干旱地区稀疏植被覆盖度高光谱遥感定量反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确掌握干旱地区的稀疏植被覆盖度是评价干旱地区荒漠化危害程度的基础工作,可为科学防沙治沙决策的制定提供有效的技术支持。植被覆盖度获取的传统方法为地面测量法,该方法仅适用于小尺度植被覆盖度调查,费时、费力,局限性较大。遥感技术的发展为植被覆盖度获取提供了新的技术手段,尤其是为大范围地区植被覆盖度的快速、准确获取提供了可能。然而,受干旱地区特殊性的影响,利用遥感技术精确反演干旱地区植被覆盖度仍面临着以下几大困难:(1)最为主要的是干旱地区植被覆盖稀疏,像元内的植被对像元平均反射率的贡献较小,而且由于干旱地区的土壤有机质含量较低,干旱地区土壤通常颜色较亮,且矿物含量空间异质性较强,裸露的、变化的土壤表面对像元光谱变化的贡献较大,这些因素使得植被在像元中的光谱贡献易于被掩盖;(2)干旱地区开放的植被冠层及明亮的土壤导致明显的多重散射与非线性混合;(3)干旱地区植被的光谱特征与湿润条件下的绿色植被不尽相同,较为突出的是红边特征不明显。因此,如何提高遥感探测干旱地区稀疏植被覆盖度的能力一直是干旱地区植被遥感所面临的最严峻挑战。
     高光谱遥感是20世纪最后两个十年中人类在对地观测方面所取得的重大技术突破之一,是当前遥感技术的前沿,其利用很多狭窄的电磁波波段(一般波段宽度<10nm)从感兴趣物体获取有关数据,能产生一条完整而连续的光谱曲线,具有常用多光谱遥感无法比拟的优势。然而,受高光谱数据获取能力的桎梏,大尺度植被覆盖度高光谱定量反演方法并没有得到深入的研究及推广,对干旱地区稀疏植被覆盖度的相关研究更是少之又少。星载高光谱数据的民用化从源头上解决了数据获取的问题,因而系统、深入地研究干旱地区稀疏植被覆盖度高光谱定量反演方法,充分挖掘高光谱遥感的潜力,成功扩展高光谱遥感应用领域的工作迫在眉睫。
     鉴此,本研究以星载高光谱影像Hyperion为数据源,选取典型干旱区甘肃省民勤绿洲—荒漠过渡带为研究区,针对干旱地区稀疏植被覆盖度(< 40%)的定量反演,深入地探讨了植被指数、回归模型法及混合像元分解法反演稀疏植被覆盖度的能力,全面系统地研究了基于星载高光谱数据的稀疏植被覆盖度反演方法,并对不同方法的结果进行了比较分析。研究结果表明:
     (1)高光谱植被指数探测稀疏植被能力明显优于相应宽波段植被指数,基于Hyperion数据特定窄波段(833.3/640.5nm)的抗大气植被指数(ARVI)探测稀疏植被覆盖表现最佳,线性回归模型的判定系数R2可达0.7294,交叉验证RMSE为5.5488;
     (2)偏最小二乘回归法、人工神经网络法反演稀疏植被覆盖度的潜力较大。偏最小二乘回归模型中以基于176个波段原始反射率的偏最小二乘回归模型表现最佳,验证样本验证RMSE为3.8197,约为验证样本平均覆盖度的19%。人工神经网络模型中,以精简、不相关却又包含原始影像绝大部分有用信息的主成分为输入的神经网络模型表现最好,验证样本验证RMSE为3.2806,约为验证样本平均覆盖度的16%;
     (3)基于荒漠植被、假戈壁及流沙三端元的全受限混合像元分解得到的荒漠植被分量与样地实测植被覆盖度吻合程度较高,两者高度相关(R~2为0.9141),29个样地的偏离均不超过5%,RMSE仅为3.0681,约为所有样地植被覆盖度均值的22%;
     (4)混合像元分解法不需要野外样地数据,可推广性最强,精度相对来说也最高,因而该方法是干旱地区稀疏植被覆盖度反演的最佳方法,表现优于植被指数法及回归模型法。植被指数法精度相对最低,但是其形式简单,推广起来只需要回归实测植被覆盖度数据与最佳植被指数即可。回归模型法精度介于两者之间,可推广性相对来说最差,需要大量样地数据支持。
     总体来讲,本研究实现了基于星载高光谱影像Hyperion的干旱地区稀疏植被覆盖度的高精度定量反演,充分挖掘了高光谱遥感的潜力,成功扩展了高光谱遥感的又一应用领域。
Accurately acquiring sparse vegetation cover in arid regions, which is the foundation work for desertification evaluation, can provide effective technical support for the establishment of scientific anti-desertification decision-making. Field measurement is the traditional way to get the vegetation cover. However, it is time-consuming, laborious, and feasible only to small-scale vegetation cover survey. Remote sensing provides new means for vegetation acquirement, especially for fast, accurate access to vegetation cover in large areas. Now, remote sensing has become a primary means to large-scale vegetation cover investigation. However, owing to arid regions’particularity, retrieving sparse vegetation cover from remote sensing presents some siginificant challenges. The first and most obvious is the fact that because vegetation cover is low, the contribution of vegetation to the area-averaged reflectance of a pixel is small. Furthermore, because of their low organic matter content, soils in arid regions tend to be bright and mineralogically heterogeneous. All of these factors tend to swamp out the spectral contribution of vegetation in individual pixels; Secondly, open canopies and bright soils in arid regions can contribute to significant multiple scattering and nonlinear mixing; Finally, vegetation is spectrally dissimilar to its humid counterparts lacking, most notably, a strong red edge in arid regions. Therefore, improving detection ability of sparse vegetation cover in arid regions, based on remote sensing, is the most serious challenge.
