAVE1)is a member of the actin regulatory protein family and play an important role in regulating actin's polymerization and cytoskeleton's reorganization.Re- cently,over-expression of WAVE1 in human blood cancer cell lines was reported.In our previous researches,high level of WAVE1 was found in mononuclear cells obtained from children's bone marrow who suffered from acute leukaemia,but its role in leukaemia is still not clear.WAVE protein family was founded involved in invasion and migration of solid tumor cells.However,WAVE1 is involved in invasion and migration in leukemia cells is unclear.
     Super Array PCR genechip which contains 84 genes primers and expresses in many important cancer pathway was used in the study.Higher level of several genes including MMP-2,MMP-9 and Integrinβ3 were found in K562 leukaemia cells transfected with pcDNA3.1-WAVE1,those genes are believed involving in the process of leukemia's invasion.WAVE1 may have some impact on tumor's invasion.
     Expression of MMP-2 on mRNA and protein's level was markedly increased by transfecting pcDNA3.1-WAVE1 in K562 cells,while MMP-2's level is much lower in cells transfected with siRNA of WAVE1. Further study found that WAVE1 may promote phosphorylation of ERK1/2 in MAPK pathway through this way WAVE1 may affect the expresion of MMP-2.
     By using immunofluoresence,co-localization of WAVE1 and MMP-2 in cell membrane could been shown.
     To detect WAVE1's effect on invasion ability of K562 cells, Transwell assay was performed.Invasion ability was enhanced in cells transfected with pcDNA3.1-WAVE1 while this ability was inhibited after using siRNA of WAVE1.
     In conclusion,WAVE1 may involve in migration and invasion of K562 cells by regulating the expression of MMP-2 and also by coordinating with MMP-2.WAVE1 could be a novel target to inhibit leukemia cells' invasion in the future.
引文
[1]袁聿军.细胞骨架的基本成分与功能.生物学教学,2006,31(4):5-8
    [2]Thomas D D,Prochniewicz E,Roopnarine O.Changes in actin and myosin structural dynamics due to their weak and strong interactions.Results probl Cell Differ,2002,36:7-19.
    [3]徐国恒.细胞骨架.肌动蛋白纤维.生物学通报,2005,40(2):43
    [4]张立军,魏蕾.WAVE2与细胞骨架的研究进展.武汉大学学报(医学版),2005,26(5):678-682.
    [5]Gourlay C W,Ayscough K R.The actin cytoskeleton:a key regulator of apoptosis and ageing.Nat Rev Mol Cell Biol.2005;6(7):583-9.
    [6]Yanagawa R,Furukawa Y,Ysunoda T,et al.Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray.Neoplasis,2001,3(5)395-401.
    [7]Ochs H D,Thrasher A J.The Wiskott-Aldrich syndrome.J Allergy Clin Immunol,2006,117(4):725-738.
    [8]Derry J M,Ochs H D,Francke U.Isolation of a novel gene mutated in Wiskott-Aldrich syndrome.Cell,1994,78(4):635-644.
    [9]Miki H,Suetsuqu S,Takenawa T.WAVE,a novel WASP-family protein involved in actin reorganization induced by Rac.EMBO J.1998,17(23):6932-41.
    [10]Eden S,Rohatgi R,Podtelejnikov A.V,et al.Mechanism of regulation of WAVE1-induced actin nucleation by Racl and Nck.Nature,2002,418(6899):790-793.
    [11]Yamazaki D,Oikawa T,Takenawa T.Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion.J Cell Sci,2007,120(1):86-100
    [12]Zipfel P A,Bunnell S C,Witherow D S,et al.Role for the Abi/wave protein complex in T cell receptor-mediated proliferation and cytoskeletal remodeling.Curr Biol,2006,16(1):35-36.
    [13]Yamazaki D,Fujiwara T,Suetsuqu S,et al.A novel function of WAVE in lamellipodia:WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading.Genes Cell.2005,10(5):381-92.
    [14]Kim H J,Dibernardo A B,Sloane J A,et al.WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination.J Neurosci.2006,26(21):5849-59.
    [15]Rawe V Y,Payne C,Navara C,er al.WAVE1 intranuclear trafficking is essential for genomic and cytoskeletal dynamics during fertilization:cell-cycle-dependent shuttling between M-phase and interphase nuclei.Dev Biol.2004,276(2):253-67.
    [16]Yamazaki D,Suetsugu S,Miki H,et al.WAVE2 is required for directed cell migration and cardiovascular development.Nature,2003,424(24):452-456.
    [17]Iwanaga R,Komori H,Komori H,et al.Identification of novel E2F1 target genes regulated in cell cycle-dependent and independent manners.Oncogene.2006,25(12):1786-98.
    [18]Yamazaki D,Oikawa T,Takenawa T.Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion.J Cell Sci.2007;120(1):86-100.
    [19]Danial N N,Gramm C F,Scorrano L,et al.BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis.Nature.2003,424(6951):952-6.
    [20]康睿,曹励之,俞燕,等.WAVE1基因在K562/A02白血病细胞多药耐药中的作用.中华血液杂志,2007,28(6):379-382.
    [21]王卓,胡婷,曹励之,等.儿童急性淋巴细胞白血病及阿霉素所致Jurkat细胞凋亡时WAVE1表达研究.中国当代儿科杂志,2008,10(5):620-624.
    [22]Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-ΔΔCt) Method.Methods,2001,25(4):402-408.
    [23]Damsky C H,Ilic D.Integrin signaling:it's where the action is.Curr Opin Cell Biol,2002,14(5):594-602.
