弥漫性大B细胞淋巴瘤中PI3K/AKT/mTOR信号传导通路异常及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察弥漫性大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)中PI3K/AKT/mTOR的活化状态及其临床病理相关性,从信号传导调控的角度阐述DLBCL的发病机理,以期为DLBCL的诊断以及预后评估提供新的分子指标;从PI3K催化亚单位的层次初步探讨DLBCL中PI3K/AKT/mTOR通路活化的机制;另外建立DLBCL裸鼠移植瘤模型,通过体内实验探讨AKT信号传导通路对DLBCL细胞生长及其生物学效应的影响,以期为DLBCL的治疗提供新的思路。
     方法:
     第一部分:收集复旦大学附属肿瘤医院病理科2002-2007年间新鲜DLBCL组织标本及相应石蜡组织75例,其中54例收集到随访资料;同时收集淋巴结反应性增生(reactive hyperplasia,RH)10例做对照。用免疫组织化学(immunohistochemistry,IHC)方法检测上述新鲜组织中pAKT、pmTOR的表达;同时用IHC法观察石蜡组织中Bcl6、CD10和MUM1的表达并据此将DLBCL分为生发中心B细胞样型(germinal center-B cell like,GCB)和non-GCB两型,运用TaqMan实时荧光定量逆转录聚合酶链反应(Real-time quantitativereverse transcription polymerase chain reaction,Real-time RT-PCR)技术检测Bcl6mRNA含量。分析pAKT、pmTOR在DLBCL及RH中表达的差异及其在DLBCL中的表达与分子分型、Bcl6表达及部分临床指标和预后的相关性。
     第二部分:选取第一部分中54例新鲜组织较多者,实时定量RT-PCR方法检测PI3K4个催化亚单位的mRNA表达;另外收集RH新鲜标本9例同时进行检测。分析4个亚单位相对表达水平的高低,及在DLBCL和RH中表达水平的差异,以及与pAKT表达的相关性。选择76例新鲜DLBCL组织标本,酚-氯仿法提取基因组DNA后针对PIK3CA基因突变热点部位所在片段(外显子9和外显子20)进行PCR扩增及基因突变的检测分析。
     第三部分:(1)无菌套管针抽吸法建立DLBCL裸鼠皮下移植模型,观察成瘤率和组织形态特点;用IHC法观察其免疫表型;用PCR扩增检测移植瘤组织和LY8细胞株的IgH克隆性重排和基因组DNA微卫星序列。(2)将荷瘤鼠(肿瘤大小均约200-400mm~3)随机分为3组,即对照组、低剂量LY294002组(0.1mg/kg)及高剂量LY294002组(0.5mg/kg),每组含10只裸鼠。每天给药连续10天。每周3次测量各移植瘤的体积(体积=1/2ab~2,其中a,b分别为移植瘤的长短径)。至第14天时牺牲裸鼠,HE染色观察移植瘤组织形态,IHC法检测Ki67表达并测定肿瘤细胞增殖活性,同时行Western blot方法检测AKT活化情况。并计算实体肿瘤质量抑瘤率和体积抑瘤率。(3)将荷瘤鼠(肿瘤大小均约600-800mm~3)随机分为4组,即6h处理组、18h处理组、24h处理组及48h处理组,每组4只裸鼠分别腹腔内注射对照(20%DMSO)、0.02mgLY294002、0.1mgLY294002或1.0mgLY294002。分别于给药一次后6h、18h、24h和48h牺牲裸鼠,采用流式细胞技术(flow cytometry,FCM)检测肿瘤细胞的细胞周期和细胞凋亡。(4)将荷瘤鼠(肿瘤大小均约200-400mm~3)随机分为4组,即单用LY294002(0.5mg/kg)组、单用阿霉素(doxorubicin,DOX)(5.0 mg/kg)组、LY294002(0.5mg/kg)与DOX(5.0 mg/kg)联合用药组以及对照组,每组含10只裸鼠。LY294002为每日给药连续10天,DOX为处理起始第1天和第3天给药。肿瘤体积观测、体积抑瘤率和质量抑瘤率计算、形态学观察及和细胞增殖活性检测大致同(2)。
     结果:
     第一部分:(1)pAKT和pmTOR在DLBCL中的阳性率分别为73.3%(55/75)和74.7%(56/75),二者的表达强度、阳性细胞分布基本一致。(2)non-GCB型DLBCL中pAKT和pmTOR的阳性率分别为82.5%(47/57)和84.2%(48/57),显著高于GCB型中的阳性率44.4%(8/18)和44.4%(8/18)(均p<0.01)。(3)pAKT和pmTOR高表达组的Bcl6蛋白阳性率与mRNA水平均显著低于pAKT和pmTOR低表达或不表达者(均p<0.01)。(4)pAKT和pmTOR阳性患者中乳酸脱氢酶(LDH)异常者高于阴性患者中的比例,差异达临界统计学意义(p=0.055)。pAKT和pmTOR的表达与性别、年龄、临床分期、KPS评分、B症状之间没有相关性(p>0.05)。pAKT和pmTOR阳性患者的预后较阴性患者差,但差异没有显著性(p>0.05)。
     第二部分:(1)4个催化亚单位在DLBCL中按照mRNA表达水平从高到低依次是PIK3CD,-B,-A和-G。其中PIK3CD表达水平略高于PIK3CB(p>0.05),显著高于PIK3CA和PIK3CG(p<0.05)。(2)PIK3CB的表达也显著高于PIK3CA和PIK3CG(p<0.05),并且PIK3CB在DLBCL中的表达显著高于RH中(p<0.05)。(3)pAKT阳性组中PIK3CB和PIK3CD的表达水平均显著高于pAKT阴性组(p<0.05)。(4)76例DLBCL中仅有1例检出了PIK3CA基因的突变,突变率为1.32%。(5)该病例共有3个突变位点,其一为c.1634A>C,发生在曾报道的热点部位之一;另两个突变位点是c.1658G>C的颠换和其后单个碱基(T)的缺失(c.1659delT),导致移码突变,该两个突变均未见文献报道,为新发现的突变类型。
     第三部分:(1)运用LY8细胞株在裸鼠成功进行了人DLBCL细胞的种植,截至本次实验观察时已传至第9代,共移植裸鼠124只,其中114只成瘤,成瘤率达91.1%。每代移植瘤的生长特点均相似:于移植后约2周长出,随后即进入快速生长,约在3周左右长至1000mm~3,4周左右达3000mm~3大小。经病理形态学分析、IHC检测、基因重排检测及基因组DNA微卫星序列检测,表明与人DLBCL细胞相似,证实了移植瘤的稳定性和可重复性。(2)与对照组相比高剂量组LY294002显示出明显的抗肿瘤效应,且大致呈时间依赖性。高剂量LY294002组的肿瘤体积和质量与对照组相比均显著降低(p<0.01);低剂量组降低不显著(p>0.05)。与对照组相比低剂量组与高剂量组pAKT表达均显著降低,高剂量组尤其显著。(3)低剂量组和高剂量组LY294002肿瘤细胞增殖活性(Ki67阳性率)显著低于对照组,以高剂量组尤其显著(均p<0.05)。(4)FCM检测发现6h和18h不同剂量组、24h低、中剂量组及48h中剂量组均显示肿瘤细胞的细胞周期S期细胞比例较对照略有降低而G1期细胞增加,提示出现G1期阻滞,但效果均不显著(p>0.05)。24h时高剂量组和48h时低剂量组及高剂量组均显示出S期细胞比例明显降低(p<0.05),提示出现显著的G1期阻滞。其中对细胞周期阻滞效果最显著的是48h时高剂量处理组。另外本试验也显示,LY294002促细胞凋亡的效果不明显(p>0.05)。(5)与LY294002或DOX单用组及对照组相比,LY294002与DOX联合组荷瘤鼠较早地出现了对肿瘤生长的明显抑制。联合组的肿瘤体积抑瘤率显著优于任何单用组(p<0.05);而质量抑瘤率显著优于LY294002单用组(p<0.05),也优于DOX单用组,其差异达临界统计学意义(p=0.057)。通过检测Ki67的表达分析了LY294002对DLBCL肿瘤细胞增殖活性的影响,结果发现LY294002与DOX联用组的肿瘤细胞增殖活性显著低于对照组和任一药物单用组(均p<0.01)。