     Hyperspectral remote sensing, one of the major technological breakthroughs in earth-observing field in the last two decades in the 20th century, is currently the forefront of remote sensing technology, which utilize a lot of very narrow (<10 nm) and continuous electromagnetic wave bands to obtain relevant data information, can produce a complete and continuous spectrum, and with incomparable advantages over commonly used multi-spectral remote sensing. However, acquisition of hyperspectral data is very difficult, therefore, large-scale vegetation cover quantitative inversion based on hyperspectral remote sensing did not receive in-depth study and widely application, related research on sparse vegetation in arid regions is scanty. Recently, satellite hyperspectral data is open to civilian, which solve the hyperspectral data access problem successfully. Therefore, it is high time to systematically, in-depth study sparse vegetation cove quantitative retrieval methods in arid regions based on hyperspectral remote sensing, fully tap the potential of hyperspectral remote sensing, and successfully expand hyperspectral remote sensing application field.
     Aim to this, we conduct a comprehensive and systematic study to retrieve sparse vegetation cover in Minqin oasis-desert transitional zone based on Hyperion image. Methods we used include vegetation index, regression model and spectral mixture analysis. We exploit each method’s potential to retrieve sparse vegetation cover, and then conduct a comparative analysis among different methods. The results show that:
     (1) Hyperspectral vegetation indices are significantly better than the corresponding wide-band vegetation indices for sparse vegetation detection, atmospherically resistant vegetation index (ARVI) based on specific Hyperion narrow-band (833.3/640.5 nm) performs best, with a high R2 (up to 0.7294), and a low cross validation RMSE (5.5488);
     (2) Partial least squares (PLS) regression and artificial neural net (ANN) have great potential to estimate sparse vegetation cover. From validation results with five independent samples, we can find: PLS regression models based on the original 176-band reflectance performs best in all PLS regression models, with a low validation RMSE (3.8197, 19% of mean); ANN models, taking principal components as input, which is compact, not related, but include most original image’s useful information, performs best in all ANN models, with a low validation RMSE (3.2806, 16% of mean);
     (3) Sparse vegetation fraction, based on fully constrained spectral mixture analysis with sparse vegetation, false Gobi and sand three endmembers, and field measured vegetation cover are highly correlated(R~2 =0.9141). The differences are less than 5% for all samples between them, and RMSE is 3.0681, about 22% of mean;
     (4) With highest extensibility and accuracy, spectral mixture analysis is the best methods for retrieving sparse vegetation cover in arid regions, and which performs better than vegetation index and regression model obviously.Vegetation index method’s accuracy is relative minimum, but it’s simple, and when applies to other regions, it just need simple, necessary sample investigation. Regression model’s accuracy and maneuverability is both moderate, but its extensibility is worst, and which need a lot of samples to support.