    [24]Gassmann P,Enns A,Haier J.Role of tumor cell adhesion and migration in organ-specific metastasis formation.Onkologie,2004,27(6):577-82.
    [25] Handsley M M, Edwards D R. Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer, 2005,115(6):849-860.
    [26] Friedl P, Hegerfeldt Y, Tusch M. Collective cell migration in morphogenesis and cancer. Int J Dev Biol, 2004,48(5): 441-49.
    [27] Demuth T, Berens M E.Molecular mechanisms of glioma cell migration andinvasion.J Neurooncol, 2004,70(2):217-228.
    [28] Pantaloni, D, Clainche Le ,Carlier M F. Mechanism of Actin-Based Motility. Science, 2001, 292:1502-1506.
    [29] Vasiliev J M. Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells. Int J Dev Bio 1,2004,48(5):425-439
    [30] Lambrechts A, Van Troys M,Ampe C.The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol, 2004,36(10): 1890-909.
    [1]Curran S,Murray G I.Matrix metalloproteinases in tumor invasion and metastasis.J Pathol,1999,189(3):300-308.
    [2]Kjellman M,Enberg U,Hoog A,et al.Gelatinase A and membrane-typel matrix metalloproteinase mRNA expressed in cancer but not in adenomas.World J Surg,1999,23(2):237-242.
    [3]Davidson B,Goldberg I,Kopolovic J,et al.Expression of matrixmetallo-proteinaes 9 in squamous cell carcinoma of the uterinecervix-clinicopathologic study using immunohistochemistry mRNA in situ hybridization.Gynecol Oncol,1999,72(3):380-386.
    [4]Livak KJ,Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-ΔΔCt) Method.Methods,2001,25(4):402-408.
    [5]袁聿军.细胞骨架的基本成分与功能.生物学教学,2005,31(4):5-8.
    [6]Miki H,Suetsuqu S,Takenawa T.WAVE,a novel WASP-family protein involved in actin reorganization induced by Rac.EMBO J.1998,17(23):6932-41.
    [7]Higgs H N,Pollard T D.Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins.J Biol Chem.1999,274(46):32531-41.
    [8]Parson S L,Watson S A,Brown P D,et al.Matrix metalloproteinases.Br J surg,1999,84(2):160-166.
    [9]Khalid Sossey-Alaoui,Tamara A.Ranalli,Xiurong Li,et al.WAVE3 promotes cell motility and invasion through the regulation of MMP-1,MMP-3,and MMP-9 expression.Experimental Cell Research,,2005,308:135-145.
    [10]Suetsugu S,Yamazaki D,Kurisu S,Takenawa T,Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration, Dev. Cell ,2003,5(4) 595- 609.
    [11]Reunanen N, Westermarck J, Hkkinen L,et al. Enhancement of fibroblast collagenase (matrix metalloproteinase-1) gene expression by ceramide is mediated by extracellular signal-regulated and stress-activated protein kinase pathways. J. Biol. Chem, 1998, 273(9):5137-45.
    [12] McCawley L J, Li S, Wattenberg E V, et al. Sustained activation of the mitogen-activated protein kinase pathway: a mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J. Biol. Chem, 1999,274(12):4347-53.
    [13] Lai W C,Zhou M, Shankavaram U. Differential Regulation of Lipopolysaccharide-Induced Monocyte Matrix Metalloproteinase (MMP)-1 and MMP-9 by p38 and Extracellular Signal-Regulated Kinase 1/2 Mitogen- Activated Protein Kinases . The Journal of Immunology, 2003,170: 6244-6249.
    [14]Kurata H, Thant AA, Matsuo S, et al.Constitutive activation of MAP kinase kinase (MEK1) is critical and sufficient for the activation of MMP-2. Exp.Cell Res,2000,254(1)180-188.
    [15]Balmanno K, Cook S J. Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cipl and a subset of AP-1 proteins in CCL39 cells. Oncogene. 1999 ,18(20):3085-97.
    [16] Cook S J, Aziz N, McMahon M. The repertoire of fos and jun proteins expressed during the G1 phase of the cell cycle is determined by the duration of mitogen-activated protein kinase activation. Mol Cell Biol. 1999 ,19(1): 330-41.
    [17] Chalmers CJ, Gilley R, March HN,et al. The duration of ERK1/2 activity determines the activation of c-Fos and Fra-1 and the composition and quantitative transcriptional output of AP-1. Cellular Signalling . 2007,19(4): 695-704.
    [1]Cortes J,O'Brien SM,Pierce S,et al.The value of high-dose systemic chemotherapy and intrathecal therapy for central nervous system prophylaxis in diferent risk groups of adult acute lymphoblastic leukemia.Blood,1995.86:2091-2097.
    [2]邓家栋主编临床血液学第1版.北京:人民卫生出版社,1985.654-665.
    [3]Millard T H,Sharp S J,Machesky L M,Signalling to actin assembly via the WASP(Wiskott- Aldrich syndrome protein)-family proteins and the Arp2/3complex,Biochem.J.2004,380:1-17.
    [4]Hwang S L,Hong Y R,Sy WD,et al.Racl gene mutations in human brain tumours.Eur J Surg Oncol,2004,30(1):68-72
    [5]Qiu R G,Chen J,Kim.D,et al.An essential role for Rac in Ras transformation.Nature,41995,374:457-459
    [6]Suetsugu S,Miki H,Takenawa T.Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex.Biochem Biophys Res Commun,1999,24;260(1):296-302
    [7]Higgs H N,Pollard T D.Regulation of actin polymerizationby Arp2/3 complex and WASP/Scar proteins.J Biol Chem,1999,274:32531-32534
    [8]Stradal T E,Rottner K,Disanza A,Confalonieri S,Innocenti M,Scita G..Regulation of actin dynamics by WASP and WAVE familyproteins.Trends Cell Biol.2004,14:303-311.
