超声二维斑点跟踪技术评价左室收缩功能的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
左室整体收缩功能的评价是临床常规检测项目,直接关系到患者治疗方案的选择及其预后的评估。左室射血分数(Left ventricular ejective fraction,LVEF)一直是日常临床工作中最常用和被普遍接受的左室收缩功能指标。但某些病理状态,如左室扩大、室壁增厚,会影响其对左室收缩功能评价的准确性。有研究表明,在慢性心衰患者,超声测定的射血分数与心功能分级及脑钠肽之间的相关性差,而且传统的超声测定左室射血分数很大程度上依赖图象质量。寻找非图像依赖、准确、便捷地评价左室功能的方法具有重要的临床意义。
     实时三维超声心动图(Real time three dimensional echocardiography, RT3DE)是近年应用于临床的新技术,能够更直观、更全面地显示心脏的解剖结构,更准确地定量分析心脏功能和血流动力学改变。已有的研究表明:与传统的二维超声心动图比较,RT3DE对心脏的解剖结构能够提供更准确、更丰富的信息,对心脏大小和功能的评价与金标准MRI接近。但是此方法仍然依赖与图像的质量,并且操作费时,不能适用于临床日常应用。
     左室心肌的运动包括长轴和短轴方向的运动以及旋转运动,其与心肌纤维的复杂走行有关。其中,长轴方向上的运动在心室的收缩中起主要作用,所以临床上通过测量二尖瓣瓣环收缩期位移评价左室整体收缩功能。以往的研究主要应用M型超声和组织多普勒(Tissume doppler imaging,TDI)技术,存在费时、角度依赖、可重复性较差等缺点。应用二维斑点追踪技术(Speckle-tracking imaging,STI)评价瓣环位移时,只要标记瓣环及心尖部的三个位点,STI技术能自动给出瓣环中点收缩期位移,不仅简单、易行,更重要的是该方法基本不依赖于患者的图像质量,因此,更适宜临床常规应用。
     新近发展的STI技术,通过识别二维图像的心肌回声斑点来追踪心肌的运动轨迹。在二维超声图像的基础上,在室壁中选定一定范围的感兴趣区,随着心动周期,分析软件根据组织灰阶自动追踪上述感兴趣区内不同像素的心肌组织在每一帧图像中的位置,并与上一帧图像中的位置相比较,计算整个感兴趣区内各节段心肌的变形。由于斑点追踪技术与组织多普勒频移无关,因此不受声束方向与室壁运动方向间夹角的影响,没有角度依赖性,故二维斑点追踪技术能更准确反映心肌的运动。有研究表明,此技术测量结果与超声微测仪及心肌加标记磁共振(Magnetic resonance imaging,MRI)所得结果高度相关,观察者内和观察者间的差异也较小,提示重复性较好,可靠性较高。STI技术是评价局部心肌运动的新方法,不仅能够判断局部心肌纵向,轴向,径向的变形能力而且能评价左心室整体扭转运动,为全面评价心肌运动提供了新的手段。本研究应用此项技术评价左室心肌三个方向上的整体应变,左室整体扭转及二尖瓣环收缩期最大位移与传统指数LVEF的关系,探讨LVEF与心肌自身运动特性之间的关系以寻找更快捷、准确地评价左室整体功能的新方法。
     本研究分为三个部分,第一部分主要应用STI技术研究正常成人左室心肌三个方向上的整体应变,左室整体扭转及收缩期二尖瓣环最大位移(Mitral annulus displacement,MAD)与传统指数LVEF的关系,进一步验证STI技术测量二尖瓣环位移评价左室整体收缩功能的可行性。第二、三部分分别对扩张型心肌病患者以及不同左心室构型的原发性高血压患者的左心室整体心肌应变特点与LVEF及二尖瓣环位移的关系及进行分析,观察不同病理状态下,左室心肌在不同方向上的运动规律的改变及与二尖瓣环收缩期位移的关系,以期为临床提供一种简单实用的评价左室整体收缩功能的超声手段。
     第一部分超声二维斑点跟踪成像技术评价正常人左心室收缩功能的研究
     目的:应用STI技术获取二尖瓣环收缩期位移(MAD),探讨MAD作为评价左室整体收缩功能指标的可行性和准确性。
     方法:选择健康志愿者36例,男21例,女15例,平均38.4±15.4岁。PHILIPS公司生产的iE33彩色超声诊断仪,患者取左侧卧位,连续采集三个心动周期。采用X3-1矩阵型实时三维探头,于心尖区采集心尖四腔切面,将采集好的全容积动态三维数据传输到Qlab6.0工作站,脱机进行定量分析。分别于心尖四腔、两腔切面二尖瓣环处及心尖处描记五点进行心内膜自动勾画,系统自动算出LVEF。采用S5-1超声探头,记录并存储标准心尖四腔、两腔和心尖长轴切面以及瓣环、乳头肌和心尖部左室短轴切面的二维灰阶图像,使用Qlab6.0工作站对所有图像进行脱机分析。心尖位的切面共分18个节段,短轴切面共分18个节段。在短轴上可同时测量最大收缩期峰值径向应变,( Radial st rain,Rs)、圆周应变(Circumferential strain,Cs)和旋转角度( Rotation angle,Rot)。心尖位图像上可测最大收缩期峰值纵向应变(Longitudinal strain,Ls)。心尖位上18个节段纵向应变峰值平均值为左室整体纵向应变(GLs),短轴切面18个节段的应变平均收缩期峰值为左室整体径向应变(GRs)、圆周应变(GCs)。测量心底整体最大收缩期旋转角度(Rotation base,Rot-B)、心尖整体最大收缩期旋转角度(Rotation apex,Rot-A)。LVtw定义为:LVtw=Rot-A-Rot-B。采用心尖四腔图像,分别于二尖瓣瓣环左室侧壁、后室间隔与心尖处描记三点,系统自动算出二尖瓣环中点处收缩期最大位移。
     结果:(1)可重复性检验:LVEF观察者内的变异系数为9.0%,观察着间的变异系数为12.1%;MAD观察者内的变异系数为8.1%,观察着间的变异系数为10.4%;(2)左室整体心肌应变及扭转与LVEF的关系:GLs、GRs、GCs及LVtw与LVEF均显著相关,r值分别为-0.75、0.52、-0.51和0.61(P<0.01)。其中,GLs、GCs为LVEF的独立预测因子,beta值分别为-0.66、-0.35,回归方程为LVEF=23.74-1.12GLS-0.85GCs (P<0.01)。(3)左室整体心肌应变及扭转与MAD的关系:MAD与GLs、GRs、LVtw均显著相关,r值分别为-0.73、0.47和0.46(P<0.01);GCs与MAD的相关性较差,r值为-0.35(P<0.05)。GLs是MAD的独立预测因子,回归方程为MAD=3.35-0.55GLs(P<0.01)。(4)MAD与LVEF的关系:36例志愿者MAD的均值为14.77±1.97(mm),范围(11.2mm~18.1mm);MAD与LVEF显著相关,r值为0.84,二者的直线相关方程为LVEF=39.05+1.88MAD(P<0.01)
     结论:超声二维斑点追踪技术为我们提供了一个评价左室整体收缩功能定量新工具,二尖瓣环收缩期位移可以作为一种简单、快速和无创性评价左室整体收缩功能的新方法。
     第二部分超声二维斑点跟踪成像技术评价扩张性心肌病患者左心室收缩功能的研究
     目的:应用STI评价扩张性心肌病患者(Dilatedncardiomyopathy,DCM)的左室心肌力学特性,探讨测定二尖瓣环收缩期位移(MAD)评价左室收缩功能的可行性。
     方法:DCM组20例,男15例,女5例,年龄33~65岁,平均(40±15)岁。全部病例符合WHO关于扩张型心肌病诊断标准。正常组:36例,男21例,女15例,年龄18~68岁,平均(38.4±15.4)岁。PHILIPS公司生产的iE33彩色超声诊断仪,采用X3-1矩阵型实时三维探头,患者取左侧卧位,于心尖区采集心尖四腔切面,将采集好的全容积动态三维数据传输到Qlab6.0工作站,脱机进行定量分析。分别于心尖四腔、两腔切面二尖瓣环处及心尖处描记五点进行心内膜自动勾画,系统自动算出LVEF。采用S5-1超声探头,记录并存储标准左室短轴切面,心尖切面的二维灰阶图像,使用Qlab6.0工作站对所有图像进行脱机分析。计算左室整体纵向应变(GLs),左室整体径向应变(GRs)、圆周应变(GCs)。测量心底整体最大收缩期旋转角度(Rot-B)、心尖整体最大收缩期旋转角度(Rot-A)。LVtw定义为:LVtw=Rot-A-Rot-B。采用心尖四腔图像,分别于二尖瓣瓣环左室侧壁、后室间隔与心尖处描记三点,系统自动算出MAD。