     结论:
     1.AKT/mTOR信号传导通路活化在DLBCL发生中起重要作用,特别与Bcl6低表达或不表达以及non-GCB亚型密切相关,该信号通路有望成为部分DLBCL治疗的新靶点。
     2.在DLBCL中PIK3CD和PIK3CB均高表达并且与pAKT的表达显著相关,提示PIK3CD和PIK3CB可能在DLBCL中PI3K/AKT通路的活化中发挥重要作用。PIK3CB在DLBCL中的表达水平显著高于RH,提示其可能参与了DLBCL的发病机制。PIK3CA基因突变在DLBCL中发生率极低,提示其可能不是DLBCL中PI3K/AKT通路活化的主要机制。
     3.本研究成功建立了人DLBCL裸鼠移植瘤模型,为进一步体内研究提供了较理想的动物模型。利用该模型本研究表明LY294002在体内可以抑制AKT活化从而抑制DLBCL肿瘤的生长,并且主要是通过调节细胞周期而非细胞凋亡,同时可以抑制肿瘤细胞增殖活性。另外LY294002在体内也可以增加化疗药物DOX的肿瘤抑制作用。上述结果与本课题组前期体外实验结果相符,为DLBCL的治疗提供了新的理论依据和思路。
     本课题的创新性在于:
     1.从AKT/mTOR信号传导通路的角度探讨DLBCL的发病机制,目前国内尚无相关研究报道,国外仅有一篇相关报道,且未涉及该通路与分子分型及Bcl6表达等相关性的相关研究。本研究探讨了该通路的两个重要分子AKT和mTOR在DLBCL中的活化及其与DLBCL分型以及DLBCL中重要分子Bcl6表达的相关性,并且初步分析了该通路活化与临床指标以及预后的关系。
     2.关于DLBCL中PI3K/AKT通路的活化机制及DLBCL中PI3K 4个催化亚单位的表达水平目前国内外尚未见相关文献报道。本研究采用实时定量RT-PCR的方法从mRNA水平检测了4个催化亚单位的表达,并初步探讨各个亚单位表达与PI3K/AKT通路活化的关系。
     3.本研究成功建立了人DLBCL裸鼠移植瘤模型,为进一步体内研究提供了较理想的动物模型;并利用该模型对DLBCL中PI3K/AKT通路的生物学效应进行了研究。目前国内外尚未见相关研究报道。
Objective:The aims of this study are to investigate the activation of PI3K/AKT/mTOR signal pathway in diffuse large B cell lymphoma(DLBCL) and its association with clinicopathologic characteristics,to elucidate the pathogenesis and development of DLBCL from the viewpoint of signal transduction,with the purpose of providing new markers for the diagnosis and prognosis of DLBCL;and further investigate the mechanisms of this pathway's activation from the level of subunits of PI3K.In addition,we developed a mice model of DLBCL,to investigate the involvement of AKT pathway and its effects in DLBCL in vivo,which not only provided an animal model for the in vivo study of DLBCL,but also provided new therapeutic targets for the treatment of DLBCL.
     Methods:
     Part 1:(1) The frozen tissue samples and corresponding formalin-fixed paraffin-embedded samples of 75 DLBCL cases and 10 cases of reactive hyperplasia (RH) acquired from 2002-2007 were obtained from the Tumor Tissue Bank in the Department of Pathology,Cancer Hospital of Fudan University.Among the 75 DLBCL cases,follow-up data were available for 54 cases.(2) Immunohistochemistry(IHC) staining on frozen section was used to detect the expression of pAKT and pmTOR in the 75 DLBCL and 10 RH cases.IHC was performed on formalin-fixed paraffin-embedded sections to investigate the expression of Bcl6,CD10 and MUM1,according to which the DLBCL cases were divided into two subtypes,germinal center-B cell like(GCB) and non-GCB. Real-time quantitative reverse transcription polymerase chain reaction(Real-time RT-PCR) was performed to detect the mRNA expression of Bcl6 in the above cases. (3) The expression of pAKT and pmTOR in DLBCL and RH was compared and the association of these two molecules expression with Bcl6 expression,DLBCL subclassification,clinical biomarkers and the overall survival were analyzed.
     Part 2:(1) Real-time PCR was performed to investigate the mRNA expression of the 4 catalytic subunits of PI3K on 54 DLBCL cases from part 1 and 9 RH cases. Then the expression level of the 4 subunits was compared.The difference of their expression in DLBCL and RH and the association with pAKT expression were analyzed.(2) Genomic DNA of 76 DLBCL cases was extracted using phenol-chloroform and ethanol precipitation.Polymerase chain reaction(PCR) was performed to amplify the fragment with reported hotspots of mutation,and amplification products were then purified and directly sequenced.