     Overall, we realize high-precision quantitative retrieval based on Hyperion image of sparse vegetation cover in arid regions, fully tap the potential of hyperspectral remote sensing, and extend another hyperspectral remote sensing successful application field.
引文
[1] Dymond, J R, Stephens, P R, Newsome, P F, et al. Percentage vegetation cover of a degrading rangeland from SPOT. International Journal of Remote Sensing, 1992, 13(11):1999-2007
    [2]潘晓玲.干旱区绿洲生态系统动态稳定性的初步研究.第四纪研究, 2001, 21(4):345-351
    [3]张云霞,李晓兵.草地植被盖度的多尺度遥感与实地测量方法综述.地球科学进展, 2003, 18(001):85-93
    [4] Purevdorj, T, Tateishi, R, Ishiyama, T, et al. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 1998, 19(18):3519-3535
    [5]章文波,符素华,刘宝元.目估法测量植被覆盖度的精度分析.北京师范大学学报(自然科学版), 2001, 37(3):402-408
    [6] Gitelson, A A, Kaufman, Y J, Stark, R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80(1):76-87
    [7] Rouse, J W, Haas, R H, Schell, J A, et al. Monitoring vegetation systems in the Great Plains with ERTS. NASA. Goddard Space Flight Center 3 d ERTS-1 Symp, 1974:309-317
    [8] Huete, A R. A soil-adjusted vegetation index(SAVI). Remote Sensing of Environment, 1988, 25(3):295-309
    [9] Qi, J, Chehbouni, A, Huete, A R, et al. Modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48(2):119-126
    [10] Asrar, G, Fuchs, M, Kanemasu, E T, et al. Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat. Agronomy Journal, 1984, 76(2):300
    [11] Sellers, P J. Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, 1985, 6(8):1335-1372
    [12] Huete, A R, Jackson, R D,Post, D F. Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, 1985, 17(1):37-54
    [13] Huete, A R,Jackson, R D. Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sensing of Environment, 1987, 23(2):213-232
    [14] Smith, M O, Ustin, S L, Adams, J B, et al. Vegetation in deserts. I. A regional measure of abundance from multispectral images. Remote Sensing of Environment, 1990, 31(1):1-26
    [15] Escadafal, R,Huete, A. Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil" noise". Comptes Rendus de l'Academie des Sciences Serie 2 Mecanique Physique Chimie Sciences de la Terre et de l'Univers (France), 1991, 312(11):1385-1391
    [16] Huete, A R,Tucker, C J. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. International Journal of Remote Sensing, 1991, 12(6):1223-1242
    [17] Huete, A R,Jackson, R D. Soil and atmosphere influences on the spectra of partial canopies. Remote Sensing of Environment, 1988,25:89-105
    [18] Roberts, D A, Smith, M O,Adams, J B. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sensing of Environment, 1993, 44(2):255-269
    [19] Ray, T W,Murray, B C. Nonlinear Spectral Mixing in Desert Vegetation. Remote Sensing of Environment, 1996, 55(1):59-64
    [20] Billings, W D,Morris, R J. Reflection of visible and infrared radiation from leaves of different ecological groups. American Journal of Botany, 1951, 38(5):327-331
    [21] Gates, D M, Keegan, H J, Schleter, J C, et al. Spectral properties of plants. Applied Optics, 1965, 4(1):11-20
    [22] Ehleringer, J. Leaf absorptances of Mohave and Sonoran desert plants. Oecologia, 1981, 49(3):366-370
    [23] Ehleringer, J R,Bjorkman, O. Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia, 1978, 36(2):151-162
    [24] Mooney, H A, Ehleringer, J,Bjrokman, O. The energy balance of leaves of the evergreen desert shrub Atriplex hymenelytra. Oecologia, 1977, 29(4):301-310
    [25]陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社, 1988
    [26]郑兰芬,王晋年.成像光谱遥感技术及其图像光谱信息提取的分析研究.环境遥感, 1992, 7(001):49-58
    [27] Vane, G,Goetz, A F H. Terrestrial imaging spectrometry: current status, future trends. Remote Sensing of Environment, 1993, 44(2):117-126
    [28]浦瑞良,宫鹏.高光谱遥感及其应用.北京:教育出版社, 2000
    [29] Hunt, G R. Electromagnetic radiation: The communication link in remote sensing. In: Siegal B,Gillespie A ed. Remote Sensing in Geology. NewYork: Willy, 1980
    [30] Wessman, C A, Aber, J D, Peterson, D L, et al. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. Nature, 1988, 335(6186):154-156
    [31]陈述彭,赵英时.遥感地学分析.北京:测绘出版社, 1990