    [9]Kurisu S,Suetsuqu S.et al.Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells.Oncogene.2005,24(8):1309-19.
    [10]Pegahi R,Pover F,Legrand E,et al,Spontaneous and cytokine-evoked production of matrix metalloproteinases by bone marrow and peripheral blood pre-B cells in childhood acute lymphoblastic leukaemia.Eur Cytokine Netw,2005,16(3):223-232.
    [11]Kuittinen O,Savolainen ER,Koistinen P,et al,MMP-2 and MMP-9 expression in adult and childhood acute lymphatic leukemia(ALL).J.Leuk Res,2001,25(2):125-132.
    [12]Sawicki G,Matsuzaki A,Janowska-Wieczorek A.Expression of the active form of MMP-2 on the surface of leukemic cells accounts for their in vitro invasion.J Cancer Res Clin Oncol.1998;124(5):245-52
    [13]de Bont ES,Rosati S,Jacobs S,et al.Increased bone marrow vasculafization in patients with acute myeloid leukaemia:a possible role for vascular endothelial growth factor.Br.J Heamatol.2001,113(2):296-304
    [14]Liotta LA,Nageswara Rao C and Wewer UM,Biochemical interactions of tumor cells with the basement membrane.Ann Rev Biochem,1986,55:1037
    [15]Itoh Y,Nagase H.Matrix metalloproteinases in cancer.Essays Biochem.2002,38:21-36.
    [16]周冀英,董为伟,贾建平.脑梗死患者外周血中白细胞基质金属蛋白酶9表达的研究.实用医学杂志,2004,20(4):371-373.
    [1]Curm S,Murray G I.Matrix metalloproteinases in tumor invasion and metastasis.J Pathol,1999,189:300-308
    [2]Nagase H,Woessner J F,.Matrix metalloproteinases.J Biol Chem,1999,274(31);21491-94.
    [3]Massovai,Kotra LP,Fridman R.Matrix metalloproteinases:structures,evolution,and diversification.FASEB J,1998,12(12);1075-95.
    [4]Mc Cawley,Matrisian L M.Matirx metalloproteinases:multifunctional contributors to tumor progression.Mol Med Today,2000;6(4):149-156.
    [5]Egeblad M,Werb Z.New functions for the matrix metalloproteinases in cancer progression. Nature Rev.Cancer,2002;2(3):161-174.
    [6] Parson S L, Watson S A,Brown P D, et al. Matrix metalloproteinases.Br J surg,1999,84(2):160-166.
    [7] Woessmmer J F. The family of matrix metalloproteinases.Ann. NY Acad.Sci, 1994,732:11-21.
    [8] Lukashev M,Werb Z.ECM signalling orchestrating cell behaviour and misbehaviour. Trends Cell Biol ,1998 ,8 (11) ;437-41.
    [9] Hulboy DL,Rudolph LA,Matrisian LM, Matrix metalloproteinases as mediators of reproductive function .Mol Hum Report ,1997 ,3 (1) ;27-45.
    [10] Aranapakam V, Grosu, G T,Davis J M,et al. Synthesis and structure-activity relationship of alpha-sulfonylhydroxamic acids as novel, orally active matrix metalloproteinase inhibitors for the treatment of osteoarthritis. J Med Chem. 2003,46: 2361.
    [11] Engel C K, Pirard B; Schimanski S, et al. Structural basis for the highly selective inhibition of MMP-13. Chem. Biol. 2005,12: 181-189.
    [12] Ambrose A E, Welsh W J. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models for a novel class of piperazine-based stromelysin-1 (MMP-3) inhibitors: applying a "divide and conquer" strategy. J. Med. Chem. 2001,44: 3849-56.
    [13] Raspollini MR, Castiglione F,Degl'Innocenti DR,et al. Difference in expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in patients with persistent ovarian cysts.Fertil. Steril.2005, 84:1049-49.
    [14] Venkatesan A M,Davis J M,Grosu G T,et al. Synthesis and structure-activity relationships of 4-alkynyloxy phenyl sulfanyl, sulfinyl, and sulfonyl alkyl hydroxamates as tumor necrosis factor-alpha converting enzyme and matrix metalloproteinase inhibitors J. Med. Chem. 2004,47:6255-61.
    [15] Mauviel A.Cytokine regulation of metalloproteinase gene expression.J Cell Biochem,1993,53:288-295.
    [16] Rooprai H K,Rucklidge G J,Panou C,et al.The affect of exogenous growth factors on matrix metalloproteinases secretion by human brain tumor cells.Br J cancer, 2000,82:52-55.
    [17] Gohji K,Nomi M,Hara I, et al .Influnence of cytokines and growth factors on matrix metalloproteinase-2 production and invasion of human renal cancer.Urol Res, 1998,26:33-37.
    [18] Karin M,Liu Z G,Zandi E.The AP-1 function and regulation.Curr Opin Cell Biol,1997,9:240-246.
    [19] Jukka W,Veli-matti K.Regulation of matrix metalloproteinass expression in tumor invation.Faseb,l 999,13:781 -792.