     Part 3:(1) DLBCL-bearing mice model was first developed using human DLBCL cell line LY8.The hlstologic characteristics and the immunophenotype were examined.PCR amplification was performed to investigate the IgH cloned rearrangement and three microsatellite loci of xenografted tumor samples and LY8 cell line.(2) Tumor-beating mice were divided randomly into 3 groups when the tumor mass reached 200-400mm~3:(ⅰ) LY294002(0.1mg/kg),(ⅱ) LY294002 (0.5mg/kg),(ⅲ) vehicle alone(control).Each group consisted of 10 mice and treated each day continually for 10 days.Tumor size was measured 3 times per week.At the end of the experiments,the mice were humanly sacrificed and the tumors were excised and bisected.Western blot was used to detect the activation of AKT,and histological appearance was examined using hematoxylin-eosin(HE) staining and Ki67 staining was detected using IHC test and then proliferation index was analyzed accordingly.The weight inhibitory rate and the volume inhibitory rate were calculated.(3) DLBCL-bearing mice were divided randomly into 4 groups when the tumor mass reached 600-800mm~3.Each group included 4 mice,which were administered intraperitoneally 0.02mg,0.1mg,and 1.0mg LY294002 and 20% DMSO,respectively.The 4 groups were sacrificed after treated for 6h,18h,24h,and 48h,respectively.Tumor masses were excised and cell cycle and apoptosis were detected using flow cytometry(FCM).(4) DLBCL-bearing mice were divided randomly into the following 4 groups when the tumor mass reached 200-400mm~3:(ⅰ) LY294002(0.5mg/kg,each day for 10 days),(ⅱ) DOX(5mg/kg,the 1~(st) day and the 3~(rd) day),(ⅲ) DOX(5mg/kg,the 1~(st) day and the 3~(rd) day)+LY294002(0.5mg/kg,each day for 10 days)(ⅳ) vehicle alone(20%DMSO).Each group consisted of 10 mice. LY294002 and vehicle were administered intraperitoneally and DOX was given intravenously.Tumor size measurement,histological appearance examination, proliferation index analysis,and weight inhibitory rate and the volume inhibitory rate calculation were performed according to(2).
     Results:
     Part 1:(1) The expression of pAKT and pmTOR was 73.3%(55/75) and 74.7% (56/75),respectively,and the expression of the two proteins was in consistent with each other.(2) The expression of pAKT and pmTOR in non-GCB group was 82.5% (47/57) and 84.2%(48/57),respectively,which were significantly higher than that in GCB group,44.4%(8/18) and 44.4%(8/18),respectively(both p<0.01).(3) The expression of Bcl6 protein and mRNA in pAKT and pmTOR high-expression group was significantly lower than that in low-expression group(both p<0.01).(4) The percentage of patients with abnormal LDH in pAKT and pmTOR positive groups was higher than that in negative groups,although it only reached borderline significance(both 10=0.055).There was no relationship between the expression of pAKT and pmTOR and age,sex,stage,KPS and B symptoms(p>0.05).The overall survival of patients with negative pAKT was better than that with positive pAKT, although it did not reach statistical significance(p>0.05).
     Part 2:(1) Quantitative analysis using real-time PCR showed that PIK3CD expression was the most predominant among the 4 isoforms,with PIK3CB closely following it,while PIK3CG expression was the lowest.PIK3CD expression was significantly higher than PIK3CA and PIK3CG(p<0.05).(2) The PIK3CB expression was also significantly higher than PIK3CA and PIK3CG(p<0.05) and its expression in DLBCL was significantly higher than that in RH(p<0.05).(3) Both PIK3CB and PIK3CD expression level were significantly associated with the pAKT expression,with high mRNA level of PIK3CB and PIK3CD in cases with positive pAKT expression(both p<0.05).(4) Only 1 out of 76 primary DLBCLs(1.32%) displayed mutations.(5) Three mutation points were found.One was a missense mutation(c.1634A>C) which occurred in one of the reported hotspots.The other mutations,c.1658G>C and c.1659delT,had not been hitherto reported in hematopoietic or solid tumors.
     Part 3:(1) We successfully developed DLBCL-bearing mice using human DLBCL cell line LY8,and it grew with high stability.By the time we analyzed,the mice had been steadily transferred to the 9~(th) generation;the total number of xenografted mice was 124,among which 114 mice were successfully transplanted with DLBCL,with the tumor formation rate remaining 91.1%.The grow characteristics of each generation were similar.Generally,the tumor mass appeared in about 2 weeks after inoculation,and then grew fast,and the tumor volume reached 1000mm~3 in diameter in about 3 weeks and 3000mm~3 in about 4 weeks.The histologic appearance,IHC detection,gene rearrangement detection,and Microsatellite DNA amplification of the xenotransplanted tumors and LY8 cell line showed that the histologic and genetic features,and Microsatellite DNA of xenotransplanted tumors were identical with that of the DLBCL cell line LY8.(2) Compared with the control group,high dose LY294002 group showed significant anti-tumor effect in a time-depended manner, and both the tumor volume and tumor weight in high dose group were dramatically reduced(p<0.01).The low dose group did not show noticeable anti-tumor effect (p>0.05).pAKT expression in low and high dose groups were significantly reduced compared with the control,with the high dose group being more dramatic.(3) Both the proliferation activity of low dose group and high dose group were dramatically lower than that of control group(both p<0.05).(4) The ratio of cells in S phase in each dose of 6h and 18h group was slightly reduced compared with the control,but the effect was not significant(p>0.05).The ratio of cells in S phase was significantly reduced in high dose of 24h group and the low and high dose of 48h group(p<0.05). In our study,48h is the best time period for LY294002 in cell cycle arrest.In addition,we showed that LY294002 did not induce cell apoptosis in this in vivo study(p>0.05).(5) The mice of LY294002 combined with DOX group showed significant inhibition of tumor growth much earlier than that of the LY294002 alone, DOX alone and control group.In addition,we showed that the tumor cell proliferation activity of the combined group was dramatically lower than that of control and LY294002 alone and DOX alone group(p<0.01).
     Conclusions:
     Part 1:PI3K/AKT pathway might play an important role in the development of DLBCL,and it was closely related to the low-or non-expression of Bcl6 and non-GCB subgroup.This pathway might serve as new target in the treatment of certain group of DLBCL.We have not found any related reports in China and only one abroad,which did not investigate the correlation of this pathway with DLBCL subtype and Bcl6 expression.
     Part 2:To the best of our knowledge,there was little is known about the mechanisms of PI3K/AKT pathway activation and the expression of the 4 PI3K catalytic isoforms in DLBCL.In the current research,we suggested that both PIK3CD and PIK3CB high expression might play important roles in the activation of PI3K/AKT pathway in DLBCL.PIK3CA mutations are infrequent in DLBCL, indicating that this mutation might not be a common route of frequent activation of the PI3K pathway in DLBCL.
