大鼠骨髓间充质干细胞向软骨细胞体外诱导分化过程中microRNA 130a作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     骨关节炎是最常见的关节炎,随着世界人口的老龄化,骨关节炎患者在逐年增加。骨关节炎是关节的主要致残的原因,大多数药物只是控制疼痛,而不能逆转关节损害。外科手术可以改善关节功能,如关节镜、截骨、关节置换等,但外科手术一般效果不满意。因此,需要更有效的改善功能的治疗方法。
     近年来,通过天然或生物工程方法修复受损组织的再生医学成为热点,这些方法包括骨软骨移植、自体软骨细胞移植等。自体软骨细胞移植已经开展十余年,临床中也采用一些改良的自体软骨细胞移植术。但是仍有一些缺陷,如缺少细胞来源、损害正常组织、不能形成原有软骨结构、与周围组织不完全结合等。
     近年来间充质干细胞的研究为软骨移植提供了新的方法。在胚胎发展过程中,软骨是有间充质干细胞聚集后分化而成的。目前,间充质干细胞已从骨髓、骨膜、脂肪、滑膜、肌肉等多个组织中分离获得,并证实具有向不同结缔组织分化的能力,如骨、软骨、脂肪、椎间盘、韧带和肌肉。目前,新的研究方向主要是加强和延长体外软骨细胞的分化潜能。
     MicroRNAs是19-23个核苷酸的单链RNA,存在于广泛的生物体中。在研究干细胞功能的分子Loquacious和DGCR8时,研究者发现microRNA在干细胞功能和分化过程中起重要作用。产生microRNA的关键酶Dicer敲除后,间充质干细胞分化为软骨的功能受损。以上均证明microRNA是干细胞分化机制中的重要分子。
     我们的课题基于文献的复习和前期的骨髓间充质干细胞培养的实验基础,研究microRNA在骨髓间充质干细胞诱导分化为软骨细胞的过程中的调节作用,探索诱导分化的机制,优化骨髓间充质干细胞向软骨细胞分化的条件,诱导出软骨细胞,为软骨移植提供细胞来源,最终解决骨关节炎的治疗问题。
     实验方法:
     1、提取大鼠骨髓间充质干细胞,体外经TGF-β1诱导其向软骨细胞分化。通过相差显微镜形态学观察,免疫荧光法、免疫组化法检测软骨细胞特异性标志Ⅱ型胶原,阿辛兰染色检测氨基葡聚糖的方法证实大鼠骨髓间充质干细胞经过体外诱导分化培养后是否具有成熟软骨细胞的标志。
     2、从大鼠骨髓中分离间充质干细胞,体外经TGF-β1诱导分化为软骨细胞。分别于TGF-β1诱导前(d0)、诱导培养7天(d7-induced)和无TGF-β1诱导培养7天(d7-non-induced)三个时间点,应用实时定量逆转录—聚合酶链反应(real time RT-PCR)方法检测三个时间点细胞的microRNA130a的表达水平。
     3、Hulth法建立兔关节炎模型。剪断兔膝关节前后交叉韧带及内侧半月板以改变膝关节的生物力学状态。手术后12周进行Maknin评分。
     研究结果:
     1、大鼠骨髓间充质干细胞经TGF-β1诱导分化培养后细胞具有成熟软骨细胞的形态。应用Ⅱ型胶原特异性抗体进行的免疫荧光染色显示骨髓基质干细胞在分化第14天、21天,细胞质中充满了大量绿色特异性染色,而在未诱导培养的细胞中,未发现特异性荧光染色。应用Ⅱ型胶原特异性抗体进行的组织化学染色显示骨髓基质干细胞在分化2天、7天、14天、21天后,细胞质中充满了大量棕色特异性染色,而在无诱导培养的细胞中,未发现特异性染色。经诱导培养的细胞于第2、7、14、21天在细胞内均可呈现阿辛兰染色阳性物质,含有软骨细胞分泌的特异的蛋白聚糖。而未诱导培养组细胞无阳性染色物质。
     2、软骨细胞分化过程中均表达microRNA130a。骨髓间充质干细胞培养7天后,诱导分化组和未诱导分化组细胞都有不同程度的表达水平下调。经7天培养,TGF-β1诱导分化组细胞表达microRNA130a水平显著低于诱导培养前(P<0.05)。经7天培养后,诱导分化组细胞表达microRNA130a水平显著低于未诱导分化组(P<0.1)。
     3、Hulth法可建立兔关节炎的模型。12周Maknin评分9-10分。
     研究结论:
     1、大鼠骨髓间充质干细胞在生长因子TGF-β的诱导培养下可以分化为具有成熟软骨细胞形态和特异标志的软骨细胞样细胞。
     2、骨髓间充质干细胞在向软骨细胞分化的早期,从第1天到第7天,microRNA130a表达水平显著下调,microRNA130a参与了软骨形成的过程。推测microRNA130a可能通过Runx3调控软骨细胞分化。
     3、Hulth法可建立骨关节炎模型。
Background and Objective
     Osteoarthritis is the most common type of arthritis. The number of OA patients steadily rises as the elderly population grows in the world. OA is an important cause of disability. The majority of the drugs for the treatment of OA have been inadequate as they only treat the symptoms of pain and inflammation. The drugs have not the capacity to reverse the molecular changes that occur in OA. A number of surgical methods and procedures have been implemented to restore synovial joint function. These range from minimally invasive procedures such as arthroscopic abrasion and shaving of small cartilage defects, to more extended surgical procedures such as microfracture of the subchondoral bone and mosaicplasty. Surgery for OA, which may involve joint replacement,is generally unsatisfactory. Consequently more effective function-modifying therapeutic strategies will need to be introduced for the clinical treatment of OA.