    [20] Reddy Krueger JS,Kondapaka S B,et al. Mitogen-activated protein kinase (MAPK)regulations the expression of proteinase B(MMP-9)in epithelial cells.In J Cancer, 1999,82:268-273.
    [21] Sun Y, Wenger L, et al .P53 down regulates human matrix metalloproteinase-1 gene expression.J Biol Chem, 1999,247:11535-11540
    [22] Ricca A,Biroccio A, Del BD,et al .bcl-2 over-expression enhances NF-Kappab activity and induces matrix metalloproteinase-9 transcription in human MCF7(ADR)breast cancer cells.In J Cancer,2000,86:188-196.
    [23] O'Boskey FJ Jr,Panagakos FS.Cytokines stimulate matrix metalloproteinase production by human pulp cells during long-term culture.J Endod, 1998,24(1):7-10.
    [24] Kossakowska AE,Urbanski SJ,Janowska-Wieczorek A.Matrix metallopro- teinases and ther tissue inhibitors-expression,role and regulation in human malignant non-Hodgkin's Limphomas.LeuK Lymphoma.2000,39(5-6): 485-493.
    [25] Crowe D I,Brown T N.Transcriptional inhibition of matrix metalloproteinase 9 (MMP-9)activity by a c-fos lestrogen receptor fusion protein is mediated by the proximal AP-1 site of the MMP-9 promoter and correlate with reduced tumor cell invasion. Neoplasia.l999,1(4):368-372.
    [26] Westermarck J,Kahari V M. Regulation of matrix metalloproteinase expression in tumor invision.FASEB J,1999, 13(8):781-792.
    [27] Kurata H,Thant A A,Matsuo S,et al.Constitutive activation of MAP kinase (MEKl)is critical and sufficient for the activation of MMP-2.J Exp Cell Res,2000,254(1):180-188.
    [28] Mauviel A,Halcin C,Vasiloudes P, et al.Uncoordinate regulation of collagenase,stromelycin and tissue inhibitor of metallopriteinase genes expression in human dermal fibroblasts in culture.J Cell,Biochem, 1994,54: 465-472.
    [29] lance A L,Patricia S S,William G S. Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation .Cell, 1991, 64:327-336.
    [30] Murphy G ,Stanton H,Cowell S,et al. Mechanisms for pro-matrix metallopro- teinase activation. APMIS,1999,107:38-44.
    [31] Hulboy DL ,Rudolph LA,Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Molecular Human Reproduction, 1997 , 3:27-45.
    [32] Stephanie C,Graeme I M.Matrix metalloproteinases in tumor invasion and metastasis.J Pathol, 1999 ,189:300-308.
    [33] Schmalfeldt B,Prechtel D,Harting K,et al .Increased expression of matrix metalloproteinases(MMP-2,MMP-9),and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian caneer.Clin Cancer Res,2001,7(8):2396-2404.
    [34] Pap G,Eberhardt R,Rocken C,et al.Expression of stromelysin and urokinase type plasminogen activator protein in resection specimens and biopsies at different stages of osteoarthritis of the knee.J Pathol Res Pract,2000, 196(4);219-226.
    [35] Pacheco M M,Nishimoto I N,Mourao N M,et al.Prognostic significance of the combined expression of matrix metalloproteinase-9,urokinase type plasminogen activator and its receptor in breast cancer as measured by Northren blot analysis.Int J Biol Markers,2001,16(1):62-68.
    [36] Hu B,Kapila Y L,Buddhikot M,et al.Coordinate induction ofcollagenase-1, stromelysin-1 and urokinuse plasminogen activator(uPA)by the 120-k-Da cell-binding fibronectin fragment in fibrocartilaginous cells:uPA contributes to activation of procollagenase-1.Matrix Biol,2000,19(7)657-699.
    [37] Fishman D A,Bafetti L M,Banionis S,et al.production of extracellular matrix- degrading proteinases by primary culture of human epithelial ovarian carcinoma cells. Cancer, 1997,80 (8):1457-1463.
    [38] Besecond A,Augier T,Charegre C,et al.Influence of homocysteine on matrix metalloproteinase-2:activation and activity.Biophys Res Commun,1999, 263(2): 498-503.
    [39] Itoh Y,Ito A,Iwata K,et al .Plasma membrane-bound tissue inhibitor of metalloproteinase 2(TIMP-2) specifically inhibit matrix metalloproteinase 2 (gelatinase A) activated on the cell surface.J Biol Chem, 1998,273(38): 24360-24367.
    [40] Zhu C,Woessner JR. A tissue inhibitor of matrix metalloproteinase and a-macroglobulins in the ovulating rat ovary: possible regulators of collagen matrix breakdown. Biology of reprod, 1991, 45 :334-342.
    [41] Elise Lambert, Emilie Dasse , Bernard Haye and EmmanuelleCritical Reviews in Oncology/Hematology, 2004,49, (3): 187-198
    [42] Airola K, Karonen T, Valamo M. et al. Expression of collagenases-1 and-3 and their inhibitors TIMP-1 and TIMP-3 correlates with the level of invasion in malignant melanomas. British Journal of Cancer, 1999, 80 (6): 733-740.
    [43] Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta, 2000, 1477(1,2): 267-283.
    [44] Wada CK, The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories. Curr. Top. Med. Chem. 2004 , 4 (12): 1255-67.
    [45] Whittaker M, Floyd CD, Brown P ,et al. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem. 1999, 99:2735-76.
    [46] Skiles JW, Monovich LG., Jeng AY., Annu. Rep. Med. Chem. 2000,35: 167-171.