     Part 3:We successfully developed a mice model of human DLBCL,providing a nice model for further investigation of DLBCL in vivo.We showed that LY294002 might inhibit the activation of AKT and the tumor growth of DLBCL-bearing mice, probably through the regulation of cell cycle instead of cell apoptosis.LY294002 also inhibited the proliferative activity of tumor cells.We also demonstrated that LY294002 might enhance the anti-tumor effect of DOX in vivo.
引文
1.Lossos IS.Molecular pathogenesis of diffuse large B-cell lymphoma.J Clin Oncol.2005;23(26):6351-6357.
    2.Vivanco I,Sawyers CL.The phosphatidylinositol 3-Kinase AKT pathway in human cancer.Nat Rev Cancer.2002;2(7):489-501.
    3.Gao N,Flynn DC,Zhang Z,et al.G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells.Am J Physiol Cell Physiol.2004;287(2):C281-291.
    4.Gao N,Zhang Z,Jiang BH,et al.Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer.Biochem Biophys Res Commun.2003;310(4):1124-1132.
    5.Testa JR,Bellacosa A.AKT plays a central role in tumorigenesis.Proc Natl Acad Sci U S A.2001;98(20):10983-10985.
    6.Zhou X,Tan M,Stone Hawthorne V,et al.Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers.Clin Cancer Res.2004;10(20):6779-6788.
    7.张铁成,周晓燕,于宝华,等.AKT蛋白激酶活化对弥漫性大B细胞淋巴瘤细胞生物学行为影响的体外研究.中华病理学杂志.2006;36(5):318-323.
    8.Uddin S,Hussain AR,Siraj AK,et al.Role of phosphatidylinositol 3'-kinase/AKT pathway in diffuse large B-cell lymphoma survival.Blood.2006;108(13):4178-4186.
    9.Pandolfi PP.Breast cancer—loss of PTEN predicts resistance to treatment.N Engl J Med.2004;351(22):2337-2338.
    10.Samuels Y,Wang Z,Bardelli A,et al.High frequency of mutations of the PIK3CA gene in human cancers.Science.2004;304(5670):554.
    11.Samuels Y,Diaz LA,Jr.,Schmidt-Kittler O,et al.Mutant PIK3CA promotes cell growth and invasion of human cancer cells.Cancer Cell.2005;7(6):561-573.
    12.Hu L,Hofmann J,Lu Y,et al.Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models.Cancer Res.2002;62(4):1087-1092.
    13.Frost P,Moatamed F,Hoang B,et al.In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model.Blood.2004;104(13):4181-4187.
    14.Smith PG,Wang F,Wilkinson KN,et al.The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma.Blood.2005;105(1):308-316.
    15.Stal O,Perez-Tenorio G,Akerberg L,et al.Akt kinases in breast cancer and the results of adjuvant therapy.Breast Cancer Res.2003;5(2):R37-44.
    16.David O,Jett J,LeBeau H,et al.Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage.Clin Cancer Res.2004;10(20):6865-6871.
    17.Hans CP,Weisenburger DD,Greiner TC,et al.Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray.Blood.2004;103(1):275-282.
    18.Zhang D,Brodt P.Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling.Oncogene.2003;22(7):974-982.
    19.Slupianek A,Nieborowska-Skorska M,Hoser G,et al.Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis.Cancer Res.2001;61(5):2194-2199.
    20.Granville CA,Memmott RM,Gills JJ,et al.Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway.Clin Cancer Res.2006;12(3 Pt 1):679-689.
    21.Vignot S,Faivre S,Aguirre D,et al.mTOR-targeted therapy of cancer with rapamycin derivatives.Ann Oncol.2005;16(4):525-537.
    22.Alizadeh AA,Eisen MB,Davis RE,et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.Nature.2000;403(6769):503-511.
    23.Rosenwald A,Wright G,Chan WC,et al.The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma.N Engl J Med.2002;346(25):1937-1947.
    24.Tagawa H,Suguro M,Tsttzuki S,et al.Comparison of genome profiles for identification of distinct subgroups of diffuse large B-cell lymphoma.Blood.2005;106(5):1770-1777.
    25.Lu X,Nechushtan H,Ding F,et al.Distinct IL-4-induced gene expression,proliferation,and intracellular signaling in germinal center B-cell-like and activated B-cell-like diffuse large-cell lymphomas.Blood.2005;105(7):2924-2932.
    26.Muds JJ,Cillessen SA,Vos W,et al.Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas.Blood.2005;105(7):2916-2923.
    27.Davis RE,Brown KD,Siebenlist U,et al.Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells.J Exp Med.2001;194(12):1861-1874.
    28.Iqbal J,Neppalli VT,Wright G,et al.BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma.J Clin Oncol.2006;24(6):961-968.
    29.Dogan A,Bagdi E,Munson P,et al.CD10 and BCL-6 expression in paraffin section of normal lymphoid tissue and B-cell lymphomas.Am J Surg Pathol.2000;23(6):846-852.
    30.Lossos IS,Jones CD,Wamke R,et al.Expression of a single gene,BCL-6,strongly predicts survival in patients with diffuse large B-cell lymphoma.Blood.2001;98(4):945-951.
    31.Tang TT,Dowbenko D,Jackson A,et al.The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor.J Biol Chem.2002;277(16):14255-14265.
    32.Perez-Tenorio G,Stal O.Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients.Br J Cancer.2002;86(4):540-545.
    33.Opel D,Poremba C,Simon T,et al.Activation of Akt predicts poor outcome in neuroblastoma.Cancer Res.2007;67(2):735-745.
    34.Kornblau SM,Womble M,Qiu YH,et al.Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood.2006;108(7):2358-2365.
    35.Ayala G,Thompson T,Yang G,et al.High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence.Clin Cancer Res.2004;10(19):6572-6578.
    36.Mawrin C,Sasse T,Kirches E,et al.Different activation of mitogen-activated protein kinase and Akt signaling is associated with aggressive phenotype of human meningiomas.Clin Cancer Res.2005;11(11):4074-4082.
    37.Gupta AK,McKenna WG,Weber CN,et al.Local recurrence in head and neck cancer:relationship to radiation resistance and signal transduction.Clin Cancer Res.2002;8(3):885-892.
    38.Lossos IS,Czerwinski DK,Alizadeh AA,et al.Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes.N Engl J Med.2004;350(18):1828-1837.
    39.Okkenhaug K,Vanhaesebroeck B.PI3K in lymphocyte development,differentiation and activation.Nat Rev Immunol.2003;3(4):317-330.