    [32]赵英时.遥感应用分析原理与方法.北京:科学出版社, 2003
    [33] Colwell, J E. Vegetation canopy reflectance. Remote Sensing of Environment, 1974, 3(3):175-183
    [34] Kaufman, Y J,Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. Geoscience and Remote Sensing, IEEE Transactions on, 1992, 30(2):261-270
    [35] Graetz, R D. Satellite remote sensing of Australian rangelands. Remote Sensing of Environment, 1987, 23(2):313-331
    [36] North, P R J. Estimation of f (APAR), LAI, and vegetation fractional cover from ATSR-2 imagery. Remote Sensing of Environment, 2002, 80(1):114-121
    [37] Wittich, K P,Hansing, O. Area-averaged vegetative cover fraction estimated from satellite data. International Journal of Biometeorology, 1995, 38(4):209-215
    [38] Choudhury, B J, Ahmed, N U, Idso, S B, et al. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sensing of Environment, 1994, 50(1):1-17
    [39] Gillies, R R,Carlson, T N. Thermal Remote Sensing of Surface Soil Water Content with Partial Vegetation Cover for Incorporation into Climate Models. Journal of Applied Meteorology, 1995, 34(4):745-756
    [40]杨胜天,刘昌明.近20年来黄河流域植被覆盖变化分析.地理学报, 2002, 57(006):679-684
    [41] Holben, B,Justice, C. An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data. International Journal of Remote Sensing, 1981, 2(2):115-133
    [42] Myneni, R B, Ganapol, B D,Asrar, G. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies. Remote Sens. Environ, 1992,42:217-238
    [43] Wiegand, C L, Richardson, A J, Escobar, D E, et al. Vegetation indices in crop assessments. Remote Sensing of Environment, 1991, 35(2):105-119
    [44] Richardson, A J, Everitt, J H,Gausman, H W. Radiometric estimation of biomass and nitrogen content of alicia grass [Cynodon spp., range managment; Texas]. Remote Sensing of Environment, 1983, 13(2):179-184
    [45] Van Wagtendonk, J W,Root, R R. The use of multi-temporal Landsat Normalized Difference Vegetation Index (NDVI) data for mapping fuel models in Yosemite National Park, USA. International Journal ofRemote Sensing, 2003, 24(8):1639-1651
    [46] Todd, S W, Hoffer, R M,Milchunas, D G. Biomass estimation on grazed and ungrazed rangelands using spectral indices. International Journal of Remote Sensing, 1998, 19(3):427-438
    [47] Thenkabail, P S, Smith, R B,De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 2000, 71(2):158-182
    [48] Gong, P, Pu, R, Biging, G S, et al. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(6 Part 1):1355-1362
    [49] Lee, K S, Cohen, W B, Kennedy, R E, et al. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment, 2004, 91(3-4):508-520
    [50] Mutanga, O, Skidmore, A K,Prins, H H T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sensing of Environment, 2004, 89(3):393-408
    [51] Blackburn, G A,Pitman, J I. Biophysical controls on the directional spectral reflectance properties of bracken (Pteridium aquilinum) canopies: results of a field experiment. International Journal of Remote Sensing, 1999, 20(11):2265-2282
    [52] Clevers, J, de Jong, S M, Epema, G F, et al. MERIS and the red-edge position. International Journal of Applied Earth Observations and Geoinformation, 2001, 3(4):313-320
    [53] Elvidge, C D, Chen, Z,Groeneveld, D P. Detection of trace quantities of green vegetation in 1990 AVIRIS data. Remote Sensing of Environment, 1993, 44(2):271-279
    [54] Foody, G M, Boyd, D S,Cutler, M E J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 2003, 85(4):463-474
    [55] Kokaly, R F,Clark, R N. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression-an improved approach. Remote Sensing of Environment, 1999, 67(3):267-287
    [56] Curran, P J, Dungan, J L,Peterson, D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry-Testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 2001, 76(3):349-359
    [57] De Jong, S M, Pebesma, E J,Lacaze, B. Above-ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: the DAIS Peyne experiment. International Journal of Remote Sensing, 2003, 24(7):1505-1520
    [58]焦全军,张霞,张兵等.基于叶片光谱的森林叶绿素浓度反演研究.国土资源遥感, 2006,2:26-30