     结果:(1)DCM组纵向、轴向及径向应变曲线形态紊乱,其应变峰值失去对照组的变化规律,心底及心尖部旋转角度明显减低,二尖瓣环运动幅度明显减低。(2)对照组GLs、GRs、GCs及LVtw与LVEF均显著相关(P<0.01)。其中GLs、GCs为LVEF的独立预测因子,beta值分别为-0.66、-0.35(P<0.01),回归方程为LVEF=23.7-1.1GLS-0.85GCs。DCM组GLs、GRs、GCs及LVtw与LVEF亦显著相关(P<0.01)。其中GLs、GCs为LVEF的独立预测因子,beta值分别为-0.53、-0.43(P<0.01),回归方程为LVEF=2.0-1.7GLS-1.3GCs。(3)对照组MAD与GLs、GRs、GCs、LVtw显著相关(P<0.01)。GLs是MAD的独立预测因子,回归方程为MAD=3.4-0.6GLs。DCM组MAD与GLs、GRs、GCs、及LVtw显著相关(P<0.01)。GLs及LVtw是MAD的独立预测因子,beta值分别为-0.52、-0.42(P<0.01)。回归方程为MAD=0.6-0.3GLs+0.6LVtw。(4)对照组MAD与LVEF显著相关(r=0.84,P<0.01),直线相关方程分别为LVEF=39.1+1.9MAD;DCM组MAD与LVEF显著相关(r=0.91,P<0.01),直线相关方程分别为LVEF=0.05+4.5MAD。以MAD为8.9mm作为诊断LVEF≤50%的截断点,其敏感性为100%,特异性为95%。
     结论:应用STI技术评价DCM患者左室整体功能,表明二尖瓣环收缩期位移不仅仅反映了心肌纵向的运动,而且是反映左室整体运动的参数。为临床应用二尖瓣环收缩期位移作为评价左室整体收缩功能的指标提供了更有力的证据,MAD和LVEF之间存在良好的相关性,有望成为临床常规评价评DCM患者的一种快捷、准确的新方法。
     第三部分超声二维斑点跟踪成像技术评价高血压患者左心室收缩功能的研究
     目的:应用STI评价高血压患者的左室收缩功能,探讨当左室构型改变时,二尖瓣环收缩期位移作为评价左室整体收缩功能指标的可行性和准确性。
     方法:原发性高血压病患者40例,其中男性21例,女性19例,平均年龄50.9±15.3岁。年龄和性别与高血压组相匹配的健康志愿者30例,其中男性16例,女性14例,平均年龄48.4±17.3岁。按Ganau分型法,即根据左室质量指数(Left ventricular mass index ,LVMI)和相对室壁厚度(RWT)将其分为两组:①左室正常构型(left ventricle normal geometric, LVN)组,即LVMI和RWT均在正常范围[LVMI≤116g/m2(男)或LVMI≤109g/m2(女),RWT≤0.42,20例];②左室重构(Left ventricle remodeling ,LVR)组,包括向心性重构(LVMI在正常范围,RWT>0.42,10例)、向心性肥厚(LVMI与RWT均超出正常范围,8例)和离心性肥厚(LVMI超过正常高限,RWT≤0.42,2例)。先行常规超声心动图检查获取以下参数:舒张末期室间隔厚度(Diastolic interventricular septal thickness,IVSTd)、左室后壁厚度(Diastolic posterior wall thickness,LVPWTd)和左室内径(Left ventricular end-diastolic diameter,LVEDd)。应用公式计算左室重量(LVM)、左室质量指数(LVMI),左室相对室壁厚度( RWT)。应用实时三维超声心动图计算LVEF。记录并存储标准左室短轴切面,心尖切面的二维灰阶图像,使用Qlab6.0工作站对所有图像进行脱机分析。计算左室整体纵向应变(GLs),左室整体径向应变(GRs)、圆周应变(GCs)。测量心底整体最大收缩期旋转角度、心尖整体最大收缩期旋转角度。LVtw定义为:LVtw=Rot-A-Rot-B。采用心尖四腔图像,分别于二尖瓣瓣环左室侧壁、后室间隔与心尖处描记三点,系统自动算出MAD。
     结果:(1)与对照组比较,各参数除LVtw外,LVN组无明显变化,LVR组均明显减低(P<0.01);LVN及LVR组LVtw均显著高于对照组(P<0.01)。(2)对照组MAD与LVEF显著相关,r值为0.84,直线相关方程为LVEF=39.15+1.90 MAD;LVN组MAD与LVEF显著相关,r值为0.83,直线相关方程为LVEF=12.96+3.85MAD;LVR组MAD与LVEF显著相关,r值为0.76,直线相关方程为LVEF=35.36+2.41MAD。(3)三组GLs、GRs、GCs及LVtw与LVEF显著相关,其中对照组GLs、GCs为LVEF的独立预测因子,beta值分别为-0.66、-0.35,回归方程为LVEF=23.7-1.1GLS-0.85GCs(P<0.01);LVN组GLs为LVEF的独立预测因子,beta值为-0.73,回归方程为LVEF=25.63-2.13GLS(P<0.01);LVR组GCs、LVtw为LVEF的独立预测因子,beta值分别为-0.40、0.47,回归方程为LVEF=30.29+1.60 LVtw-0.59GC(sP<0.01)。(4)三组GLs、GRs、GCs及LVtw与MAD显著相关,GLs是MAD的独立预测因子。对照组的回归方程为MAD=3.4-0.6GLs(P<0.01);LVN组回归方程为MAD=5.59-0.44GLs(P<0.01);LVR组回归方程为MAD=3.41-0.56GLs(P<0.01)。
     结论:STI技术可以评价高血压患者发生构型改变时的整体功能变化,MAD有望成为临床评价高血压患者左心室收缩功能的快捷方法。
The left ventricular global contraction function's appraisal is the clinical conventional examination project, it plays an important clinical role in assessing the patient’s therapeutic schedule and prognosis. The left ventricular ejective fraction (LVEF)has been in the daily clinical work is most commonly used and acceptted generally. But certain pathological state, same as the left ventricular expands, the ventricular wall thickening, will affect accuracy on assessing the left ventricular contraction function. Some research indicated that in the chronic congestive heart failure patient, the correlation between the left ventricular ejective fraction by echocardiography measuring and cardiac functional grading and the brain sodium peptide was bad, moreover the left ventricular ejective fraction by echocardiography measuring rely on the ultrasound image quality to a great extent. It has the important clinical significance to search the method for evaluating the left ventricular function with the non-image dependence, accurately, conveniently.