     In recent years, regenerative medicine is an emerging field that seeks to repair or replace injured tissues through natural or bioengineered means. A range of methods have been developed including osteochondral transplantation, microfracture and autologous chondrocyte transplantation(ACT), with or without the assistance of scaffold matrix to deliver the cells. ACT has been in clinical for a decade, and many modifications of the technique are also used in the clinic, but these have several major drawbacks. Challenges in treating cartilage defects with ACT are including paucity of the cell source; damage caused to native tissues by cell harvest; inability to restore the original cartilage structure; lack of adhesion between new repair cartilage and the original tissue.
     Recent research on mesenchymal stem cells has provided a new and exciting opportunity for bone and cartilage tissue engineering. During embryogenesis, cartilage is formed from the condensation of MSCs. Thus far, MSCs have been isolated from bone marrow, periosteum, trabecular bone, adipose tissue, synovium, skeletal muscle and deciduous teeth. MSCs possess the capacity to differentiate into cells of connective tissue lineages, including bone, fat, cartilage, intervertebral disc, ligament and muscle. New strategies have to center around enhancing and prolonging the chondrogenic potential of the chondrocytes during their in vitro expansion phase.
     MicroRNAs are single-stranded RNAs of 19-23 nucleotides and are found in a wide variety of organisms. Evidence for the requirement of the processing of microRNA in stem cell function and differentiation comes from studies of the Drosha complex partners Loquacious (homolog of human TAR (HIV-1) RNA binding protein 2), which is required for germ-line stem cell maintenance, and DGCR8, which is required for embryonic stem cell selfrenewal. Similarly, Dicer knockouts exhibit defects in stem cell differentiation. Clearly, microRNAs underlie key differentiation mechanisms.
     Based on our prophase works, we will study on how microRNA works in the differentiation from MSCs to chondrocytes, imploring the mechanism, optimizing the culture conditions, inducing the chondrocytes and denoting a optimized therapy for OA.
     Methods
     1. Mesenchymal stem cells were isolated from rat bone marrow and induced into mature chondrocyte in the presence of transforming growth factor-β1 (TGF-β1). Chondrogenesis was assessed by immunohistochemistry and immunofluorescence for typeⅡcollagen, and by alcian blue staining for proteoglycan.
     2. BMSCs were induced to differentiate into chondrocytes by TGF-β1 in vitro, immunofluorescence and immunohistochemistry were performed to evaluate MSCs differentiation. Real-time reverse transcription polymerase chain reaction was performed to analyze microRNA 130a expression at different time points (before induced culture,7 days later in induced culture and 7 days later in non-induced culture).