    [47] Becker D P, Villamil C I,Barta T E,et al . Synthesis and structure-activity relationships of beta- and alpha-piperidine sulfone hydroxamic acid matrix metalloproteinase inhibitors with oral antitumor efficacy. J. Med. Chem.2005, 48 (21):6713-30.
    [48] Kleiner D E,Stetler-Stevenson WG..Quantitative zymography: detection of picogram quantities of gelatinases.Anal Biochem,1994,218:325-329.
    [49] Itoh T, Tanioka M, Yoshida H, et al. Reduced angiogenesis and tumor progression in gelatinase A deficient mice. Cancer Res. 1998, 58: 1048-1051.
    [50] Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998,93 :411-422.
    [51] Zhou Z, Apte S S, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase Ⅰ. Proc. Natl. Acad. Sci., 2000,97:4052-4057.
    [52] Curran S , Murray GI. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur. J. Cancer ,2000,36:1621-1630.
    [53] McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol. Med. Today,2000, 6:149-156.
    [54] Vihinen P, Kahari VM.Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer ,2002,99 : 157-166.
    [55] Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999,13 : 781-792.
    [56] McCawley LJ, Matrisian LM.Matrix metalloproteinases: they're not just for matrix anymore!. Curr. Opin. Cell. Biol. 2001,13: 534-540.
    [57] Nelson AR, Fingleton B, Rothenberg ML , Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin Oncol. 2000,18: 1135-1149.
    [58] Kim J H, Kim T H, Jang J W,et al. Analysis of matrix metalloproteinase mRNAs expressed in hepatocellular carcinoma cell lines. Mol. Cells ,2001, 12 :32-40.
    [59] Tomita T, Fujii M, Tokumaru Y,et al. Granulocyte-macrophage colony- stimulating factor upregulates matrix metalloproteinase-2 (MMP-2) and membrane type-1 MMP (MT1-MMP) in human head and neck cancer cells. Cancer Lett. 2000,156: 83-91.
    [60] Schmalfeldt B, Prechtel D, Harting K, et al. Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin. Cancer Res. 2001 ,7:2396-2404.
    [61] Hanemaaijer R, Verheijen JH, Maguire TM,et al. Increased gelatinase-A and gelatinase-B activities in malignant vs. benign breast tumors. Int. J. Cancer , 2000,86 :204-207.
    [62] Sheen-Chen S M, Chen H S, Eng H L, et al.J.Serum levels of matrix metallo proteinase 2 in patients with breast cancer. Cancer Lett. 2001,173: 79-82.
    [63] Coussens L M, Tinkle C L, Hanahan D. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogensis. Cell, 2000,103: 481-490.
    [64] Bergers G, Brekken R, McMahon G, et al.Matrix metalloproteinse-9 triggers the angiogenicswitch during carcinogensis. Nature Cell Biol, 2000,2: 737-744.
    [65] Mannello F, Tonti G ,Papa S. Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr. Cancer Drug Targets ,2005,5: 285.
    [66] Coussens L M., Fingleton B ,Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science . 2002, 295:2387-92.
    [67] Skiles J W, Gonnella N C, Jeng AY. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem. 2001 ,8(4):425-74.
    [68] Sternlicht M D ,Lochter A ,Sympson C J . The stromal proteinase MMP 3/stromelysin - 1 promotes mammary carcinogesis .Cell ,1999 ,98(2) ;137- 46.
    [69] Rudolph- Owen L A, Chan R, Muller W J . The matrix metallporoteinase matrilysin influences early - stage mammary tumorigenesis . Cancer Res,1998,58(23);5500-09.
    [70] Masson R ,Lefebver O ,Noel A. In vivo evidence that the stromelysin - 3 metalloproteinase cotributes in a paracrine manner to epithelial cell malignancy. J Cell Biol ,1998 ,140 (6); 1535-40.
    [71] Derynck R, Akhurst RJ, Balmain A. TGF- β signaling in tumor suppression and cancer progression. Nature Genet,2001, 29:117-129.
    [72] Kontogiorgis CA, Papaioannou P , Hadjipavlou-Litina DJ. Matrix metallopro- teinase inhibitors: a review on pharmacophore mapping and (Q)SARs results Curr. Med. Chem. 2005 ,12(3):339-41.
    [73] Powell W C, Fingleton B, Wilson C L, et al. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr. Biol. 1999,9(24)-.1441-47.
    [74] Strand S, Vollmer P, Van den Abeelen L,et al. Cleavage of CD95 by matrix metalloproteinase-7 induces apoptosis resistance in tumour cells. Oncogene. 2004,23(20) :3732-36.
    [75] Mitsiades N, Yu W H, Poulaki V, et al. Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res. 2001,61(2): 577-81.
    [76] Yu W H, Woessner Jr JF, McNeish J D,et al.CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling .Genes Dev. 2002,16(3): 307-23.
    [77] Vaillant C,Meissirel C, Mutin M. MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum, Mol. Cell. Neurosci. 2003,24(2): 395-408.
    [78] Chintala S K, Zhang X, Austin J S ,et al. Deficiency in matrix metalloproteinase gelatinase B (MMP-9) protects against retinal ganglion cell death after optic nerve ligation. J. Biol. Chem. 2002,277(49): 47461-8
    [79] Lee S R, Lo E H. Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation. Cereb J. Blood Flow Metab. 2004,24 (7):720-27.