    40.Suire S,Coadwell J,Ferguson GJ,et al.p84,a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma.Curr Biol.2005;15(6):566-570.
    41.Gu C,Park S.The p110 gamma PI-3 kinase is required for EphA8-stimulated cell migration.FEBS Lett.2003;540(1-3):65-70.
    42.Clayton E,McAdam S,Coadwell J,et al.Structural organization of the mouse phosphatidylinositol 3-kinase p110d gene.Biochem Biophys Res Commun.2001;280(5):1328-1332.
    43.Steelman LS,Pohnert SC,Shelton JG,et al.JAK/STAT,Raf/MEK/ERK,PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis.Leukemia.2004;18(2):189-218.
    44.Parsons R.Human cancer,PTEN and the PI-3 kinase pathway.Semin Cell Dev Biol.2004;15(2):171-176.
    45.Kurose K,Zhou XP,Araki T,et al.Frequent loss of PTEN expression is linked to elevated phosphorylated Akt levels,but not associated with p27 and cyclin D1 expression,in primary epithelial ovarian carcinomas.Am J Pathol.2001;158(6):2097-2106.
    46.Georgakis GV,Li Y,Rassidakis GZ,et al.Inhibition of the phosphatidylinositol-3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in Hodgldn lymphoma.Br J Haematol.2006;132(4):503-511.
    47.Uddin S,Hussain AR,Al-Hussein KA,et al.Inhibition of phosphatidylinositol 3'-kinase/AKT signaling promotes apoptosis of primary effusion lymphoma cells.Clin Cancer Res.2005;11(8):3102-3108.
    48.Nakahara Y,Nagai H,Kinoshita T,et al.Mutational analysis of the PTEN/MMAC1 gene in non-Hodgkin's lymphoma.Leukemia.1998;12(8):1277-1280.
    49.Sakal A,Thieblemont C,Wellmann A,et al.PTEN gene alterations in lymphoid neoplasms.Blood.1998;92(9):3410-3415.
    50.Semba S,Itoh N,Ito M,et al.Down-regulation of PIK3CG,a catalytic subunit of phosphatidylinositol 3-OH kinase,by CpG hypermethylation in human colorectal carcinoma.Clin Cancer Res.2002;8(12):3824-3831.
    51.Zebedin E,Simma O,Schuster C,et al.Leukemic challenge unmasks a requirement for PI3Kdelta in NK cell-mediated tumor surveillance.Blood.2008;112(12):4655-4664.
    52.Saudemont A,Okkenhaug K,Colucci F.p110delta is required for innate immunity to transplantable lymphomas.Biochem Soc Trans.2007;35(Pt 2):183-185.
    53.Guo H,Samarakoon A,Vanhaesebroeck B,et al.The p110 delta of PI3K plays a critical role in NK cell terminal maturation and cytokine/chemokine generation.J Exp Med.2008;205(10):2419-2435.
    54.Sujobert P,Bardet V,Cornillet-Lefebvre P,et al.Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia.Blood.2005;106(3):1063-1066.
    55.Geng L,Tan J,Himmelfarb E,et al.A specific antagonist of the p110delta catalytic component of phosphatidylinositol 3'-kinase,IC486068,enhances radiation-induced tumor vascular destruction.Cancer Res.2004;64(14):4893-4899.
    56.Bilancio A,Okkenhaug K,Camps M,et al.Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling:comparative analysis of genetic and pharmacologic interference with p110delta function in B cells.Blood.2006;107(2):642-650.
    57.Vanhaesebroeck B,Ali K,Bilancio A,et al.Signalling by PI3K isoforms:insights from gene-targeted mice.Trends Biochem Sci.2005;30(4):194-204.
    58.Geering B,Cutillas PR,Nook G,et al.Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers.Proc Natl Acad Sci U S A.2007;104(19):7809-7814.
    59.Jackson SP,Schoenwaelder SM,Goncalves I,et al.PI 3-kinase p110beta:a new target for antithrombotic therapy.Nat Med.2005;11(5):507-514.
    60.Jia S,Liu Z,Zhang S,et al.Essential roles of PI(3)K-p110beta in cell growth,metabolism and tumorigenesis.Nature.2008;454(7205):776-779.
    61.Pu P,Kang C,Zhang Z,et al.Downregulation of PIK3CB by siRNA suppresses malignant glioma cell growth in vitro and in vivo.Technol Cancer Res Treat.2006;5(3):271-280.
    62.Zhu Q,Youn H,Tang J,et al.Phosphoinositide 3-OH kinase p85alpha and p110beta are essential for androgen receptor transactivation and tumor progression in prostate cancers.Oncogene.2008;27(33):4569-4579.
    63.Kang S,Denley A,Vanhaesebroeck B,et al.Oncogenic transformation induced by the p110beta,-gamma,and -delta isoforms of class Ⅰ phosphoinositide 3-kinase.Proc Natl Acad Sci U S A.2006;103(5):1289-1294.
    64.Shayesteh L,Lu Y,Kuo WL,et al.PIK3CA is implicated as an oncogene in ovarian cancer.Nat Genet.1999;21(1):99-102.
    65.Ma YY,Wei SJ,Lin YC,et al.PIK3CA as an oncogene in cervical cancer.Oncogene.2000;19(23):2739-2744.
    66.Hui AB,Lo KW,Yin XL,et al.Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization.Lab Invest.2001;81(5):717-723.
    67.Wu G,Mambo E,Guo Z,et al.Uncommon mutation,but common amplifications,of the PIK3CA gene in thyroid tumors.J Clin Endocrinol Metab.2005;90(8):4688-4693.
    68.Marone R,Cmiljanovic V,Giese B,et al.Targeting phosphoinositide 3-kinase:moving towards therapy.Biochim Biophys Acta.2008;1784(1):159-185.
    69.Sasaki T,Irie-Sasaki J,Horie Y,et al.Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kgamma.Nature.2000;406(6798):897-902.
    70.Lee HY,Bae GU,Jung ID,et al.Autotaxin promotes motility via G protein-coupled phosphoinositide 3-kinase gamma in human melanoma cells.FEBS Lett.2002;515(1-3):137-140.
    71.Kratz CP,Emerling BM,Bonifas J,et al.Genomic structure of the PIK3CG gene on chromosome band 7q22 and evaluation as a candidate myeloid tumor suppressor.Blood.2002;99(1):372-374.
    72.Zhao JJ,Liu Z,Wang L,et al.The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells.Proc Natl Acad Sci U S A.2005;102(51):18443-18448.