    [59] Huang, Z, Turner, B J, Dury, S J, et al. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment, 2004, 93(1-2):18-29
    [60] Hansen, P M,Schjoerring, J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 2003,86:542-553
    [61] Kimes, D S, Nelson, R F, Manry, M T, et al. Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements. International Journal of Remote Sensing, 1998, 19(14):2639-2663
    [62] Gross, L, Thiria, S,Frouin, R. Applying artificial neural network methodology to ocean color remote sensing. Ecological Modelling, 1999, 120(2-3):237-246
    [63] Zhang, Y, Pulliainen, J, Koponen, S, et al. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sensing of Environment, 2002, 81(2):327-336
    [64] Chang, D H,Islam, S. Estimation of Soil Physical Properties Using Remote Sensing and Artificial Neural Network. Remote Sensing of Environment, 2000, 74(3):534-544
    [65] Del Frate, F, Ferrazzoli, P,Schiavon, G. Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks. Remote Sensing of Environment, 2003, 84(2):174-183
    [66] Liu, J, Goering, C E,Tian, L. A neural network for setting target corn yields. Transactions of the ASAE, 2001, 44(3):705-713
    [67] Drummond, S T, Sudduth, K A, Joshi, A, et al. Statistical and neural methods for site-specific yield prediction. Transactions of the ASAE, 2003, 46(1):5-14
    [68] Adams, J B, Smith, M O,Johnson, P E. Spectral mixture modeling-A new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research, 1986,91:8098-8112
    [69] Rambal, S, Lacaze, B,Winkel, T. Testing an area-weighted model for albedo or surface temperature of mixed pixels in Mediterranean woodlands. International Journal of Remote Sensing, 1990, 11(8):1495-1499
    [70] Singer, R B,McCord, T B. Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance. Proceedings of the 10th Lunar and Planetary Science Conference, 1979:1835–1848
    [71] Van Kootwijk, E J, Van Der Voet, H,Berdowski, J M. Estimation of ground cover composition per pixel after matching image and ground data with subpixel accuracy. International Journal of Remote Sensing, 1995, 16(1):97-111
    [72] Zribi, M, Hégarat-Mascle, S L, Taconet, O, et al. Derivation of wild vegetation cover density in semi-arid regions: ERS2/SAR evaluation. International Journal of Remote Sensing, 2003, 24(6):1335-1352
    [73] Qi, J, Marsett, R C, Moran, M S, et al. Spatial and temporal dynamics of vegetation in the San Pedro River basin area. Agricultural and Forest Meteorology, 2000, 105(1-3):55-68
    [74] Leprieur, C, Verstraete, M M,Pinty, B. Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data. Remote Sensing Reviews, 1994,10:265-284
    [75] Adams, J B, Sabol, D E, Kapos, V, et al. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sensing of Environment, 1995, 52(2):137-154
    [76] Rashed, T, Weeks, J R, Roberts, D, et al. Measuring the physical composition of urban morphology using multiple endmember spectral mixture models. Photogrammetric engineering and remote sensing, 2003, 69(9):1011-1020
    [77] Small, C. Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing, 2001, 22(7):1305-1334
    [78] Small, C. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sensing of Environment, 2003, 88(1):170-186
    [79] Wu, C,Murray, A T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 2003, 84(4):493-505
    [80] Elmore, A J, Mustard, J F, Manning, S J, et al. Quantifying Vegetation Change in Semiarid Environments: Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index. Remote Sensing of Environment, 2000, 73(1):87-102
    [81] Xiao, J,Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sensing of Environment, 2005, 98(2-3):237-250
    [82] McGwire, K, Minor, T,Fenstermaker, L. Hyperspectral Mixture Modeling for Quantifying SparseVegetation Cover in Arid Environments. Remote Sensing of Environment, 2000, 72(3):360-374
    [83]陈隆亨,曲耀光.河西地区水土资源及其合理开发利用.北京:科学出版社, 1992
    [84]王耀林,王继和,俄有浩.节水灌溉—民勤绿洲发展农业的唯一出路,见:王继和主编,中国西北荒漠区持续农业与沙漠综合治理国际学术交流会论文集.兰州:兰州大学出版社, 1998
    [85]李并成.沙漠历史地理学的几个理论问题—以我国河西走廊历史上的沙漠化研究为例.地理科学, 1999, 19(3):211-214
    [86]高志海.基于RS和GIS的绿洲植被与荒漠化动态研究.北京林业大学博士学位论文,2006,15-24,
    [87] http://eo1.usgs.gov/.