     Recent years, the Real-time three dimensional echocardiography(RT3DE)is the clinical new technology, could show heart’s anatomic structure more direct-viewing and comprehensively, and it could be quantitative analysis heart function and blood stream dynamics change accurately. The existing research indicated: Compares with the traditional two-dimensional echocardiography, RT3DE can provide the more accurate and affluent message of heart's anatomic structure, it is close to the heart size and the function appraisal with golden standard MRI. But this method still rely on the image quality, and operate time-consuming, cannot be suitable for the clinical daily application.
     The left ventricular cardiac muscle's movement including the long axis and the minor axis direction's movement as well as the rotary motion concerned with the complex myofibrillar.the long axis direction movement play an important role in left ventricle's contraction, we can evaluate the global systolic function of left ventricle by the mitral annular plane systolic excursion. The former research mainly made use of M-mode echocardiography(MME)and tissume doppler imaging(TDI) to evaluate the global systolic function of left ventricle by the mitral annular plane systolic excursion,it was time-consuming, the angle dependence and the repeatability is bad. By speckle tracking imaging (STI) to evaluate the global function of the left ventricle is suitable the clinical conventional application, we only can mark the three site of valve ring and apex of heart, the technique of STI can calculate the mitral annular plane systolic excursion automatically, it is not only simple, feasibility, and not rely on patient's image quality, therefore,
     Recently developed the STI technology, traces myocardial motion path through the recognition the myocardial echo spot of two-dimensional image. In the two-dimensional sonogram foundation, we can designate the certain scope region of interest(ROI) in the ventricular wall following the cardiac cycle(CC). According to the organization gray scale, the analyse software automatically trace every frame image’s myocard structure site of different image element in the region of interest, and compare with previous image's site, it can calculate each segment myocardial distortion in the region of interest. Because speckle tracking imaging is independence on doppler frequency shift and angle, it has not the angle influence between sound beam direction and the wall motion, therefore two-dimensional speckle tracking imaging can reflect myocardial movement more exactly. Some research indicated that the measurements using speckle tracking imaging have good correlation with sonomicrometry and myocard tagging magnetic resonance imaging(MRI), the difference between intra-observer and inter-observer is also small, the reproducibility and reliability is good. The STI may be a new modality to evaluate the region myocard movement, it can not only judge the region myocard movement’s distortion ability of longitudinal, axial, radial direction, moreover can evaluate the left ventricle globle twisting motion. This research evaluate three directions’strain of left ventricle myocard and the left ventricle global twist and the systolic displacemen of mitral annulus by STI. The correlation between these parameter with LVEF is analyzed respectively. We approach the correlation in order to determine the global function of the left ventricle with simplicity and accuracy.
     The studies were divided into three parts. In the first part, to study three directions’strain of left ventricle myocard, the left ventricle global twist and systolic displacemen of characteristic by STI in healthy subjects, we analyzed the correlation between these parameter with LVEF respectively in order to determine the feasibility and the accuracy of mitral annulus displacement by speckle tracking imaging to evaluate the global function of the left ventricle.In the next two parts, we analyzed the correlation of left ventricle myocard strain’s characteristic and LVEF and mitral annulus displacement in patients with dilated cardiomyopathy and hypertension with different patterns of left hypertrophic geometric models respectively. To observe the correlation bewteen different directions’motion method of left ventricle myocard and mitral annulus displacement under different pathologic state, hoping to find a new promising modality to evaluate the global systolic function of left ventricle for clinical routine practice with its simplicity and accuracy.
     Part I Evaluation of left ventricular systolic function in healthy subjects using two-dimensional speckle tracking imaging
     Objective: To determine the feasibility and the accuracy of mitral annulus displacement(MAD) by speckle tracking imaging to evaluate the global function of the left ventricle.
     Methods: The study population consisted of 36 healthy subjects, male 21, female 15,average age 38.4±15.4 years.The patients took the decubitus, high frame rate two-dimensional(2D) images of three consecutive cardiac cycles were recorded. We used PHILIPS iE33 color ultrasonograph with X3-1 matrix transducer of real time three dimension,the volume 3D were gathered from the LV apical four-chamber view and these data were transferred to Qlab6.0 work station for offline analysis. Endocardium were drew automatically five spots at mitral annulus and apex of hear from the LV apical four-chamber view, two-chamber view, system calculated LVEF.With M3S transducer,the 2D gray-scale image of LV apical four-chamber view, two-chamber view, long-axis view and the short-axis views at the levels of mitral annulus,papillary muscle and apex of the LV were recorded and stored respectively, all images were transferred to Qlab6.0 work station for offline analysis. The cross-section of apex of heart is divided 18 segments,the cross-section of short axis is divided 18 segments, the software algorithm segmented the LV long axis into 18 segments meanwhile short axis into 16 equidistant segments. Peak systolic circumferential strain(Cs), peak systolic radial strain(Rs), the LV twist (LVtw) were measured from short axis, peak systolic (Ls) were measured from long axis. 18 segments’average value of LV long axis’s strain was global longitudinal strain(GLs), 16 segments’average value of LV short axis’s strain was global circumferential strain(GCs),global radial strain(GRs). LV twist was defined as apical rotation relative to the base. MAD was obtained from LV apical four-chamber view by making the three site of mitral valve ring and apex of heart.
     Result: (1) Repeatability test:The intra-observer coefficient of differentiation of LVEF was 9.0%,the inter-observer was 12.1%; The intra-observer coefficient of differentiation of MAD was 8.1%,the inter-observer was 10.1%. (2) The relation of LV global strain and twist with LVEF: LVEF was correlated with GLs, GRs, GCs, LVtw significantly (r=-0.75,0.52,-0.51and0.61respectively,P < 0.01). Multi-variant regression analysis indicated that GLs and GCs were the independent predictors of LVEF (beta=-0.66and -0.35,respectively),LVEF=23.74-1.12GLS-0.85GCs (P<0.01). (3) The relation of LV global strain and twist with MAD: A good correlation was showed between MAD and GLs, GRs,and LVtw (r=-0.73, 0.47and0.46respectively,P<0.01)but a weak correlations with GCs (r=-0.35,P<0.05). GLs was the independent predictor of MAD,MAD=3.35-0.55GLs(P<0.01). (4) An excellent correlation was found between MAD and LVEF (r=0.84,P<0.01),LVEF=39.05+1.88MAD(P<0.01).
     Conclusion: MAD showed a novel correlation with LVEF, and with its simplicity and accuracy, MAD may be a new promising modality to evaluate the global systolic function of left ventricle for clinical routine practice.
     Part II Evaluation of left ventricular systolic function in patients with dilated cardiomyopathy by two-dimensional speckle tracking imaging
     Objective: To determine the feasibility and the accuracy of mitral annulus displacement by speckle tracking imaging (MAD) to evaluate the global function of the left ventricle in patients with dilated cardiomyopathy(DCM).
     Methods: The study population consisted of 20 DCM, male 5, female 15, average age 40±15 years, the whole subjects conforms to WHO to diagnose the standard about DCM. 36 healthy subjects, male 21, female 15, average age 38.4±15.4 years. We used PHILIPS iE33 color ultrasonograph with X3-1 matrix transducer of real time three dimension, the volume 3D were gathered from the LV apical four-chamber view and these data were transferred to Qlab6.0 work station for offline analysis.Endocardium were drew automatically five spots at mitral annulus and apex of hear from the LV apical four-chamber view, two-chamber view, system calculated LVEF. With M3S transducer, the 2D gray-scale image of standard LV long-axis view and the short-axis views were recorded and stored respectively, all images were transferred to Qlab6.0 work station for offline analysis, the following parameters were obtained, the global peak systolic longitudinal strain (GLs), circumferential strain (GCs), radial strain (GRs) and the left ventricular twist (LVtw).LV twist was defined as apical rotation relative to the base. MAD was obtained from LV apical four-chamber view by making the three site of mitral valve ring and apex of heart.
