Fas信号激活树突状细胞炎性复合体形成的生物学意义与分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fas(CD95/Apo-1)属于肿瘤坏死因子(TNF)受体超家族,一旦和其配体FasL或者活化性抗体相互作用后便能够触发细胞的凋亡。Fas介导的细胞凋亡在维持脑、眼睛和睾丸器官的免疫自稳和免疫豁免中起着至关重要的作用。Fas介导的细胞凋亡既往被认为是一个非炎症性的过程,能够引起免疫反应和炎症反应的消退。然而,越来越多的实验表明Fas也能够启动触发增殖性的和活化性的信号来促进炎症反应。已有报告显示,Fas信号能够引起一些趋化性细胞因子和炎性细胞因子的分泌。例如,Fas信号能够引起树突状细胞(dendritic cells, DCs)、早期人胎星形胶质细胞(early passage fetal human astrocytes)和人血管平滑肌细胞分泌趋化性细胞因子。而且,Fas信号也能促进巨噬细胞、纤维母细胞、上皮细胞和滑膜细胞分泌炎性细胞因子如肿瘤坏死因子α(tumor necrosis factorα, TNF-α)、IL-6和IL-8。另外,Fas信号也能引起关键性炎性细胞因子IL-1β的分泌,但其机制尚不清楚。
     与其他炎症性细胞因子不同的是,IL-1p是以前体的形式存在于细胞浆中的,其被Caspase-1加工、剪接后方能成为有活性的成熟形式。IL-18和IL-33也需要经过Caspase-1的加工、剪接才能成为有活性的成熟形式。最近几年的大量研究表明Caspase-1的活化需要一个称为炎性复合体(inflammasome)的分子复合物的参与。炎性复合体能识别特定的配体包括MDP (muramyl dipeptide)、ATP和尿酸,最终导致分子复合物构象改变和Caspase-1的激活。危险信号分子ATP受到关注较多,它能够结合P2X7R (purinergic P2X7 receptor)而激活NALP3炎性复合体。NLR(NOD-like receptor)家族成员包括NALP3、NALP1或IPAF参与识别危险信号以及PAMP (pathogen-associated molecular pattern)。
     DCs是体内已知的效能最强的抗原提呈细胞,在启动免疫应答的过程中起着至关重要的作用。多个研究表明,DCs细胞表面表达Fas但抵抗Fas介导的凋亡,而且不依赖于它们的成熟状态。这可能和DCs高表达凋亡抵抗蛋白FLIP(FLICE-inhibitory protein)相关。我们实验室以往的研究也证明Fas信号作用于DCs后诱导了DCs的成熟和存活。因此,Fas信号在DCs中触发了不同于经典凋亡途径的信号转导,其不诱导DCs凋亡可能对于DCs在体内免疫应答启动的关键步骤即抗原提呈中发挥重要作用是有益的,但是,对于其详细的作用机制仍不甚了解。
     我们实验室以往的研究显示Fas信号能够诱导DCs分泌IL-1β,这提示我们Fas信号可能和炎性复合体存在关联。在本研究中,我们发现Fas的活化性抗体Jo-2作用于DCs后,引起内源性的ATP释放。释放的ATP以自分泌的方式作用于DCs细胞表面的P2X7R,触发胞内信号转导引起NALP3炎性复合体的激活,最终导致
     Caspase-1的活化、IL-1β的加工剪接与分泌,导致DCs的成熟与活化。
     1.Fas信号通过激活NALP3炎性复合体而诱导DCs分泌IL-1β
     为详细全面地研究Fas信号对DCs功能的影响,我们首先检测了Fas信号是否诱导DCs的凋亡。在我们的试验体系中,我们使用Fas的活化性抗体Jo-2作用于经CD11c磁珠阳性分选过的DCs。与以前的报道结果一样,我们发现imDCs(immatureDCs)和mDCs(mature DCs)均对Fas介导的细胞凋亡不敏感,高浓度的Jo-2作用24h也不能诱导DCs的凋亡。而作为阳性对照的胸腺细胞对Jo-2诱导的凋亡很敏感,并且Fas缺陷小鼠来源的胸腺细胞对Jo-2诱导的细胞凋亡表现为抵抗。这说明与胸腺细胞不同,小鼠来源的DCs无论成熟状态与否均对Fas介导的细胞凋亡不敏感。
     接着我们观察了Jo-2对DCs分泌细胞因子的影响。结果发现Jo-2不能诱导炎性细胞因子TNF-α和IL-6的分泌,但能够特异性地诱导IL-1β的分泌,对照抗体对细胞因子分泌没有任何影响,FasL诱导细胞因子分泌的效应和Jo-2相似。Jo-2诱导的IL-1β分泌可以被Caspase-1特异性的抑制剂YVAD所抑制。我们利用Westernblot的方法证实了Jo-2作用于DCs后可以引起Caspase-1的活化,由于Caspase-1的活化是炎性复合体激活的标志,这提示Fas信号和炎性复合体相关联。有趣的是,我们发现DCs用LPS处理16h后再用Jo-2刺激6h可以更加显著地增强IL-1β的分泌,并且Jo-2的此种增强效应可以被Caspase-1特异性的抑制剂YVAD或者ATP通道拮抗剂oATP所抑制。众所周知,LPS可以显著促进NALP3炎性复合体前体成分的合成,Jo-2的这种显著增强LPS处理过DCs分泌IL-1β的效应显然和炎性复合体的活化有关并且和ATP密切关联。