     3. We have developed a model of arthritis in rabbits and assess the joint using Maknin score in 12 weeks after surgery.
     Results
     1. We found clear positive staining of collagenⅡin the cytoplasm in the induced medium during differentian by using immunofluorescence and immunohistochemical performance. And we also found positive staining cells in the induced medium by Alcian blue staing.
     2. We found microRNA130a was expressing during the differentiation. MicroRNA130a was down-modulated significantly during chondrogenesis after BMSCs had cultured in the present of TGF-β1 for 7 days (P<0.05)
     3. The joint was assessed 9-10 scores by Maknin method after 12 weeks in operation.
     Conclusion
     1. BMSCs were induced to differentiate into chondrocytes by TGF-β1 in vitro.
     2. These findings show that, during the early stage of BMSC chondrogenic differentiation, mciroRNA130a expression was specifically repressed, suggesting a role in differentiation of rat bone mesenchymal stromal cells.
     3. Hulth method can establishes a model of osteoarthritis.
引文
[1]Lee OK, Kuo TK, Chen WM, Lee KD, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood[J]. Blood,2004,103:1669-1675.
    [2]De Bari C, Dell'Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial-membrane[J]. Arthritis Rheum,2001,44:1928-1942.
    [3]Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279-4295.
    [4]Park J, Gelse K, Frank S, et al. Transgene-activated mesenchymal cells for articular cartilage repair:a comparison of primary bone marrow-, perichondrium/periosteum-and fat-derived cells[J]. J Gene Med,2006,8:112-125.
    [5]Koga H, Muneta T, Nagase T, Nimura A, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis:suitable conditions for cell therapy of cartilage defects in rabbit[J]. Cell Tissue Res,2008,333:207-215.
    [6]Dominici, M., Le Blanc, K., Mueller, I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy,2006,8:315-317.
    [7]Csaki, C., Matis, U., Mobasheri, A., et al. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells:a biochemical, morphological and ultrastructural study[J]. Histochem. Cell Bio,2007,1(128):507-520.
    [8]Lange, C., Schroeder, J., Stute, N., et al. High-potential human mesenchymal stem cells[J]. Stem Cells Dev,2005,14:70-80.
    [9]Shakibaei, M., Schroter-Kermani, C., Merker, H.J., Matrix changes during long-term cultivation of cartilage (organoid or high-density cultures). Histol. Histopathol,1993,8:463-470.
    [10]Shakibaei, M., De Souza, P., Merker, H.J.. Integrin expression and collagen type Ⅱ implicated in maintenance of chondrocyte shape in monolayer culture:an immunomorphological study[J]. Cell Biol. Int,1997,21:115-125.
    [11]Pittenger, M.F., Mackay, A.M., Beck, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284:143-147.
    [12]Yang IH, Kim SH, Kim YH, et al. Comparison of phenotypic characterization between "alginate bead" and "pellet" culture systems as chondrogenic differentiation models for human mesenchymal stem cells[J]. Yonsei Med J,2004Oct 31,45(5):891-900.
    [13]Caplan A.I. Mesenchymal stem cells[J]. J. Orthop. Res,1991,9:641-650.
    [14]Johnstone B, Hering TM, Caplan Al, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells[J]. Exp Cell Res,1998,238:265-272.
    [15]Longobardi, L., O'Rear, L., Aakula, S., et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence ofTGF-beta signaling[J]. J. Bone. Miner. Res.,2006,21:626-636.
    [16]Knippenberg, M., Helder, M.N., Zandieh Doulabi, B., et al. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells[J]. Biochem. Biophys. Res. Commun,2006,342:902-908.
    [17]Schmitt, B., Ringe, J., Haupl, T., et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture[J]. Differentiation,2006,71:567-577.
    [18]Derfoul, A., Perkins, GL., Hall, D.J., Tuan, R.S.. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes[J]. Stem cells,2006,24:1487-1495.
    [19]Merritt WM, Lin YG, Han LY, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer[J].N Engl J Med.2008 Dec 18,359(25):2641-2650.
    [20]Carlberg, A.L., Pucci, B., Rallapalli, R., et al. Efficient chondrogenic differentiation of mesenchymal cells in micromass culture by retroviral gene transfer of BMP-2[J]. Differentiation 2001,67:128-138.