     Result: (1) The curve shape longitudinal strain,circumferential strain and radial were disorder in DCM group, its strain peak value loses change regularity compared with the control group. The parameters in DCM group were significantly lower than those in the healthy subjects(P<0.01=. (2) In the control group, LVEF was correlated with GLs, GRs, GCs, LVtw significantly(r = -0.75,0.52,-0.51 and 0.61 respectively,P < 0.01 = . Multi-variant regression analysis indicated that GLs and GCs were the independent predictors of LVEF (beta = -0.66 and -0.35,respectively), LVEF=23.74-1.12GLS-0.85GCs(P<0.01).In DCM group, LVEF was correlated with GLs, GRs, GCs, LVtw too(P<0.01), GLs and GCs were the independent predictors of LVEF (beta=-0.53 and -0.43, P<0.01,respectively). LVEF=2.0-1.7GLS-1.3GCs. (3) In the control group, a good correlation was showed between MAD and GLs,GCs,GRs, and LVtw(P<0.01), GLs was the independent predictors of MAD, MAD=3.4-0.6GLs; In DCM group, MAD was correlated with GLs, GCs, GRs, and LVtw(P<0.01), GLs and LVtw were the independent predictors of MAD(beta=-0.52and-0.42, P<0.01, respectively), MAD=0.6-0.3GLs+0.6LVtw. (4) In the control group an excellent correlation was found between MAD and LVEF (r=0.84,P<0.01), LVEF=39.05+1.88MAD(P<0.01); In DCM group, an excellent correlation was found between MAD and LVEF (r=0.91,P<0.01), LVEF=0.05+4.5MAD. The cut-off value of TMAD for LVEF≤50% was 8.9mm with a sensitivity of 100% and a specificity of 95% .
     Conclusion: Using STI the technical appraisal DCM patient LV global function, indicated that the MAD has not only reflected the myocard longitudinal movement, moreover reflected the LV whole motion. MAD showed a novel correlation with LVEF and with its simplicity and accuracy,MAD may be a new promising modality to evaluate the global systolic function of left ventricle for clinical routine practice.
     Part III Evaluation of left ventricular systolic function in patients with hypertension by two-dimensional speckle tracking imaging
     Objective: To determine the feasibility and the accuracy of mitral annulus displacement by speckle tracking imaging (MAD) to evaluate the global function of the left ventricle Reconstitution in patients with hypertension.
     Methods: 40 patients with essential hypertension (male 21,female 19, average age50.9±15.3years), 30 age- and gender- matched healthy volunteers (male 16,female 14, average age 48.4±17.3 years) as the control group. All hypertension patients were divided into two groups according to left ventricular mass index (LVMI)and relative wall thickness(RWT);①left ventricle normal geometric, LVN,20 patients, male LVMI≤116g/m2, female LVMI≤109g/m2, RWT≤0.42;②left ventricle remodeling, LVR, including concentric restructure (LVMI in normal range, the RWT>0.42,10), the concentric hypertrophy (LVMI and RWT surpasses normal range,8) and eccentric hypertrophy (LVMI surpasses normal range, RWT≤0.42,2). The advance echocardiographic examination were performed and some paremeters were acquired, including diastolic interventricular septal thickness (IVSTd), diastolic posterior wall thickness(LVPWTd), left ventricular end-diastolic diameter(LVEDd). The application formula calculates LVM, LVMI, RWT. With the tissue speckle tracking imaging, the following parameters were obtained using a Qlab 6.0 workstation: MAD, the global peak systolic longitudinal strain (GLs), circumferential strain (GCs), radial strain (GRs) and the left ventricular twist (LVtw). The left ventricular ejectionfraction (LVEF) was calculated based on real time three-dimension echocardiography. The difference of these parameters between control group andLVN,LVAgroup was compared and the correlation between MAD, LVEF, GLs, GCs, GRs and LVtw were analyzed respectively.
     Result: (1) The parameters except LVtw were significantly lower in LVR group than those of the control group(P<0.01) while there was no significant difference in LVN group; LVtw were significantly lower in LVR and LVN group than those of the control group (P<0.01). (2) A good correlation was showed between MAD and LVEF in LVNandLVA group and the control group(control group:r=0.84, LVEF=39.15+1.90MAD; LVN group:r=0.83, LVEF=12.96+3.85MAD; LVR group:r=0.76, LVEF=35.36+2.41MAD, respectively). (3) In the three group, LVEF was correlated with GLs, GRs, GCs, LVtw significantly. Multi-variant regression analysis indicated that GLs and GCs were the independent predictors of LVEF in control group(beta=-0.66and-0.35,P<0.01,respectively, LVEF=23.7-1.1GLS-0.85GCs), GLs was the independent predictors of LVEF in LVN group(beta=-0.73, P<0.01, LVEF=25.63-2.13GLs), GCs and LVtw were the independent predictors of LVEF in LVR group(beta=-0.40 and 0.47, P<0.01, respectively, LVEF=30.29+1.60LVtw-0.59GCs). (4) A good correlation was showed between MAD and GLs, GRs, GCs and LVtw in three group, GLs was the independent predictor of MAD(control group: MAD=3.4-0.6GLs; LVN group:MAD=5.59-0.44GLs;LVR group: MAD=3.41-0.56GLs,P<0.01, respectively).
     Conclusion: The global function of the left ventricular remodeling in patients with hypertension could be assessed by using STI, and MAD may be an easy and simple method for evaluation of the global systolic function of remodeling the left ventricle.