    73.Link W,Rosado A,Fominaya J,et al.Membrane localization of all class Ⅰ PI 3-kinase isoforms suppresses c-Myc-induced apoptosis in Ratl fibroblasts via Akt.J Cell Biochem.2005;95(5):979-989.
    74.Sawyer C,Sturge J,Bennett DC,et al.Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta.Cancer Res.2003;63(7):1667-1675.
    75.Kang S,Bader AG,Vogt PK.Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic.Proc Natl Acad Sci U S A.2005;102(3):802-807.
    76.Lee JW,Soung YH,Kim SY,et al.PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.Oncogene.2005;24(8):1477-1480.
    77.Ikenoue T,Kanai F,Hikiba Y,et al.Functional analysis of PIK3CA gene mutations in human colorectal cancer.Cancer Res.2005;65(11):4562-4567.
    78.Levine DA,Bogomolniy F,Yee CJ,et al.Frequent mutation of the PIK3CA gene in ovarian and breast cancers.Clin Cancer Res.2005;11(8):2875-2878.
    79.Hummerdal P,Andersson P,Willander K,et al.Absence of hot spot mutations of the PIK3CA gene in acute myeloid leukaemia. Eur J Haematol. 2006;77(1):86-87.
    80. Bousquet M, Recher C, Queleen C, et al. Assessment of somatic mutations in phosphatidylinositol 3-kinase gene in human lymphoma and acute leukaemia. Br J Haematol. 2005;131(3):411-413.
    81. Rudelius M, Pittaluga S, Nishizuka S, et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood. 2006;108(5):1668-1676.
    82. Hayakawa M, Kaizawa H, Moritomo H, et al. Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg Med Chem. 2006;14(20):6847-6858.
    83. Knight ZA, Gonzalez B, Feldman ME, et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell. 2006;125(4):733-747.
    84. Sadhu C, Masinovsky B, Dick K, et al. Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol. 2003;170(5):2647-2654.
    85. Pomel V, Klicic J, Covini D, et al. Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma. J Med Chem. 2006;49(13):3857-3871.
    86. Billottet C, Grandage VL, Gale RE, et al. A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene. 2006;25(50):6648-6659.
    87. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002;29(1):23-39.
    88. Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001;61(10):3986-3997.
    89. Ng SSW, Tsao MS, Chow S, et al. Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res. 2000;60(19):5451-5455.
    90.Ito D,Fujimoto K,Mori T,et al.In vivo antitumor effect of the mTOR inhibitor CCI-779 and gemcitabine in xenograft models of human pancreatic cancer.Int J Cancer.2006;118(9):2337-2343.
    91.Page C,Lin HJ,Jin Y,et al.Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis.Anticancer Res.2000;20(1A):407-416.
    92.Gupta AK,Cemiglia GJ,Mick R,et al.Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002.Int J Radiat Oncol Biol Phys.2003;56(3):846-853.
    93.Faber AC,Chiles TC.Resveratrol induces apoptosis in transformed follicular lymphoma OCI-LY8 cells:evidence for a novel mechanism involving inhibition of BCL6 signaling.Int J Oncol.2006;29(6):1561-1566.
    94.李志洪,黄信孚,柯扬,等.微卫星DNA序列在鉴别肿瘤转移细胞中的应用.中华医学遗传学杂志,1998;15(6):334-356.
    95.刘颖斌,何小伟,王建伟,等.胆囊癌肝转移模型的建立和高转移细胞亚群的筛选.中华医学杂志.2006;86(30):2117-2121.
    96.何小伟,袁胜涛,高解春,等.人肾母细胞瘤裸小鼠肾原位移植模型的建立和生物学特性的研究.中华小儿外科杂志.2003;24(3):258-260.
    97.Wang L,Fortney JE,Gibson LF.Stromal cell protection of B-lineage acute lymphoblastic leukemic cells during chemotherapy requires active Akt.Leuk Res.2004;28(7):733-742.
    98.Grewe M,Gansauge F,Schmid RM,et al.Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells.Cancer Res.1999;59(15):3581-3587.
    99.Wong YC,Wang YZ.Growth factors and epithelial-stromal interactions in prostate cancer development.Int Rev Cytol.2000;199:65-116.
    100.Roy HK,Olusola BF,Clemens DL,et al.AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis.Carcinogenesis.2002;23(1):201-205.
    101.Cantley LC.The phosphoinositide 3-kinase pathway.Science.2002;296(5573):1655-1657.
    102.Nicholson KM,Anderson NG.The protein kinase B/Akt signalling pathway in human malignancy.Cell Signal.2002;14(5):381-395.
    103.Hu L,Zaloudek C,Mills GB,et al.In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor(LY294002).Clin Cancer Res.2000;6(3):880-886.
    104.Sourbier C,Lindner V,Lang H,et al.The phosphoinositide 3-kinase/Akt pathway:a new target in human renal cell carcinoma therapy.Cancer Res.2006;66(10):5130-5142.
    105.Rassidakis GZ,Feretzaki M,Atwell C,et al.Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma.Blood.2005;105(2):827-829.
    106.Coffey JC,Wang JH,Smith MJ,et al.Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis.Novel role for an old enemy.J Biol Chem.2005;280(22):20968-20977.
    107.Dan S,Yoshimi H,Okamura M,et al.Inhibition of PI3K by ZSTK474suppressed tumor growth not via apoptosis but G0/G1 arrest.Biochem Biophys Res Commun.2009;379(1):104-109.
    108.Fujita N,Sato S,Katayama K,et al.Akt-dependent phosphorylation of p27Kip1promotes binding to 14-3-3 and cytoplasmic localization.J Biol Chem.2002;277(32):28706-28713.
    109.Liang J,Zubovitz J,Petrocelli T,et al.PKB/Akt phosphorylates p27,impairs nuclear import of p27 and opposes p27-mediated G1 arrest.Nat Med.2002;8(10):1153-1160.
    110.Viglietto G,Motti ML,Bruni P,et al.Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer.Nat Med.2002;8(10):1136-1144.
    111.Shin I,Yakes FM,Rojo F,et al.PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization.Nat Med.2002;8(10):1145-1152.
    112.Chandramohan V,Jeay S,Pianetti S,et al.Reciprocal control of Forkhead box O 3a and c-Myc via the phosphatidylinositol 3-kinase pathway coordinately regulates p27Kip1 levels.J Immunol.2004;172(9):5522-5527.
    113.Suzuki E,Umezawa K,Bonavida B.Rituximab inhibits the constitutively activated PI3K-Akt pathway in B-NHL cell lines:involvement in chemosensitization to drug-induced apoptosis.Oncogene.2007;26(42):6184-6193.