    [21]Csaki, C0, Matis, U., Mobasheri, A., Ye, H., Shakibaei, M.. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells:a biochemical, morphological and ultrastructural study[J]. Histochem. Cell Biol.,2007,128:507-552
    [22]Denker, A.E., Haas, A.R., Nicoll, S.B., Tuan, R.S.. Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells:I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures[J]. Differentiation, 1999,64:67-76.
    [23]Kobayashi T, Lu J, Cobb BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation[J]. Proc Natl Acad Sci U S A.2008 Feb 12,105(6):1949-1954.
    [24]Sorrentino A, Ferracin M, Castelli G, et al. Isolation and characterization of CD146+multipotent mesenchymal stromal cells[J]. Exp Hematol.2008 Aug,36(8):1035-1046.
    [25]Yoshida CA, Yamamoto H, Fujita T, et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog[J].Genes Dev.2004 Apr 15,18(8):952-963.
    [26]Pond MJ, Nuki G. Experimentally induced osteoarthritis in the dog[J]. Ann Rheum Dis,1973,32:387-388.
    [27]Moskowitz RW, Davis W, Sammarco L, et al. Experimentally induced degenerative jointlesions following partial meniscectomy in the rabbit[J]. Arhritis Rheum,1973,16:397-405.
    [28]施新猷,主编.现代医学实验动物学.北京:人民军医出版社,2000:9.
    [29]白希壮,任继尧.选择性臀肌切断诱发骨关节炎实验模型[J].中华骨科杂志,1994,14(2):118-120.
    [30]Marijnissen ACA Van Roermund PM, et al. The canine "groove" model, compared with the ACLT model of osteoarthritis[J]. Osteoarthritis and Cartilage,2002,10:145-155.
    [31]Havdtup T, Telhag H, et al. Papain induced changes in the knee joints of adult rabbits[J]. Acta Orthop Scand,1977,48:143.
    [32]Silberberg M, Silberberg R. Effects of a high fat diet on the joint of aging mice[J]. Arch Pathol,1950,50:828-846.
    [33]Lippiello L, Fienhold M, et al. Metabolic and ultrastmctural changes in articular cartilage of rats fed dietary supplements of omega-3 fatty acids[J]. Arthritis Rheum, 1990,33:1029-1036.
    1. [1]Buckwalter J.A. and Martin J.A. Osteoarthritis[J]. Adv Drug Deliv Rev, 2006,58,150-167.
    2. [2]Roach H.I., Aigner T., Soder S., et al. Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets[J]. Curr Drug Targets,2007,8, 271-282.
    3. [3]Goldring M.B. and Goldring S.R.. Osteoarthritis[J]. J. Cell Physiol,2007,213: 626-634.
    4. [4] Mobasheri A, Csaki C, Clutterbuck AL, et al. Mesenchymal stem cells in connective tissue engineering and regenerative medicine:applications in cartilage repair and osteoarthritis therapy[J]. Histol Histopathol,2009,24(3):347-366.
    5. [5] Sledge, S.L.. Microfracture techniques in the treatment of osteochondral injuries[J]. Clin. Sports Med.2001,20:365-377.
    6. [6] Hangody, L., Feczko, P., Bartha, L., et al. Mosaicplasty for the treatment of articular defects of the knee and ankle[J]. Clin. Orthop. Relat. Res., 2001a,391(Suppl.):s328-s336.
    7. [7]Brittberg M., Lindahl A., Nilsson A., et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation[J]. N. Engl. J. Med., 1994,331:889-895.
    8. [8]Grande D.A., Pitman M.I., Peterson L., et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation[J]. J. Orthop. Res,1989,7:208-218.
    9. [9]Brittberg M., Nilsson A., Lindahl A., et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes[J]. Clin. Orthop. Relat. Res, 1996,326:270-283.
    10. [10]Rahfoth B., Weisser J., Sternkopf F., et al. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits[J]. Osteoarthritis Cartilage,1998,6:50-65.
    11. [11]Dell'Accio F., Vanlauwe J., Bellemans J., et al. Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation[J]. J. Orthop. Res,2003,21:123-131.
    12. [12]Peterson L., Brittberg M., Kiviranta I., et al. Autologous chondrocyte transplantation biomechanics and long-term durability[J]. Am. J. Sports Med, 2002,30:2-12.