引文
1 Ito K, Noma M, Mohri M, et al. Mitral annulus displacement measured by tissue-tracking method with Doppler-tissue images is a useful marker of the severity of heart failure. J Cardiol. 2007,50(3):159-166
    2 Becker M, Bilke E, Kuhl H, et al. Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart, 2006,92(8): 1102-1108
    3 Langeland S, D’hooge J, Wouters PF, et al. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation, 2005,112(14): 2157-2162
    4 Toyoda T, Baba H, Akasaka T, et al. Assessment of regional myocardial strain by a novel automated tracking system from digital image files. J Am Soc Echocardiogr, 2004,17(12): 1234-1238
    5 Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain application in hypertrophic cardiomyopathy. J Am Coll Cardiol, 2006,47(6): 1175-1181
    6 D′hooge J, Bijnens B, Thoen J, et al. Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function. IEEE Trans Med Imaging, 2002,21(9): 1022-1030
    7 Reisner SA, Lysyansky P, Agmon Y, et al. Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr, 2004,17(6): 630-633
    8 Torrent-Guasp F, Kocica MJ, Corno A, et al. Towards new understanding of the heart structure and function. Eur J Cardio-thorac Surg,2005, 27(2):191-202
    9 Langeland S, D’Hooge J,Wouters PF, et al . Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle.Circulation,2005, 112: 2157-2162
    10 Spotnitz HM. Macro design, structure and mechanics of the left ventricle. J Thorac Cardiovasc Surg, 2000,119(5):1053-1077
    11 Fernandez-Teran MA, Hurle JM. Myocardial fiber architecture of the human heart ventricles. Anat Rec,1982,204(2):137-147
    12 Buckberg GD.Basic science review: the helix and the heart.J ThoracCardiovasc Surg, 2002,124(5):863-883
    13 Mirsky I, Parmley WW. Assessment of passive elastic stiffness forisolated heart muscle and t he intact heart . Circ Res, 1973, 33(2): 233-243
    14白姣,邓又斌.应变率成像局部心肌功能定量评价的新方法.中华超声影像学杂志, 2003,12:690-692
    15王金锐,那日苏,秦林金,等.室壁应力与应变的关系评价高血压病左室收缩功能.中国医学影像技术, 2003,19(12):1646-1649
    16 Jianwen Wang, Dirar S. Khoury, Yong Yue,et al. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. European Heart Journal, 2008,29:1283–1289
    17 Kukulski T, Jamal F, Herbots L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol, 2003,41(5): 810-819
    18 Jamal F, Kukulski T, Sutherland GR, et al. Can changes in systolic longitudinal deformation quantify regional myocardial function after an acute infarction ? An ultrasonic strain rate and strain study. J Am Soc Echocardiogr, 2002,15(7): 723-730
    19 Kukulski T, Jamal F, D′Hooge J, et al. Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. J Am Soc Echocardiogr, 2002,15 (1): 12-21
    20 Jamal F, Kukulski T, Strotmann J, et al. Quantification of the spectrum of changes in regional myocardial function during acute ischemia in closedchest pigs: an ultrasonic strain rate and strain study. J Am Soc Echocardiogr, 2001, 14(9): 874-884
    21 Leitman M, Lysyansky P, Sidenko S, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr, 2004,17(10): 1021-1029
    22 Breithardt OA, Stellbrink C, Herbots L, et al. Cardiac resynchronization therapy can reverse abnormal myocardial strain distribution in patients with heart failure and left bundle branch block. J Am Coll Cardiol, 2003, 42(3): 486-494
    23 Dohi K, Suffoletto MS, Schwartzman D, et al. Utility of echocardiographic radial strain imaging to quantify left ventricular dyssynchrony and predict acute response to cardiac resynchronization therapy. Am J Cardiol, 2005, 96(1): 112-116
    24 Sun JP, Chinchoy E, Donal E, et al. Evaluation of ventricular synchrony using novel Doppler echocardiographic indices in patients with heart failure receiving cardiac resynchronization therapy. J Am Soc Echocardiogr, 2004, 17 (8): 845-850
    25 Yu CM, Fung JWH, Zhang Q, et al. Tissue Doppler imaging is superior to strain rate imaging and post systolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy, Circulation, 2004, 110 (1): 66-73
    26 Di Salvo G, Pacileo G, Verrengia M, et al. Early myocardial abnormalities in asymptomatic patients with severe isolated congenital aortic regurgitation: an ultrasound tissue characterization and strain rate study. J Am Soc Echocardiogr, 2005,18(2):122-127
    27 Amundsen BH, Helle-Valle T, Edvardsen T, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol, 2006, 47(4):789-793
    28 Brecker SJ,Stephen JD.The importance of long axis ventricular function[J].Heart,2000,84(6):577-578
    29 Torrent-Guasp F, Kocica MJ, Corno A, et al. Systolic ventricular filling.Eur J Cardiothorac Surg, 2004,25:376-386.
    30 KimHK,SohnDW,ChoiSY,etal.Assessment of left ventrieular rotation and torsion with two dimensional speckle tracking echocardiography.J Am Soc Echocardiogr, 2007,20(1):45-53
    31 Henein MY,Gibs DG. Normal long axis function. Heart,1999, 81:1112-1113
    32 Brecker SJ, Stephen JD. The importance of long axis ventricularfunction. Heart, 2000,84(6): 577-579
    33 Qin JX, Shiota T, Tsujino H, et al. Mitral annular motion as a surrogate for left ventricular ejection fraction: real-time three-dimensional echocardiography and magnetic resonance imaging studies. Eur J Echocardiogr, 2004,5(6):407-415
    34 C. Carlhall, Lindstrom L, Wranne B,et al. Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change. Am J Physiol Heart Circ Physiol ,2004,287(4): H1836–H1841
    35 DeCara JM, Toledo E, Salgo IS,et al. Evaluation of left ventricular systolic function using automated angle-independent motion tracking of mitral annular displacement. J Am Soc Echocardiogr , 2005,18(12) : 1266-1269
    36杨颖,陈峰,张宝娓,等.二维应变对左心室整体应变与应变率的研究.中国医学影像技术,2006 ,22 (7):1018-1020
    37 Langeland S, Wouters PF, Claus P, et al. Experimental assessment of a new research tool for the estimation of two-dimensional myocardial strain. Ultrasound Med Biol, 2006, 32 (10): 1509-1513
    1谷伯起病.心血管理学[M].北京:人民卫生出版社,1992;121-125
    2 Dec G W,Fuster V.Medical progress: Idiopathicdilated cardiomyopathy. N Engl J Med, 1994,331:1564~1575
    3 Hibbard J U,Lindheimer M,Lang R M.A modified definition for peripartum cardiomyopathy and prognosis based on echocardiography. Obstet Gynecol, 1999,94:311~316
    4 Greenberg NL, Firstenberg MS, Castro PL, et al. Doppler derivedmyocardial systolic strain rate is a strong index of left ventricular contractility. Circulation, 2002,105 (1): 99-105
    5蒋文莉,郭瑞强,周青,等.应变率、射血分数及校正的Q-V峰值间期评价不同构型高血压患者左室收缩功能的比较.中国医学影像技术,2005,21(10):1503-1505
    6 Heimdal A, Stoylen A, TorpH,et al. Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr,1998, 11(11):1013-1019
    7 Urheim S, Edvardsen T, Torp H, et al. Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation, 2000,102(10): 1158-1164