    [88]董广香,张继贤,刘正军. CHRIS/PROBA数据条带噪声去除方法比较.遥感信息, 2006,6:36-40
    [89] Goodenough, D G, Dyk, A, Niemann, K O, et al. Processing Hyperion and ALI for forest classification: Earth Observing 1 mission. IEEE transactions on geoscience and remote sensing, 2003, 41(6):1321-1331
    [90] Kaufman, Y J,Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 1988, 9(8):1357-1381
    [91] Van Der Meer, F. Extraction of mineral absorption features from high-spectralresolution data using non-parametric geostatistical techniques. International Journal of Remote Sensing, 1994, 15(11):2193-2214
    [92] Kruse, F. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada, and California. Remote Sensing of Environment, 1988,24:31-51
    [93] Green, A A,Craig, M D. Analysis of aircraft spectrometer data with logarithmic residuals. JPL Proc. of the Airborne Imaging Spectrometer Data Anal. Workshop, 1985:111-119
    [94] Roberts, D. Calibration of airborne imaging spectrometer data to percent reflectance using field spectral measurements. 19. International Symposium on Remote Sensing of Environment, 1985:679-688
    [95] Turner, R E,Spencer, M M. Atmospheric Model for Correction of Spacecraft Data. Proceedings of the Eighth International Symposium on Remote Sensing of Environment, 1972:895-934
    [96]吴北婴.大气辐射传输实用算法.北京:气象出版社, 1998
    [97] Tanré, D, Deroo, C, Duhaut, P, et al. Technical note Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code. International Journal of Remote Sensing, 1990, 11(4):659-668
    [98] Berk, A, Bernstein, L S, Anderson, G P, et al. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sensing of Environment, 1998, 65(3):367-375
    [99] Vermote, E, Tanré, D, Deuze, J L, et al. Second simulation of the satellite signal in the solar spectrum (6S), 6S user’s guide, version 2. 1997:5
    [100] Gao, B C,Goetz, A F H. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research, 1990, 95(D4):3549-3564
    [101] Adler-Golden, S M, Matthew, M W, Bernstein, L S, et al. Atmospheric correction for short-wave spectral imagery based on MODTRAN 4. PROC SPIE INT SOC OPT ENG, 1999,3753:61-69
    [102] Boegh, E, Soegaard, H, Broge, N, et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 2002, 81(2):179-193
    [103] Broge, N H,Mortensen, J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 2002, 81(1):45-57
    [104] Rondeaux, G, Steven, M,Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sensing of Environment, 1996, 55(2):95-107
    [105] Horler, D N H, Dockray, M,Barber, J. The red edge of plant leaf reflectance. International Journal of Remote Sensing, 1983, 4(2):273-288
    [106] Rock, B N, Elvidge, C,Defeo, N J. Assessment of AVIRIS data from vegetated sites in the Owens Valley, California. Jet Propulsion Lab, California Inst. of Tech, Proceedings of the Airborne Visible/Infrared Imaging Spectrometer(AVIRIS) Performance Evaluation Workshop, 1988:88-96
    [107] Dawson, T P,Curran, P J. Technical note A new technique for interpolating the reflectance red edge position. International Journal of Remote Sensing, 1998, 19(11):2133-2139
    [108] Guyot, G, Baret, F,Jacquemoud, S. Imaging spectroscopy for vegetation studies. Imaging Spectroscopy: Fundamentals and Prospective Applications, 1992:145–165
    [109] Hare, E W,Miller, J R. Studies of the vegetation red reflectance edge in geobotanical remote sensing in eastern Canada. Proceedings of the 9th Canadian Symposium on Remote Sensing, St. John’s, Newfoundland (Ottowa: CASI), 1984:433–440