    [80] Wu E, Mari B P, Wang F, et al, Stromelysin-3 suppresses tumor cell apoptosis in a murine model J Cell. Biochem. 2001,82 :549
    [81] Boulay A, Masson R, Chenard M P, et al.High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase Cancer Res. 2001, 61:2189-94.
    [82] Baserga R. The contradictions of the insulin-like growth factor 1 receptor. Oncogene 2000,19: 5574-83..
    [83] Ishizuya-Oka A, Li Q, Amano T, et al . Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis. J. Cell Biol. 2000, 150(5): 1177-88.
    [84] Sympson C J, Talhouk R S, Alexander C M, et al, Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression J. Cell Biol. 1994, 125: 681-86.
    [85] Vu T H, Shipley J M, Bergers G, et al, MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes,Cell, 1998,93:411-18.
    [86] Bergers G, Brekken R, McMahon G, et al, Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2000,2 :737-42
    [87] Martin D C, Sanchez-Sweatman O H, Ho A T,et al.Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Lab Invest, 1999, 79: 225-234.
    [88] Li H, Lindenmeyer F, Grenet C,et al.TIMP-2 inhibits tumor growth , angiogenesis ,and metastasis and prolongs survival in mice. Hum Gene Ther,2001,12: 515-526.
    [89] Gato C, Rieppi M, Borsotti P, et al, Drudis T.BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin Cancer Tes, 1999,5: 3603-3607.
    [90] Fang J, Shing Y, Wiederschain D,et al. Matrix metalloproteinse-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA, 2000,97: 3884-3889.
    [91] Coussens L M, Tinkle C L, Hanahan D. MMP-9 supplied by bone marrow- derived cells contributes to skin carcinogensis. Cell, 2000,103: 481-490.
    [92] Galvez B G,Matias-Roman S, Albar J P, Sanchez-Madrid F, Arroyo AG. Membrane typel-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J Biol Chem, 2001,276: 37491-37500.
    [93] Colowick S P, Kaplan N O. Structural and contractile proteins. Part E. Extracellular matrix. New York: Academic Press; 1987.
    [94] Timpl R, Paulsson M, Dziadek M, et al.Basement membranes. In: Cunningham LW, editor. Structural and contractile proteins. Part E. Extracellular matrix. Orlando, FL: Academic Press; 1987;145:363-91
    [95] Marquez-Curtis LA, Dobrowsky A, Montano J, et al. Matrix metalloproteinase and tissue inhibitors of metalloproteinase secretion by haematopoietic and stromal precursors and their production in normal and leukaemic long-term marrow cultures. Br. J. Haematol. 2001,115:595-604.
    [96] Ray J M, Stetler-Stevenson WG.. The role of matrix metalloproteases and their inhibitors in tumor invasion, metastasis and angiogenesis. Eur Respir J,1994: 7(11):2062-2072.
    [97] Deryugina E I, Bourdon M A, Jungwirth K, et al. Functional activation of integrin alpha y beta3 intumor cells expressing membrane-type 1 matrix metallopro- teinase.Int Cancer, 2000,86(l):15-23.
    [98] Kjillman M, Enberg U,Hoog A, et al. Gelatinase A and membrane-type 1 matrix metalloproteinase mRNA expressed in cancer but not in adenomas. World J Surg ,1999 ,23:237-242.
    [99] Davidson B, Goldberg I,Kopolovic J, et al. Expression of matrixmetallo- proteinaes 9 in squamous cell carcinoma of the uterine cervix- clinicopathologic study using immunohistochemistry mRNA in situ hybridization .Gynecol oncol ,1999, 72:380-386.
    [100] Yoneda T, Sasaki A,Dunsyan C.Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest, 1997,99(10); 2509-2517.
    [101] Zhao S Z, Alfred M C, Jose G G. Loss of basement membrane type 4 collagen is associated with increased expression of matrix metalloproteinase 2 and matrix metalloproteinase 9 during human colorectal tumorigenesis. Carcinogenesis, 1999,20 :794-795.
    [102] Terada T, Okada Y, Nakanuma Y, et al. Expression of immunoreactive matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases m human normal livers andprimaryliver tumors.Hepatology, 1996,23:1341-1344.
    [103] Okazaki I,Wada N,Nakano M, et al. Differencein gene expression for matrix metalloproteinase 1 between early and advanced hepatocellular carcinomas . Hepatology, 1997 ,25:580-584.
    [104] Avii S,Mise M,Harada T, et al. Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential.Hepatology, 1996, 24:316-322.
    [105] Thomas P,Khokha R,Shepherd F A, et al .Diferential expression of matrix metal loproteinases and their inhibitors in non-small lung cancer.J pathol, 2000,190:150-156.
    [106] Ylisimio S,Hoyhtya M,Turpeenniemi HT. Serum matrix metallproteinase2, matrix metalloproteinase9 and tissue inhibitor of matrix metalloproteinase 1,2 in lung cancer -tissue inhibitor of matrix metal loproteinase 1 as a prognostic marker. Anticancer Res, 2000,20:1311 -1316.
    [107] Pickett K L,Harber GL,Decarlo AA, et al .92K-G(mmp-9) and72K-GL(mmp-2) are produced in vivo by human oral squamous cell carcinomas and can enhance FIB-CL(MMP-1) activity in vitro J Dent Res, 1999, 78:1354-1361.
    [108] Ellenrieder V, Alber B,Lacher U, et al.Role of MT-MMP and matrix metalloproteinase 2 in pancreatic cancer progression .In J cancer,2000 , 85:14-20.