    13. [13]Peterson L., Minas T., Brittberg M., et al. Two-to 9-year outcome after autologous chondrocyte transplantation of the knee[J]. Clin. Orthop. Relat. Res. 2000,374:212-234.
    14. [14]Brittberg M., Peterson L., Sjogren-Jansson E., et al. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments[J]. J. Bone Joint Surg. Am.,2003,85-A,Suppl 3:109-115.
    15. [15]Marlovits S., Hombauer M., Truppe M., et al. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes[J]. J. Bone Joint Surg. Br.,2004,86:286-295.
    16. [16]Jenniskens Y.M., Koevoet W., de Bart A.C., et al. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFbeta2 and FGF2[J]. Osteoarthritis Cartilage,2006,14:1136-1146.
    17. [17] Schulze-Tanzil, G., de Souza, P., Villegas Castrejon, H., et al. Redifferentiation of dedifferentiated human chondrocytes in hige-density cultures[J]. Cell Tissue Res,2002,308:371-379.
    18. [18] Shakibaei, M., Seifarth, C., John, T., et al. Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro:molecular association between Sox9 and Erkl/2[J]. Biochem. Pharmacol,2006,72:1382-1395.
    19. [19] Jakobsen RB, Engebretsen L, Slauterbeck JR. An analysis of the quality of cartilage repair studies[J]. J Bone Joint Surg Am,2005,87:2232-2239.
    20. [20] Kuettner, K.E.. Biochemistry of articular cartilage in health and disease[J]. Clin. Biochem.,1992,25:155-163.
    21. [21] Cancedda, R., descalzi Cancedda, F., Castagnola, P.. Chondrocyte differentiation. Int. Rev. Cytol,1995,159:265-358.
    22. [22] Kuo, C.K., Li, W.J., Mauck, R.L., et al. Cartilage tissue engineering:its potential and uses[J]. Curr. Opin. Rheumatol.,2006,18:64-73.
    23. [23]Helder, M.N., Knippenberg, M., Klein-Nulend, J., et al. Stem cells from adipose tissue allow challenging new concepts for regenerative medicine[J]. Tissue Eng,2007,13:1799-1808.
    24. [24] Wakitani S, Mitsuoka T, Nakamura N, et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae:two case reports[J]. Cell Transplant,2004,13:595-600.
    25. [25] Yan H, Yu C. Repair of full-thickness cartilage defects with cells of different origin in a rabbit model[J]. Arthroscopy,2007,23:178-187.
    26. [26] Tuli R., Li W.J. and Tuan R.S. Current state of cartilage tissue engineering[J]. Arthritis Res. Ther,2003,5:235-238.
    27. [27]Facchini A, Lisignoli G, Cristino S et al. Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold[J]. Biorbeology, 2006,43:471-480.
    28. [28]Grigolo B, Roseti L, Fiorini M, et al. Transplantation of chondrocytes seeded on a hyaluronan derivative(hyaff-ll) into cartilage defects in rabbits[J]. Biomaterials,2001,22:2417-2424.
    29. [29]Wu YN, Yang Z, Hui JH et al. Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells[J]. Biomaterials,2007,28:4056-4067.
    30. [30]Uebersax L, Merkle HP, Meinel L. Insulinlike growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells[J]. J. Control Release,2008,127:12-21.
    31. [31]Shakibaei M., Seifarth C., John T., Rahmanzadeh M. and Mobasheri A. Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro: molecular association between Sox9 and Erkl/2[J]. Biochem. Pharmacol., 2006,72:1382-1395.
    32. [32] Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hemato.1976,14:267-274
    33. [33] Ashton BA, Allen TD, Howlett CR, et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo[J]. Clin Orthop Relat Res, 1980,313:294-307
    34. [34] Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells[J]. Exp Cell Res,1998, 238:265-272
    35. [35] Sekiya I, Colter DC, Prockop DJ. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells[J]. Biochem Biophys Res Commun,2001,284:411-418
    36. [36] Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ. Comparison of effect of BMP-2,-4, and-6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma[J]. Cell Tissue Res,2005,320:269-276.
    37. [37] Dominici, M., Le Blanc, K., Mueller, I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The Internaional Society for Cellular Therapy position statement[J]. Cytotherapy,2006,8:315-317.