    8 Keren G,Sonnenblick EH,Lejemtel TH,et al.Mitral annulus motion, relation to pulmonary venous and transmitral flow in normal subject:and in patients with dilated cardiomyopathy[J].Circulation,1998,78:621-629
    9 Richardson P , Mckenna W, Bristow M , et a1. Report of t he 1995 World Healt h Organization/ International Society and Federation ofCardiology Task Force on t he Definition and Classification of Car2diomyopat hies[J ].Circulation ,1996,93 (5):841-842
    10 Torrent-Guasp F, Kocica MJ, Corno A, et al. Towards new understanding of the heart structure and function. Eur J Cardio-thorac Surg. 2005, 27(2):191-202
    11 Langeland S, D’Hooge J, Wouters PF, et al . Experimental validation of anew ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation. 2005,112: 2157-2162
    12 Tsujino R, Shiota T, Qin JX, et al. Estimation of the spatial mean and peak flow velocities using real-time 3D (RT-3D) color Doppler echocardiography: An in vitro experiment. J Am Coll Cardiol, 2001, Abstract: 436A
    13 Lee D, Fuisz AR, Fan PH, et al. Real-time 3-dimensional echocardiographic evaluation of left ventricular volume: correlation with magnetic resonance imaging-a validation study. J Am Soc Echocardiogr, 2001,14(10): 1001-1009
    14王勇,张运,李继福,等.经胸多平面三维超声心动图与心室造影测量左室容积和收缩功能的对比研究.中华超声影像学杂志, 2000,9(3): 150-152
    15 Zeidan Z, Erbel R, Barkhausen J, et al. Analysis of global systolic and diastolic left ventricular performance using volume-time curves by real-time three-dimensional echocardiography. J Am Soc Echocardiogr, 2003,16(1): 29-37
    16 Irvine T, Li NX, Mori Y, et al. An automatic volume flow method based on 4D digital color Doppler: A Compute algorithm tested on an in vitro flow model. J Am Coll Cardiol, 2000, Abstract: 443A
    17 Ito K, Noma M, Mohri M, et al. Mitral annulus displacement measured by tissue-tracking method with Doppler-tissue images is a useful marker of the severity of heart failure. J Cardiol. 2007,50(3):159-166
    18 Angeja B, Grossman W. Evaluation and management of diastolic heart failure. Circulation, 2003,107(5): 659-663
    19海滨,钱蕴秋,郭悦,等.病变心肌组织多普勒频谱分析.中华超声影像学杂志, 2004, 13(1):59-62
    20王志斌,王建红,李艳等.组织多普勒成像评价舒张性心力衰竭患者左心室长轴收缩功能.中华超声影像学杂志,2005,3:191-194
    21穆玉明唐琪王春梅超声应变率成像技术评价扩张型心肌病局部心肌的纵向收缩功能中国超声医学杂志,2005,21(7)546-548
    22 Leitman M,Lysyansky P, Sidenko S, etal. Two-dimensional strain a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr, 2004,17(10):1021-1029
    23 Mu YM, Tang Q, Wang CM, et al . .Study on myocardial longitudinal st rain rate imaging on sonography in patient s wit h dilated cardiomyopathy[ J ]. Chinese J Ult rasound Med ,2005,21 (7 ):546-548
    24文利,郑嘉荣,高云华等.超声斑点跟踪成像对扩张型心肌病患者左室短轴二维应变的定量研究.临床超声医学杂志,2008,10(2):79-82
    25马兰,吴卫华,陆静等.斑点追踪显像评价扩张型心肌病患者左室扭转.中国临床医学, 2008,15(3):424-426
    26 BuekbergGD, CoghlanHC, Torrent-Guasp F. The Struc ture and Function of the Helical Heart and its Buttress Wrapping.V. Anatomic and Physiologic Considerations in the Healthy and Failing Heart.Semin Thorae Cardjovasc Surg, 2001,13(4):358-385
    27 BuekbergGD, CoghlanHC, HoffmanJl,etal.The Structure and Function of the Helical Heart and its Buttress Wrapping. Vll. Critical Importance of Septum for Right Ventricular Function. Semin Thorac Cardiovasc Surg, 2001,13(4):402-416
    28 Torrent-Guasp F, Buckherg GD, Clemente C, et al. The structure and function of the helical heart and its buttress wrapping. V. The normal macroscopic strcture of the heart. Semin Thorac Cardiovasc Surg, 2001,13(4);301-319
    29 Henein MY, Gibs DG. Normal long axis function. Heart, 1999, 81:11 12-1113
    30 Brecker SJ, Stephen JD. The importance of long axis ventricularfunction. Heart, 2000,84(6):577-579
    31 Torrent-G F, Kocica MJ, Corno A, et al. Systolic ventricular filling. Eur J Cardiothorac Surg, 2004, 25(3): 376-386
    32 DeCara JM, Toledo E, Salgo IS, et al. Evaluation of left ventricular systolic function using automated angle-independent motion tracking of mitralannular displacement. J Am Soc Echocardiogr,2005,18(12) : 1266-1269
    33杨颖,陈峰,张宝娓,等.二维应变对左心室整体应变与应变率的研究.中国医学影像技术, 2006, 22(7):1018-1020
    1 Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy:comparison to necropsy findings.Am J Cardiol, 1986, 57(6): 450-458
    2刘力生,龚兰生等.中国高血压防治指南.中国高血压防治指南修订委员会.2004
    3蒋文莉,郭瑞强,周青,等.应变率、射血分数及校正的Q-V峰值间期评价不同构型高血压患者左室收缩功能的比较.中国医学影像技术, 2005, 21(10): 1503-1505
    4 Keren G,Sonnenblick EH,Lejemtel TH,et al.Mitral annulus motion, relation to pulmonary venous and transmitral flow in normal subject:and in patients with dilated cardiomyopathy[J].Circulation,1998,78:621-629
    5 Ganau A,Devereux RB, Roman MJ, et al . Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension[ J ]. J Am Coll Cardiol, 1992,19 (7) : 1 550 - 1 55
    6 Torrent-Guasp F, Kocica MJ, Corno A, et al. Towards new understanding of the heart structure and function. Eur J Cardio-thorac Surg. 2005, 27(2):191-202
    7 Langeland S, D’Hooge J, Wouters PF, et al . Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation. 2005, 112: 2157-2162
    8 Baumbach GL, Heistad DD. Remodeling of cerebral arteri oles in hy- pertension[ J ]. Hypertension, 1989,13 (6 p t 2) : 968– 972
    9 Dong SJ,Hees PS,Siu CO,et al. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am J Physiol Heart Circ Physiol,2001,281:H2002-2009
    10 Leitman M,Lysyansky P, Sidenko S, etal. Two-dimensional strain a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr,2004,17(10):1021-1029
    11 Jianwen Wang, Dirar S, Khoury, et al. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. European Heart Journal ,2008,29: 1283–1289
    12 Kosmala W, Plaksej R, Strotmann JM,et al. Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: an ultrasonic two-dimensional speckle tracking study. J Am Soc Echocardiogr. 2008,21(12):1309-17
    13王静,谢明星,韩伟等.超声二维斑点追踪成像评价原发性3级高血压患者的左室扭转重构.中国超声医学杂志, 2008,24(9): 806-809
    14王建华,刘昕.二维斑点追踪技术测量二尖瓣环位移:评价左心室整体收缩功能的新方法.中国医学影像技术, 2009,25(9): 1604-1607
    15 Henein MY, Gibs DG. Normal long axis function. Heart, 1999, 81:1112-1113
    16 Brecker SJ, Stephen JD. The importance of long axis ventricular function. Heart, 2000, 84(6): 577-579
    17 Loek van Heerebeek, Attila Borbély, Hans W.M,et al.Myocardial Structure and Function Differ in Systolic and Diastolic Heart Failure. Circulation. 2006,113:1966-1973
    18王洪霞,高晓军,蔡叶萍,等. Tei指数评价原发性高血压不同左室构型左室功能的研究[ J ].中国超声医学杂志, 2005, 21 ( 3) :184– 187
    19 Qin JX, Shiota T, Tsujino H, et al. Mitral annular motion as a surrogate for left ventricular ejection fraction: real-time three-dimensional echocardiography and magnetic resonance imaging studies. Eur J Echocardiogr, 2004, 5(6):407-415
    20 Carlhall C, Lindstrom L, Wranne B, et al. Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change. Am J Physiol Heart Circ Physiol, 2004, 287(4): H1836–H1841.