    114.Chris H.Takimoto Pharmacology of Cancer Chemotherapy:Section 7:Topoisomerase Interactive Agents In:Cancer:Principles & Practice of Ontology,7/e Vincent T.DeVita,Jr.Samuel Hellman,Steven A.Rosenberg(Eds).2005,LIPPINCOTT WILLIAMS & WILKINS Philadelphia,USA.
    115.Fujiwara Y,Kawada K,Takano D,et al.Inhibition of the PI3 kinase/Akt pathway enhances doxorubicin-induced apoptotic cell death in tumor cells in a p53-dependent manner.Biochem Biophys Res Commun.2006;340(2):560-566.
    1 Pene F,Claessens YE,Muller O,et al.Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma.Oncogene,2002,21:6587-6597.
    2 Hill MM,Hemmings BA.Inhibition of protein kinase B/Akt:implications for cancer therapy.Pharmacol Ther,2002,93:243-251.
    3 Huang S,Houghton PJ.Targeting mTOR signaling for cancer therapy.Curr Opin Pharmacol,2003,3:371-377.
    4 Zhou X,Tan M,Stone Hawthorne V,et al.Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers.Clin Cancer Res,2004,10:6779-6788.
    5 Asnaghi L,Bruno P,Priulla M,et al.mTOR:a protein kinase switching between life and death.Pharmacol Res,2004,50:545-549.
    6 Schalm SS,Fingar DC,Sabatini DM,et al.TOS motif-mediated raptor binding regulates 4E-BP1multisite phosphorylation and function.Curr Biol,2003,13:797-806.
    7 Xu G,Zhang W,Bertram P,et al.Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors.Int J Oncol,2004,24:893-900.
    8 Wong YC,Wang YZ.Growth factors and epithelial-stromal interactions in prostate cancer development.Int Rev Cytol,2000,199:65-116.
    9 Murillo H,Huang H,Schmidt LJ,et al.Role of PI3K signaling in survival and progression of LNCaP prostate cancer cells to the androgen refractory state.Endocrinology,2001,142:4795-4805.
    10 Parsons R.Human cancer,PTEN and the PI-3 kinase pathway.Semin Cell Dev Biol,2004,15:171-176.
    11 Gupta AK,Cerniglia GJ,Mick R,et al.Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002.Int J Radiat Oncol Biol Phys,2003,56:846-853.
    12 Neshat MS,Mellinghoff IK,Tran C,et al.Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR.Proc Natl Acad Sci U S A,2001,98:10314-10319.
    13 Smith PG,Wang F,Wilkinson KN,et al.The phosphodiesterase PDFAB limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma.Blood,2005,105:308-316.
    14 Slupianek A,Nieborowska-Skorska M,Hoser G,et al.Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis.Cancer Res,2001,61:2194-2199.
    15 Wang L,Fortney JE,Gibson LF.Stromal cell protection of B-lineage acute lymphoblastic leukemic cells during chemotherapy requires active Akt.Leuk Res,2004,28:733-742.
    16 Grewe M,Gansauge F,Schmid RM,et al.Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells.Cancer Res,1999,59:3581-3587.
    17 Testa JR,Bellacosa A.AKT plays a central role in tumorigenesis.Proc Natl Acad Sci U S A,2001,98:10983-10985.
    18 Hanada M,Feng J,Hemmings BA.Structure,regulation and function of PKB/AKT-a major therapeutic target.Biochim Biophys Acta,2004,1697:3-16.
    19 Kennedy SG,Kandel ES,Cross TK,et al.Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria.Mol Cell Biol,1999,19:5800-5810.
    20 Gagnon V,St-Germain ME,Parent S,et al.Akt activity in endometrial cancer cells:regulation of cell survival through cIAP-1.Int J Oncol,2003,23:803-810.
    21 Asano T,Yao Y,Zhu J,et al.The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation.Biochem Biophys Res Commun,2005,331:295-302.
    22 Proud CG.The multifaceted role of mTOR in cellular stress responses.DNA Repair(Amst),2004,3:927-934.
    23 Wendel HG,De Stanchina E,Fridman JS,et al.Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy.Nature,2004,428:332-337.
    24 Knuefermann C,Lu Y,Liu B,et al.HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells.Oncogene,2003,22:3205-3212.
    25 Brognard J,Clark AS,Ni Y,et al.Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation.Cancer Res,2001,61:3986-3997.
    26 Gao N,Flynn DC,Zhang Z,et al.G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells.Am J Physiol Cell Physiol,2004,287:C281-291.
    27 Gao N,Zhang Z,Jiang BH,et al.Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer.Biochem Biophys Res Commun,2003,310:1124-1132.
    28 Kandel ES,Skeen J,Majewski N,et al.Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage.Mol Cell Biol,2002,22:7831-7841.
    29 Gao N,Nester RA,Sarkar MA.4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor lalpha and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells.Toxicol Appl Pharmacol,2004,196:124-135.
    30 Laughner E,Taghavi P,Chiles K,et al.HER2(neu) signaling increases the rate of hypoxia-inducible factor lalpha(HIF-lalpha) synthesis:novel mechanism for HIF-1-mediated vascular endothelial growth factor expression.Mol Cell Biol,2001,21:3995-4004.
    31 Butzal M,Loges S,Schweizer M,et al.Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro.Exp Cell Res,2004,300:65-71.
    32 Zhang D,Brodt P.Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling.Oncogene,2003,22:974-982.
    33 Chung TW,Lee YC,Kim CH.Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways:involvement of invasive potential.Faseb J,2004,18:1123-1125.
    34 Gotoh M,Sakamoto M,Kanetaka K,et al.Overexpression of osteopontin in hepatocellular carcinoma.Pathol Int,2002,52:19-24.
    35 Tuck AB,Hota C,Wilson SM,et al.Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways.Oncogene,2003,22:1198-1205.
    36 Zhang GX,Zhao ZQ,Lin XW.EGF/PI3K signaling pathway regulates the expression of osteopontin in liver cancer HepG2 cells.Zhonghua Yi Xue Za Zhi,2003,83:1980-1983.
    37 Chen J,Fang Y.A novel pathway regulating the mammalian target of rapamycin(mTOR)signaling.Biochem Pharmacol,2002,64:1071-1077.
    38 Peralba JM,DeGraffenried L,Friedrichs W,et al.Pharmacodynamic Evaluation of CCI-779,an Inhibitor of mTOR,in Cancer Patients.Clin Cancer Res,2003,9:2887-2892.
    39 Boulay A,Zumstein-Mecker S,Stephan C,et al.Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells.Cancer Res,2004,64:252-261.