    38. [38] Csaki, C., Schneider, P.R.A, Shakibaei, M. Mesenchymal stem cells as a potential pool for cartiage tissue engineering[J]. Ann Anat,2008,190:395-412.
    39. [39] Bieback, K., Kern, S., Kluter, H., et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood[J]. Stem cells, 2004,22:625-634.
    40. [40]Im, G.I., Shin, Y.W., Lee, K.B.. Do adipose tissue-derived mesenchymal stem cells habe the same osteogenic and chondrogenic potential as bone marrow-derived cells? [J]Osteoarthritis Cartilage,2005,13:845-853.
    41. [41]Pittenger, M.F., Machay, A.M., Beck, S.C., et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284:143-147.
    42. [42] Zhou, S., Eid, K., Glowacki, J.. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells[J]. J. Bone Miner. Res.,2004,19:463-470.
    43. [43] Jian, H., Shen, X., Liu, I., et al. Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta 1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells[J]. Genes Dev, 2006,20:666-674.
    44. [44] Longobardi, L., O'Rear, L., Aakula, S., et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling[J]. J. Bone. Miner. Res.2006,21:626-636.
    45. [45] Shakibaei, M., Seifarth, C, John, T., et al. Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro:molecular association between Sox9 and Erkl/2[J]. Biochem. Pharmacol.2006,72:1382-1395.
    46. [46]Murphy JM et al. Stem cell therapy in a caprine model of osteoarthritis[J]. Arthritis Rheum,2003,48:3464-3474
    47. [47]Lee KB et al. Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model[J]. Stem Cells,2007,25:2964-2971
    48. [48] Chen X et al.Mesenchymal stem cells in immunoregulation[J]. Immunol Cell Biol,2006,84:413-421.
    49. [49]Uccelli A et al. Mesenchymal stem cells:a new strategy for immunosuppression? Trends Immunol[J],2007,28:219-226.
    50. [50]Kan I et al. Autotransplantation of bone marrowderived stem cells as a therapy for neurodegenerative diseases[J]. Handb Exp Pharmacol, 2007,180:219-242.
    51. [51] Wakitani, S., Imoto, K., Yamamoto, T., et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees[J]. Osteoarthritis Cartilage,2002,10:199-206.
    52. [52]Wakitani S, Nawata M, Tensho K, et al. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation:three case reports involving nine defects in five knees[J]. J Tissue Eng Regen Med,2007,1:74-79.
    53. [53]Kuroda R, Ishida K, Matsumoto T, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells[J]. Osteoarthritis Cartilage,2007,15:226-231.
    54. [54]Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defectswith the use of autologous bone marrow stromal cells[J]. N Engl J Med, 2001,344:385-386.
    55. [55]Gangji V, Hauzeur JP. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells[J]. Surgical technique. J Bone Joint Surg Am,2005,87:106-112.
    56. [56]Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta[J]. Nat Med,1999,5:309-313.
    57. [57]Di NM, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood,2002,99:3838-3843.
    58. [58]Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. Exp Hematol,2002,30:42-48.
    59. [59]Krampera M,Glennie S,Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide[J]. Blood,2003,101:3722-3729.
    60. [60]Majumdar MK, Thiede MA, Haynesworth SE, et al. Humanmarrowderived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages[J]. J Hematother Stem Cell Res,2000,9:841-848.
    61. [61]Maitra B, Szekely E,Gjini K, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation[[J]. Bone Marrow Transplant,2004,33:597-604.
    62. [62]Dean RM, Bishop MR. Graft-versus-host disease:Emerging concepts in prevention and therapy[J]. Curr Hematol Rep,2003,2:287-294.
    63. [63]Koc ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy[J]. J Clin Oncol,2000,18:307-316.
    64. [64]Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients[J]. Biol Blood Marrow Transplant, 2005,11:389-398.
    65. [65]Ringden O, Uzunel M, Rasmusson I, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease[J]. Transplantation, 2006,81:1390.-1397.
    66. [66]Makino S, Fukuda K, Miyoshi S, et al.Cardiomyocytes can be generated from marrow stromal cells in vitro[J]. J Clin Invest,1999,103:697-705.
    67. [67]Shake JG,Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model:Engraftment and functional effects[J]. Ann Thorac Surg,2002,73:1919-1925.
    68. [68]Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy[J]. Circulation 2005,112:1128-1135.