    1 Ito K,Noma M,Mohri M,et al. Mitral annulus displacement measured by tissue-tracking method with Doppler-tissue images is a useful marker of the severity of heart failure. J Cardiol. 2007,50(3):159-166
    2 Greenbaum RA,LY Ho,Gibson DG,et al.Left ventricular fiber architecture in man. Br heart J,1981,43: 248-263
    3 Streeter DD Jr,Potnitz HM,Patel OP,et al.Fiber orientation in the canine left ventricle during diastole and systole.Circ Res,1969,24(3): 339-347
    4 Henein MY,Gibs DG.Normal long axis function.Heart,1999,81:1112-1113
    5 Brecker SJ,Stephen JD.The importance of long axis ventricularfunction.Heart,2000,84(6):577-579
    6 Torrent-G F,Kocica MJ,Corno A,et al.Systolic ventricular filling.Eur J Cardiothorac Surg,2004,25(3): 376-86
    7 Buckberg GD,Basic science review: the helix and the heart.J Thorac Cardiovasc Surg,2002,124(5): 863-883
    8 Lorenz CH,Pastorek JS,Bundy JM.Delineation of normal left ventricular twist throughout systole by tagged cine magnetic resonance imaging.J Cardiovasc Magn Res,2000,2(2): 97-108
    9 Rademakers FE,Bogaert J, Left ventricular myocardial tagging.Int J Card Imaging,1997,13(3): 233-245
    10 Nikitin NP,Witte KK,Thackray SD,et al.Longitudinal ventricular function: normal values of atri oventricular annular and myocardial velocities measured with quantitative two2 dimensional color dopp ler tissue imaging [ J ].J Am Soc Echocardiogr,2003,16 (9):906–921
    11 Qin JX,Shiota T,Tsujino H,et al.Mitral annular motion as a surrogate for left ventricular ejection fraction: real-time three-dimensional echocardiography and magnetic resonance imaging studies.Eur J Echocardiogr,2004,5(6):407-415
    12 Emilsson K,Wandt B.The relation between ejection fraction and mitralannulus motion before and after direct-current electrical cardioversion[J].Clinical Physiology,2000,20:218-224
    13 Carerj S,Micari A, Trono A,et al.Anatomical M-mode: an old-new technique. Echocardiography,2003,20(4): 357-361
    14 Oyama MA,Sisson DD.Assessment of cardiac chamber size using anatomic M-mode. Vet Radiol Ultrasound.2005,46(4): 331-336
    15 Angeja B,Grossman W.Evaluation and management of diastolic heart failure.Circulation,2003,107(5): 659-663
    16 Vinereanu D, Khokhar A,Tweddel AC, et al.Estimation of global left ventricular function from the velocity of longitudinal shortening.Echocardiography,2002,19(3):177-85
    17 Mohamed FE,Ayman KA.Mitral annular motion as a surrogate for left ventricular function:Correlation with brain natriuretic peptide levels.Eur J Echocardiography ,2006,7(3):187-198
    18李新,郭文彬,朱梅等.定量组织速度显像评价亚临床期糖尿病心肌病左室功能的研究..医学影像学杂志,2004,14(3):191-193
    19黄嶶,蔡运昌,余杉等.定量组织速度成像测定二尖瓣环运动评价冠心病患者左室功能. J Ultrasoundin Clin Med,2008,10(2):88-91
    20张海滨,钱蕴秋,郭悦,等.病变心肌组织多普勒频谱分析.中华超声影像学杂志,2004,13(1): 59-62
    21 Ito K,Noma M,Mitral annulus displacement measured by tissue-tracking method with Doppler-tissue images is a useful marker of the severity of heart failure.J Cardiol,2007,50(3):159-66
    22黄嶶,蔡运昌.组织跟踪法测量房室平面位移评价心脏功能研究进展.心血管学进展.2007,28(4):577-578
    23徐伟忠,金艳.二尖瓣环运动速度与位移评价扩张型心肌病患者左室收缩功能的研究.中国煤炭工业医学杂志,2008,11(2): 146-148
    24 DeCara JM,Toledo E,Salgo IS,et al.Evaluation of left ventricular systolic function using automated angle-independent motion tracking of mitral annular displacement.J Am Soc Echocardiogr,2005,18(12) : 1266-1269
    25吴卫华,黄艳,陆静.斑点追踪法测量二尖瓣环位移评估左心室收缩功能.中国医学影像技术,2010,26(1);79-81
    26王新房.实时三维超声心动图-超声技术领域内的新突破.中华超声影像学杂志, 2003, 12(2) : 71-75
    27 C. Carlhall,Lindstrom L,Wranne B,et al.Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change.Am J Physiol Heart Circ Physiol,2004,287(4): H1836–H1841
    28白文伟,陆映珠,徐章等.正常人房室瓣环运动频谱分析.中国超声诊断杂志,2001,2(5):6-9
    29 Nilsson B,Boj? L,Wandt B.Influence of body size and age on maximal systolic velocity of mitral annulus motion.Clin Physiol, 2000,20(4):272-278
    30 K Emilsson,R Egerlid,BM Nygren,et al.Mitral annulus motion versus long-axis fractional shortening.Exp Clin Cardiol 2006,11(4): 302-304
    31 Carlhall CJ,Lindstrom L,Wranne B,et al.Atrioventricular plane displacement correlates closely to circulatory dimensions butnot to ejection fraction in normalyoung subjects [J].Clin Physio,l 2001,21 (5): 621-628
    32綦美和,刘明春,黄聪.153例正常人房室平面位移正常值[J].West China Med J, 2003,18: 358
    33 D Vinereanu, Ionescu AA, Fraser AG. Assessment of left ventricular long axis contraction can detect early myocardial dysfunction in asymptomatic patients with severe aortic regurgitation .Heart 2001, 85(1):30–36
    34 Alam M,Wardell J.Assessment of left ventricular function using mitral annular velocities in patients with congestive heart failure with or without the presence of significant mitral regurgitation. J Am Soc Echocardiogr,2003,16(3):240-245
    35 Drighil A,Madias JE,Mathewson JW,et al.Haemodialysis: effects of acute decrease in preload on tissue Doppler imaging indices of systolic and diastolic function of the left and right ventricles. Eur J Echocardiogr,2008,9(4):530-535
    36 Eidem BW,McMahon CJ,Ayres NA,et al.Impact of chronic left ventricular preload and afterload on Doppler tissue imaging velocities:a study in congenital heart disease.J Am Soc Echocardiogr,2005 ,18(8):830-838
    37王志斌,李艳,聂晶等.组织多普勒成像估测主动脉瓣狭窄患者左心室长轴收缩功能.Chinese Circulation Journal, 2004,19(6):446-448
    1 Greenberg NL,Firstenberg MS,Cast ro PL,et al.Doppler derived myocardial systolic strain rate is a strong index of left ventricular contractility.Circulation, 2002, 105(1): 99-105
    2蒋文莉,郭瑞强,周青,等.应变率、射血分数及校正的Q-V峰值间期评价不同构型高血压患者左室收缩功能的比较.中国医学影像技术,2005,21(10):1503-150
    3 Curtis JP,Sokol SI,Wang Y et al.The association of left ventricular ejection fraction,mortality, and cause of death in stable outpatients with heart failure.J Am Coll Cardiol, 2003,42(4):736–742.