    40 Yorek MA,Dunlap JA,Lowe WL Jr.Wortmannin and LY294002 inhibit myo-inositol accumulation by cultured bovine aorta endothelial cells and murine 3T3-L1 adipocytes.Biochim Biophys Acta,2000,1497:328-340.
    41 Walker EH,Pacold ME,Perisic O,et al.Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin,LY294002,quercetin,myricetin,and staurosporine.Mol Cell,2000,6:909-919.
    1.Zhou X,Tan M,Stone Hawthorne V,et al.Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers.Clin Cancer Res,2004,10(20):6779-6788.
    2.Smith PG,Wang F,Wilkinson KN,et al.The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma.Blood,2005,105(1):308-316.
    3.Gao N,Nester RA,Sarkar MA.4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor lalpha and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells.Toxicol Appl Pharmacol,2004,196(1):124-135.
    4.Okkenhaug K,Vanhaesebroeck B.PI3K in lymphocyte development,differentiation and activation.Nat Rev Immunol,2003,3(4):317-330.
    5.Suire S,Coadwell J,Ferguson GJ,et al.p84,a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma.Curr Biol,2005,15(6):566-570.
    6.Gu C,Park S.The p110 gamma PI-3 kinase is required for EphA8-stimulated cell migration.FEBS Lett,2003,540(1-3):65-70.
    7.Clayton E,McAdam S,Coadwell J,et al.Structural organization of the mouse phosphatidylinositol 3-kinase p110d gene.Biochem Biophys Res Commun,2001,280(5):1328-1332.
    8.Vivanco I,Sawyers CL.The phosphatidylinositol 3-Kinase AKT pathway in human cancer.Nat Rev Cancer,2002,2(7):489-501.
    9.Jucker M,Sudel K,Horn S,et al.Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line(CO).Leukemia,2002,16(5):894-901.
    10.Ren SY,Bolton E,Mohi MG,et al.Phosphatidylinositol 3-kinase p85{alpha} subunit-dependent interaction with BCR/ABL-related fusion tyrosine kinases:molecular mechanisms and biological consequences.Mol Cell Biol,2005,25(18):8001-8008.
    11.Polgar D,Leisser C,Maier S,et al.Truncated ALK derived from chromosomal translocation t(2;5)(p23;q35) binds to the SH3 domain of p85-PI3K.Murat Res,2005,570(1):9-15.
    12.Janssen JW,Schleithoff L,Bartram CR,et al.An oncogenic fusion product of the phosphatidylinositol 3-kinase p85beta subunit and HUMORF8,a putative deubiquitinating enzyme.Oncogene,1998,16(13):1767-1772.
    13.Xia X,Cheng A,Akinmade D,et al.The N-terminal 24 amino acids of the p55 gamma regulatory subunit of phosphoinositide 3-kinase binds Rb and induces cell cycle arrest.Mol Cell Biol,2003,23(5):1717-1725.
    14.Shayesteh L,Lu Y,Kuo WL,et al.PIK3CA is implicated as an oncogene in ovarian cancer.Nat Genet,1999,21(1):99-102.
    15.Ma YY,Wei SJ,Lin YC,et al.PIK3CA as an oncogene in cervical cancer.Oncogene,2000,19(23):2739-2744.
    16.Hui AB,Lo KW,Yin XL,et al.Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization.Lab Invest,2001,81(5):717-723.
    17.Wu G,Mambo E,Guo Z,et al.Uncommon mutation,but common amplifications,of the PIK3CA gene in thyroid tumors.J Clin Endocrinol Metab,2005,90(8):4688-4693.
    18.Samuels Y,Diaz LA,Jr.,Schmidt-Kittler O,et al.Mutant PIK3CA promotes cell growth and invasion of human cancer cells.Cancer Cell,2005,7(6):561-573.
    19.Samuels Y,Wang Z,Bardelli A,et al.High frequency of mutations of the PIK3CA gene in human cancers.Science,2004,304(5670):554.
    20.Zhang L,Yang N,Katsaros D,et al.The oncogene phosphatidylinositol 3'-kinase catalytic subunit alpha promotes angiogenesis via vascular endothelial growth factor in ovarian carcinoma.Cancer Res,2003,63(14):4225-4231.
    21.Campbell IG,Russell SE,Choong DY,et al.Mutation of the PIK3CA gene in ovarian and breast cancer.Cancer Res,2004,64(21):7678-7681.
    22.Lee JW,Soung YH,Kim SY,et al.PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.Oncogene,2005,24(8):1477-1480.
    23.Muller CI,Miller CW,Hofmann WK,et al.Rare mutations of the PIK3CA gene in malignancies of the hematopoietic system as well as endometrium,ovary,prostate and osteosarcomas,and discovery ofa PIK3CA pseudogene.Leuk Res,2007,31(1):27-32.
    24.Bousquet M,Recher C,Queleen C,et al.Assessment of somatic mutations in phosphatidylinositol 3-kinase gene in human lymphoma and acute leukaemia.Br J Haematol,2005,131(3):411-413.
    25.Hummerdal P,Andersson P,Willander K,et al.Absence of hot spot mutations of the PIK3CA gene in acute myeloid leukaemia.Eur J Haematol,2006,77(1):86-87.
    26.Phillips WA,Russell SE,Ciavarella ML,et al.Mutation analysis of PIK3CA and PIK3CB in esophageal cancer and Barrett's esophagus.Int J Cancer,2006,118(10):2644-2646.
    27.Karakas B,Bachman KE,Park BH.Mutation of the PIK3CA oncogene in human cancers.Br J Cancer,2006,94(4):455-459.
    28.Benistant C,Chapuis H,Roche S.A specific function for phosphatidylinositol 3-kinase alpha (p85alpha-p110alpha) in cell survival and for phosphatidylinositol 3-kinase beta(p85alpha-p110beta)in de novo DNA synthesis of human colon carcinoma cells.Oncogene,2000,19(44):5083-5090.
    29.Sujobert P,Bardet V,Cornillet-Lefebvre P,et al.Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia.Blood,2005,106(3):1063-1066.
    30.Billottet C,Grandage VL,Gale RE,et al.a selective inhibitor of the p110δ isoform of PI3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16.Oncogene,2006,25(50):6648-6659.
    31.Sasaki T,Irie-Sasaki J,Horie Y,et al.Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kγ.Nature,2000,406(6798):897-902.
    32.Lee HY,Bae GU,Jung ID,et al.Autotaxin promotes motility via G protein-coupled phosphoinositide 3-kinase gamma in human melanoma cells.FEBS Lett,2002,515(1-3):137-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700