    [110] Miller, J R, Hare, E W,Wu, J. Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. International Journal of Remote Sensing, 1990, 11(10):1755-1773
    [111] Patel, N K, Patnaik, C, Dutta, S, et al. Study of crop growth parameters using Airborne Imaging Spectrometer data. International Journal of Remote Sensing, 2001, 22(12):2401-2411
    [112] Cohen, W B, Maiersperger, T K, Gower, S T, et al. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of Environment, 2003, 84(4):561-571
    [113] Huete, A, Justice, C,Leeuwen, W. MODIS vegetation index. 1999,
    [114] Cloutis, E A. Hyperspectral geological remote sensing: evaluation of analytical techniques. International Journal of Remote Sensing, 1996, 17(12):2215-2242
    [115] Schmidt, K S,Skidmore, A K. Exploring spectral discrimination of grass species in African rangelands. International Journal of Remote Sensing, 2001, 22(17):3421-3434
    [116] Cho, M A, Skidmore, A, Corsi, F, et al. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observations and Geoinformation, 2007, 9(4):414-424
    [117] Geladi, P,Kowalski, B R. Partial least-squares regression: a tutorial. Analytica chimica acta, 1986,185:1-17
    [118] Kubinyi, H. Evolutionary variable selection in regression and PLS analyses. JOURNAL OF CHEMOMETRICS, 1996, 10(2):119-133
    [119] Martens, H,Martens, M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference, 2000, 11(1-2):5-16
    [120] Schmidtlein, S,Sassin, J. Mapping of continuous floristic gradients in grasslands using hyperspectral imagery. Remote Sensing of Environment, 2004, 92(1):126-138
    [121] Heinz, D C,Chang, C I. Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification in Hyperspectral Imagery. IEEE transactions on geoscience and remote sensing, 2001, 39(3):529
    [122] Chang, C I,Heinz, D C. Constrained subpixel target detection for remotely sensed imagery. Geoscience and Remote Sensing, IEEE Transactions on, 2000, 38(3):1144-1159
    [123] Haskell, K H,Hanson, R J. An algorithm for linear least squares problems with equality and nonnegativity constraints. Mathematical Programming, 1981, 21(1):98-118
    [124] Roberts, D A, Gardner, M, Church, R, et al. Mapping Chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ, 1998,65:267-279
    [125] Boardman, J W, Kruse, F A,Green, R O. Mapping Target Signatures Via Partial Unmixing of AvirisData. Pasadena, CA: in Summaris of the VI JPL Airborne Earth Science Workshop, 1995
    [126] Winter, M E. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proceedings of SPIE, 1999,3753:266-275
    [127] Neville, R. Automatic endmember extraction from hyperspectral data for mineral exploration. Ottawa, Canada: International Airborne Remote Sensing Conference and Exhibition, 4 th/21 st Canadian Symposium on Remote Sensing, 1999
    [128] Bowles, J H, Palmadesso, P J, Antoniades, J A, et al. Use of filter vectors in hyperspectral data analysis. Proceedings of SPIE, 1995,2553:148-157
    [129] Plaza, A, Martinez, P, Perez, R, et al. Spatial/spectral endmember extraction by multidimensional morphological operations. Geoscience and Remote Sensing, IEEE Transactions on, 2002, 40(9):2025-2041
    [130] Ehleringer, J, Mooney, H A, Gulmon, S L, et al. Parallel evolution of leaf pubescence in Encelia in coastal deserts of North and South America. Oecologia, 1981, 49(1):38-41
    [131] Green, A A, Berman, M, Switzer, P, et al. A transformation for ordering multispectral data in terms of imagequality with implications for noise removal. Geoscience and Remote Sensing, IEEE Transactions on, 1988, 26(1):65-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700