    4 Greenbaum RA,Ho SY,Gibson DG et al.Left ventricular fibre architecture in man. Br Heart J, 1981,45(3):248–263
    5张海滨,钱蕴秋,郭悦,等.病变心肌组织多普勒频谱分析.中华超声影像学杂志,2004,13(1):59-62
    6 Stoylen A,Heimdal A, Bjornstad K et al (1999) Strain rate imaging by ultrasound in the diagnosis of regional dysfunction of the left ventricle.Echocardiography 16(4):321–329
    7 Urheim S,Edvardsen T,Torp H,et al.Myocardial Strain by Doppler Echocardiography:Validation of aNew Method to Quantify Regional Myocardial Function.Circulation,2000,102(10):1158-1164
    8 Skulstad H,Urheim S,Edvardsen T,et al.Grading of Myocardial Dysfunction by Tissue Doppler Echocardiography:A Comparison Between Velocity, Displacement, and Strain Imaging in Acute Ischemia.Journal of the American College of Cardiology,2006,47(8): 1672-1682
    9 Lima JA,Jeremy R,Guier W,et al. Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue tagging:correlation with sonomicrometers in normal and ischemic myocardium.J Am Coll Cardiol,1993,21(7):1741-1751
    10 Edvardsen T.Gerber BL.Garot J.et al.Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiographyin humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation, 2002, 106(1): 50-56
    11 Leiman M,Lysyansky P, Sidenko S, et a1. Two-dimensional strain—a novel software for real-time quantitative echodardiogrophic assessment of myocardial function. J Am Soc Echocardiogr,2004, 17(10): 1021-1029
    12 Langeland S, WoutersPF, ClausP, et a1. Experimental assessment of a new research tool for the estimation of two-dimemional myocardial strain. Ultrasound Med Biol, 2006, 32(10): 1509-1513
    13 Yeung F,Levinson SF,Parker KJ.Multilevel and Motion. Model-Based Ultrasonic Speckle Tracking Algorithms, Ultrasound in. Medicine&Biology,1998,24(3):427-441
    14 Korinek J, Wang J, Sengupta PP, et al. Two-dimensional strain-a Doppler-independent ultrasound method for quantitation of regional deformation: validation in vitro and in vivo.J Am Soc Echocardiogr, 2005, 18(12): 1247-1253
    15 Amundsen BH,Helle-Valle T,Edvardsen T,et al.Noninvasive myocardial strain measurement by speckle tracking echocardiogrphy: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol, 2006, 47(4): 789-793
    16 Toyoda T,Baba H,Akasaka T,et al.Assessment of regional myocardiol strain by a novel automated tracking system from digital image files. J Am Soc Echocardiogr,2004,17(12): 1234-1238
    17杨颖,陈峰,张宝娓,等.二维应变对左心室整体应变与应变率的研究.中国医学影像技术,2006,22(7):1018-1020
    18 M.5ohling,M.Arigovindan,C.Jansen,et al.Myocardial Motion Analysis from B-Mode Echocardiograms.IEEE Transactions on Image Processing,2005,14(4):525-536
    19 Chen X,Xie H,Erkamp R,et al. 3-D correlation- based speckle tracking.Ultrason Imaging,2005,27(1):21-36
    20 Hans-Joachim Nesser,Victor Mor-Avi,Willem Gorissen,et al.Quantification of left ventricular volumes using three-dimensionalechocardiographic speckle tracking:comparison with MRI. European Heart Journal, 2009,30(5):1565-1573.
    21 Voigt JU,Arnold MF,Karlsson M et al. Assessment of regional longitudinal myocardial strain rate derived from Doppler myocardial imaging indexes in normal and infarcted myocardium. J Am Soc Echocardiogr , 2000,13(6):588–598.
    22 Abraham TP,Nishimura RA,Holmes DR Jr, et al. Strain rate imaging for assessment of regional myocardial function:results from a clinical model of septal ablation.Circulation, 2002,105(12):1403–1406
    23熊莉,邓又斌,申屠伟慧,等.超声斑点追踪技术对心肌梗死患者室壁运动的二维应变研究.中国医学影像技术,2007,23(7):990-993
    24 Yip G,Khandheria B,Belohlavek M,et al.Strain echocardiography tracks dobutamine-induced decrease in regional myocardial perfusion in nonocclusive coronary stenosis.J Am Coll Cardiol ,2004,44(8):1664–1671
    25 Armstrong G,Pasquet A,Fukamachi K,et al.Use of peak systolic strainas an index of regional myocardial function: comparison with tissue Doppler velocity during dobutamine stress and myocardial ischemia. J Am SocEchocardiogr,2000, 13(8):731–737
    26 Becker M,Kuehl H,Grawe H,et al.Analysis of myocardial deformation based on ult rasonic pixel t racking for definition of t ransmurality in chronic myocardial infarction.J Am Coll Cardiol,2006,47:134A
    27 Zhang Y,Chan AK,Yu CM,et al.Strain rate imaging differentiates transmural from non-transmural myocardial infarction:a validation study using delayed-enhancement magnetic resonance imaging.J Am Coll Cardiol.2005,46(5):864–871
    28曲海燕,张梅,姚桂华,等.腺苷负荷心肌组织应变率显像对心肌缺血早期诊断的实验研究.中华超声影像学杂志,2006,1:50-53
    29 Koyama J, Ray-Sequin PA,Falk RH. Longitudinal myocardial unction assessed by tissue velocity,strain,and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation,2003,107(19):2446–2452.
    30 Yang H, Sun JP, Lever HM, et al. Use of strain imaging in detecting segmental dysfunction in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr, 2003, 16(3): 233-239
    31 Kato TS, Noda A, Izawa H, et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation, 2004, 110(25): 3808-3814
    32刘昕,王建华.超声斑点跟踪技术评价扩张性心肌病患者左室整体收缩功能的临床研究.中国超声医学杂志,2010,1(26):35-38
    33徐伟忠.应变率成像评价扩张型心肌病患者左室心肌局域收缩及舒张功能的研究.临床超声医学杂志,2005,7(4):225-227
    34 FriedbergMK, Silverman NH, Dubin AM, et al. Mechanical dyssynchrony in children with systolic dysfunction secondary to cardiomyopathy:a Doppler tissue and vector velocity imaging study[J].J Am SocEchocardiog,2007,20:756-763
    35 Dohi K, Suffoletto MS, Schwartzman D, et al.Utility of echocardiographic radial strain imaging to quantify left ventricular dyssynchrony and predict acute response to cardiac resynchronization therapy.Am J Cardiol,2005,96(1):112–116
    36 Suffoletto MS, Dohi K, Cannesson M, et al.Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy.Circulation ,2006,113(7):960–968
    37 Vannan MA, edrizzetti G, i P, et al. Effect of cardiac resyn-chronization therapy on longitudinal and circumferential left ventricular mechanics by velocity vector imaging: description and initial clinical application of a novel method using high-frame rate B-mode echocardiographic images.Echocardiography,2005,22(10):826-830
    38 Suffoletto MS, Dohi K, Cannesson M, et al. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronizationtherapy[J]. Circulation,2006,113:960-968
    39 Kocica MJ, Corno AF, Carreras F, et al. The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium[J]. European Journal of Cardio-thoracic Surgery,2006,29:21-40
    40 Young AA, Kramer CM, Ferrari VA, et al. Three-dimensional left ventricular deformation In hypertrophic cardiomyopathy[J].Circulation,1994,90(2):854-867
    41 Notomi Y, Setser RM, Shiota T, et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging: validation study with tagged magnetic resonance imaging[J]. Circulation,2005,111(9):1141-1147
    42 Meunier J, Bertrand M. Ultrasonic texture motion analysis:theory and simulation. IEEE Trans Med Imaging,1995, 14 (2):293-300
    43 Dong SJ, Hees PS, Siu CO, et al. MRI assessment of LV relaxation by untwisting rate:a new isovolumic phase measure of tau. Am J Physiol Heart Circ Physiol, 2001,281(5):H2002-2009
    44 Notomi Y, Lysyansky P, Set ser RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging.J Am Coll Cardiol,2005,45:2034-2041
    45 Helle-Valle T, Crosby J, Edvardsen T, et al. New noninvasive method for assessment of left ventricular rotation speckle tracking echocardiography. Circulation,2005,112:3149-3156
    46 Akagawa E, Murata K, Tanaka N, et al. Left ventricular apical rotation is impaired in patients with dilated cardiomyopathy:quantitative analysis by two-dimensional tissue tracking system. J Am Coll Cardiol,2006,47:97A
    47 Weidemann F, Eyskens B, Mertens L, et al. Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes after surgical repair of tetralogy of Fallot. Am J Cardiol, 2002, 90(2): 133-138
    48 Abd EL, Rahman MY, Hui W, et al. Analysis of atrial and ventricular performance by tissue doppler imaging in patients with atrial septal defectsbefore and after surgical and catheter closure . Echocardiography, 2005, 22(7): 579-585
    49 Kiraly P, Kapusta I, Thijssen JM, et al. Left ventricular myocardial function in congenital valvar aortic stenosis assessed by ultrasound tissue velocity and strain rate techniques. Ultrasound Med Bio1, 2003, 29(4): 615-620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700