    [109] Ries C, Loher E,Zang C,et al .matrix metalloproteinases production by bone marrow mononuclear cells from normal individuls and patients with acute and chronic myeloid leukemia or mylodysplastic syndroms .Clin Cancer Res, 1999, 5:1115-1124.
    [110] Forsyth P A, Wong H, Laing T D, et al. Gelatinase-A (mmp-2) ,gelatinase B(mmp-9) and membrane type matrix Metalloproteinase-1(MT1-MW ) are invoved in diferent aspect of the pathophysiology of malignant gliomas . Br J Cancer, 1999,79:1828-1835.
    [111] Boyd R S ,Balkwill F R. matrix metal loproteinase 2 release and activation in ovarian carcinoma :the role of fibroblasts .Br J Cancer, 1999 ,80:315-321.
    [112] Lurlaro M,Loverro G ,Vacca A et al.angiogenesis extent and expression of matrix metalloproteinase -2 and -9 correlate with upgrading and myometrial invasion in endometrial carcinoma Eur J Clin Invest,1999, 29:793-801.
    [113] Davidson B, Goldberg I,Kopolovic J, et al. Expression of matrix metalloproteinase 9 in squamous cell carcinoma of the uterine cervix- clinicopathologic study using immunohistochemistry and mRNA in situ hybridization .Gynecol oncol ,1999, 72:380-386.
    [114] Hanemaaijier R,Verheijen J H,Maguire T M ,et al .increased gelatinase A and gelatinase B activities in malignant vs benign breast tumors .In J Cancer ,2000, 86:204-207.
    [115] Garbett E A, Reed M W, Brown N T. Proteolysis in human breast and colorectal cancer .Br J Cancer, 1999, 81:287-293.
    [116] Oberg A,Hoyhtya M,Tavelin B, et al. Limitted value of preoperative serum analysis of (mmp2,mmp9) and tissue inhibitor of matrix metalloproteinases in colorectal cancer.Anticancer Res, 2000 ,20:213,1085-1091.
    [117] Ara T, Kusafuka T,Inoue M, et al .Determination of imbalance between matrix metalloproteinase-2 and Tissue inhibitor of matrix metalloproteinase-2 in human neuroblastoma by reverse-transcription polymerase chain reaction and its correlation with tumor pprogression J Pediatr surg ,2000 ,35:432-437.
    [118] Di Raimondo F, Palumbo GA, Azzaro M P, Giustolisi R.Angiogenesis in acute myeloid leukemia. Blood 2000, 96:3656-61..
    [119] de Bont ES, Rosati S, Jacobs S, et al. Increased bone marrow vascularization in patients with acute myeloid leukaemia: a possible role for vascular endothelial growth factor. Br. J Heamatol. 2001,113(2) :296-304
    [120] Moehler T M, Ho AD, Goldschmidt H , Barlogie B. Angiogenesis in hematologic malignancies. Crit. Rev. Oncol. Hematol. 2003,45 :227-244.
    [121] Perez-Atayde AR, Sallan SE, Tedrow U,et al.Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J. Pathol. 1997,150:815-821.
    [122] Pegahi R,Pover F,Legrand E,et al .Spontaneous and cytokine-evoked production of matrix metalloproteinases by bone marrow and peripheral blood pre-B cells in childhood acute lymphoblastic leukaemia.Eur Cytokine Netw,2005,16(3):223-232.
    [123] Hendrix M J, Seftor E A, Grogan T M,et al. Expression of type Ⅳ collagenase correlates with the invasion of human lymphoblastoid cell lines and pathogenesis in SCID mice. Mol. Cell Probes ,1992, 6 :59-65.
    [124] Ivanoff A, Ivanoff J, Hultenby K , et al.Infiltrative capacity of T leukemia cell lines: a distinct functional property coupled to expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases-1 (TIMP-1). Clin. Exp. Metastasis .1999,17 : 695-711.
    [125] Kossakowska A E, Zhang M C, Forsyth P A, et al. The role of the metalloproteinase overexpression and their inhibitors in the CNS involvement by malignant lymphomas in immunocomprised host. Ann. Oncol. 1999, 10 :329-34.
    [126] Kuittinen 0, Savolainen ER, Koistinen P,et al. MMP-2 and MMP-9 expression in adult and childhood acute lymphatic leukemia (ALL). Leuk. Res. 2001, 25 :125-131.
    [127] LI lin, Lin DT,Chang CJ,et al .Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia.Br J Haematol,2002,l 17:835-841.
    [128] Devy L,Hollender P,Munaut C, et al. Matrix and serine protease expression during leukemic cell differentiation induced by aclacinomycin and all-trans-retinoic acid.Biochem Pharmacol,2002,63:179-189.
    [129] Peiretti F, Bernot D, Lopez S,et al. Modulation of PAI-1 and proMMP-9 syntheses by soluble TNFalpha and its receptors during differentiation of the human monocytic HL-60 cell line.Cell Phyciol,2003,196:346-353.
    [130] Zhang X J,Zheng G G, Ma XT,et al. Expression of P2X7 in human hematopoietic cell lines and leukemia patients .Leuk Res,2004,28(12): 1313-1322.
    [131] Janowska-Wieczorek A, Marquez LA, Matsuzaki A, et al. Expression of matrix metalloproteinases (MMP-2 and MMP-9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: comparison with normal bone marrow cells. Br. J. Haematol. 1999,105 : 402-411.
    [132] Janowska-Wieczorek A, Marquez LA, Dobrowsky A,et al. Differential MMP and TIMP production by human marrow and peripheral blood CD34+ cell in response to chemokines. Exp. Hematol. 2000,28 :1274-1285.