    69. [68]Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction[J]. Am J Cardiol 2004,94:92-95.
    70. [70]Kinnaird T, Stabile E, Burnett MS, et al. Marrowderived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms[J]. Circ Res 2004,94:678-685.
    71. [71]Kusenda, B., Mraz, M., et al. MicroRNA biogenesis, functionality and cancer relevance[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2006,150:205-215.
    72. [72]Mattaj, I. W., Tollervey, et al. Small nuclear RNAs in messenger RNA and ribosomal RNA processing[J]. Faseb J,1993,7:47-53.
    73. [73]Bachellerie, J. P., Cavaille, J. & Huttenhofer, A. The expanding snoRNA world[J].Biochimie,2002,84:775-790.
    74. [74]Ambros, V., Lee, et al. MicroRNAs and other tiny endogenous RNAs in C. elegans[J]. Curr Biol,2003,13:807-18.
    75. [75]Du, T. & Zamore, P. D. microPrimer:the biogenesis and function of microRNA[J]. Development,2005,132:4645-4652.
    76. [76]Lim, L. P., Glasner, et al. Vertebrate microRNA genes[J]. Science,2003,299:1540.
    77. [77]Reinhart, B. J., Slack, F. J., et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403,901-906.
    78. [78]Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J]. Cancer Res,2005,65:6029-6033.
    79. [79]Cai, X., Hagdom, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs[J]. RNA,2004,10:1957-1966.
    80. [80]Bushati, N. & Cohen, S. M. microRNA functions[J]. Annu Rev Cell Dev Biol,2007,23:175-205.
    81. [81]Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs[J]. RNA,2004,10:185-191.
    82. [82]Chendrimada, T. P., Gregory, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing[J]. Nature,2005,436:740-744.
    83. [83]Hammond, S. M., Bernstein, E., et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature,2000, 404:293-296.
    84. [84]Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science,2002,297:2056-2060.
    85. [85]Lewis, B. P., Shih I. H., et al. Prediction of mammalian microRNA targets[J]. Cell,2003,115:787-798.
    86. [86]Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation[J]. Dev Biol,1999,216:671-680.
    87. [87]Engels, B. M. & Hutvagner, G. Principles and effects of microRNA-mediated post-transcriptional gene regulation[J]. Oncogene,2006,25:6163-6169.
    88. [88]Bhattacharyya, S. N., Habermacher, R., et al. Relief of microRNA-mediated translational repression in human cells subjected to stress[J]. Cell,2006,125: 1111-1124.
    89. [89]Lau, N. C., Lim, L. P., et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans[J]. Science,2001,294:858-862.
    90. [90]Krek, A., Grun, D., Poy, M. N., et al. Combinatorial micro-RNA target predictions[J]. Nat Genet,2005,37:495-500.
    91. [91]Ambros V, Lee RC, Lavanway A, et al. MicroRNAs and other tiny endogenous RNAs in C. elegans[J]. Curr Biol,2003;13:807-818.
    92. [92] Wulczyn FG, Smirnova L, Rybak A, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification[J]. FASEB J,2007;21:415-426.
    93. [93] Obernosterer G, Leuschner PJ, Alenius M, et al. Post-transcriptional regulation of microRNA expression[J]. RNA,2006,12:1161-1167.
    94. [94]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci USA,2002,99:15524-15529.
    95. [95] Michael MZ, SM OC, van Holst Pellekaan NG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia[J]. Mol Cancer Res,2003,1:882-891.
    96. [96]Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma[J] JAMA,2008,299:425-436.
    97. [97]Lee EJ, Gusev Y, Jiang J,et al. Expression profiling identifies microRNA signature in pancreatic cancer[J]. Int. J.Cancer,2007,120:1046-1054.
    98. [98]Makunin IV, Pheasant M, Simons C, et al. Orthologous microRNA genes are located in cancerassociated genomic regions in human and mouse[J]. PLoS ONE, 2007,2:e1133.
    99. [99]Chuang JC, Jones PA. Epigenetics and microRNAs[J]. Pediatr Res,2007,61:24R-29R.
    100.[100] Michael MZ, SM OC, van Holst Pellekaan NG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia[J]. Mol Cancer Res, 2003,1:882-891.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700