    [133] Sawicki G, Matsuzaki A, Janowska-Wieczorek A. Expression of the active form of MMP-2 on the surface of leukemic cells accounts for their in vitro invasion. J. Cancer Res. Clin. Oncol. 1998,124:245-252.
    [134] Ismair MG, Ries C, Petrides PE. Matrix metalloproteinases and their inhibitors in acute myeloid leukemia. Leukemia, 1997,11 Suppl 3: 527-529.
    [135] Ismair, MG, Ries C, Lottspeich F, et al., Autocrine regulation of matrix metalloproteinase-9 gene expression and secretion by tumor necrosis factor-alpha (TNF-alpha) in NB4 leukemic cells: specific involvement of TNF receptor type 1. Leukemia .1998,12 :1136-1143.
    [136] Ries C, Loher F, Zang C, et al. Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes. Clin. Cancer Res. 1999,5:1115-1124.
    [137] Lin L I, Lin D T, Chang C J ,et al. Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia. Br. J. Haematol. 2002,117: 835-841.
    [138] Marquez-Curtis L A, Dobrowsky A, Montano J, et al.Matrix metalloproteinase and tissue inhibitors of metalloproteinase secretion by haematopoietic and stromal precursors and their production in normal and leukaemic long-term marrow cultures. Br. J. Haematol. 2001,115 :595-604.
    [139] Borregaard N, Cowland J B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood .1997, 89 :3503-3521.
    [140] Janowska-Wieczorek A, Marquez LA, Nabholtz J M,et al. Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34+ cells and their transmigration through reconstituted basement membrane. Blood.1999,93:3379-3390.
    [141] Borregaard N, Sehested M, Nielsen BS,et al. Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation. Blood . 1995,85: 812-817.
    [142] Devy L, Hollender P, Munaut C, et al. Matrix and serine protease expression during leukemic cell differentiation induced by aclacinomycin and all-trans-retinoic acid. Biochem. Pharmacol. 2002,63 :179-189.
    [143] Peiretti F, Bernot D, Lopez S,et al. Modulation of PAI-1 and proMMP-9 syntheses by soluble TNF-alpha and its receptors during differentiation of the human monocytic HL-60 cell line. J. Cell. Physiol. 2003,196:346-353.
    [144] Bauvois B,Dumont J,Mathiot C,et al. Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by interferons.Leukemia,2002,16:791-798.
    [145] Havshaibara T,Yamada Y,Onimara Y,et al. Matrix metalloproteinase-9 and vascular endothelial growth factor: a possible link in adult T-cell leukaemia cell invasion.Br J Haematol,2002,116:94-102.
    [146] Oelmann E, Herbst H, Zuhlsdorf M,et al. Tissue inhibitor of metalloproteinases 1 is an autocrine and paracrine survival factor, with additional immune-regulatory functions,expressed by Hodgkin/Reed- Sternbergcells.Blood,2002,99(1):258-267.
    [147] Pennanen H, Kuittinen O,Soini Y,et al. Clinicopathological correlations of TIMP-1 and TIMP-2 in Hodgkin's lymphoma. Eur J Haematol. 2004,72(1):1-9.
    [148] Kuittinen O,Apaja-Sarkkinen M,Turpeenniemi- Hujanen T, Gelatinases (MMP-2 and MMP-9), TIMP-1 expression and the extent of neovascularization in aggressive non-Hodgkin's lymphomas.Eur J Haematol, 2003,71:91-99.
    [149] Gentilini F ,Calzolari C ,Turba ME,et al, Prognostic value of serum vascular endothelial growth factor (VEGF) and plasma activity of matrix metalloproteinase (MMP) 2 and 9 in lymphoma-affected dogs.Leuk Res,2005, 29(11):1263-1269.
    [150] Vacca A, Ribatti D, Roccaro AM, et al. Bone marrow angiogenesis and plasma cell angiogenic and invasive potential in patients with active multiple myeloma.Acta Haematol. 2001; 106(4): 162-9.
    [151] Barille S, Akhoundi C, Collette M,et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells.Blood, 1997, 90(4):1649-1655.
    [152] Kelly T, Borset M, Abe E, et al. Matrixme metalloproteinase in multiple myeloma.Leuk lymphoma, 2000, 37(3-4):273-281
    [153] Levi E, Fridman R, Miao HQ ,et al. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc. Natl. Acad. Sci. U.S.A. 1996,93:7069-7074
    [154] Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000,14 :163-176.
    [155] Whitelock J M, Murdoch A D, Iozzo R V,et al. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 1996,271:10079-10086.
    [156] Curran S, Murray G I. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur. J. Cancer .2000,36 : 1621-1630
    [157] McCawley L J, Matrisian L M. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol. Med. Today .2000,6 : 149-156.
    [158] Westermarck J, Kahari V M. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999,13 :781-792.
    [159] McCawley L J, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore. Curr. Opin. Cell. Biol. 2001,13 : 534-540
    [160] Nelson A R, Fingleton B, Rothenberg M L,et al. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 2000,18:1135-1149.
    [161] Tomita T, Fujii M, Tokumaru Y,et al. Granulocyte-macrophage colony- stimulating factor upregulates matrix metalloproteinase-2 (MMP-2) and membrane type-1 MMP (MT1-MMP) in human head and neck cancer cells. Cancer Lett. 2000,156:83-91.
    [162] Zucker S,Cao J,Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment.Oneogene,2000,19(56): 6642-6650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700