     为了进一步明确Fas信号和炎性复合体的关系,我们利用实时定量PCR的方法检测了Jo-2对炎性复合体成分表达的影响。结果发现,Jo-2可以明显促进NALP3炎性复合体中NALP3和IL-1β的表达,而对ASC和Caspase-1的表达没有影响。而且Jo-2诱导的NALP3和IL-1βmRNA的表达可以被NF-κB特异性抑制剂PDTC所抑制,这提示Jo-2通过活化NF-κB信号通路来促进炎性复合体相关成分的表达。我们利用Western blot的方法证实了Jo-2作用于DCs后可以引起NF-κB上游抑制蛋白IκB的磷酸化以及降解,这就导致NF-κB与IκB的解离,并使得NF-κB进入细胞核中与相应的靶序列结合促进基因的表达。为了进一步明确Fas信号与NALP3炎性复合体的关系,我们利用基因沉默的方法干扰NALP3炎性复合体相关成分的表达,然后观察Jo-2诱导的IL-1β分泌是否依赖于NALP3炎性复合体。结果发现,用siRNA干扰NALP3炎性复合体的表达后,LPS和Jo-2诱导的IL-1β分泌受到明显的抑制。表明Fas信号诱导的IL-1β分泌是通过NALP3炎性复合体来实现的。
     2.Fas信号通过促进内源性ATP的释放而激活NALP3炎性复合体
     由于我们的试验结果提示Jo-2诱导的IL-1β分泌和ATP相关,因此我们进一步·用报告基因的方法检测了Fas信号对ATP分泌的影响。结果发现LPS能够引起ATP的释放,而FasL或Jo-2刺激能够引起大量的ATP释放,pan Caspase抑制剂zVAD对Jo-2引起的ATP分泌没有影响,但ATP酶的抑制剂ARL能够增强Jo-2引起的ATP分泌一倍左右。这提示Jo-2能够引起内源性的ATP释放,并和细胞死亡没有关联。相应的,我们也发现LPS和Jo-2能够IL-1p的分泌,并且被pan Caspase抑制剂zVAD抑制,这可能和Caspase-1活化受抑制有关。而ARL相应的增强IL-1β的产生。LDH释放结果显示LPS和Jo-2不能引起LDH的释放,以上结果提示Jo-2在不影响细胞存活的情况下能够特异性诱导细胞内源性的ATP释放。
     胞外的ATP作用于细胞表面的P2X7R后能够触发细胞内的信号转导通路,最终引起NALP3炎性复合体的活化。我们接下来研究了P2X7R在Fas信号诱导IL-1β分泌中的作用。我们发现预处理P2X7R抑制剂后,Jo-2诱导的IL-1p分泌受到明显的抑制,同时伴随着DCs的成熟(lab,CD86)也受到抑制。我们通过试验证实了IL-1β在Jo-2诱导的DCs成熟中起着至关重要的作用,而P2X7R抑制剂即是通过抑制IL-1β分泌来影响Jo-2诱导的DCs成熟。
     接下来我们研究了ATP作用于DCs后引起的细胞信号通路变化。我们通过Western blot的方法证实了Jo-2作用于DCs后可以引起ERK信号通路显著活化。而给予P2X7R抑制剂后能够剂量依赖性的降低Jo-2引起的ERK信号通路的活化以及Caspase-1的活化,这提示ATP信号作用于ERK和Caspase-1的上游。另外,给予ERK信号通路抑制剂PD98059能剂量依赖性的抑制ERK以及Caspase-1的活化,可见ERK信号作用于Caspase-1的上游。相应的PD98059和Caspase-1特异性的抑制剂YVAD能够特异性的抑制IL-1β的分泌和DCs的成熟。综上,ATP-P2X7R-ERK-Caspase-1通路在Fas信号诱导DCs分泌IL-1β以及由其引起的DCs成熟中发挥着至关重要的作用。
     3.Fas信号通过诱导内源性ATP释放和IL-1β产生而参与DC激活T细胞的作用
     体内ATP的来源一直不是很清楚,因为ATP一旦分泌到细胞外便被胞外的ATP酶迅速降解,其浓度受到严格的控制。由于我们发现Fas信号可以促进大量ATP的释放,而DC-T相互作用时也有FasL-Fas之间的相互作用,因此我们推测在DC-T相互作用时可能会引起大量ATP的释放并参与DC-T相互作用。
     我们在抗原肽特异性T细胞增殖体系中研究了DC-T相互作用时ATP可能起的作用。我们在DC-T共培养体系中加入了P2X7R抑制剂KN-62以及ATP酶apyrase,培养48h后检测上清中IL-1β的水平。结果发现KN-62和apyrase能够明显抑制IL-1β的分泌,提示在DC-T相互作用时ATP参与IL-1β的产生。另外,KN-62和apyrase也明显抑制了IL-2和IFN-7的分泌,而且KN-62的抑制效应可以被外源性的重组IL-1β部分逆转。更为重要的是,KN-62和apyrase也能够明显抑制抗原肽特异性的T细胞增殖,而外源性的重组IL-1β可以部分逆转KN-62的抑制效应。这些结果提示ATP参与调控了DC-T相互作用时IL-1β的产生,并间接性的影响其它细胞因子的分泌,最终影响了抗原肽特异性的T细胞的增殖。为了更直接的证明在DC刺激T细胞增殖时有ATP存在与参与,我们用报告基因的方法检测了DC-T培养上清中ATP的分泌情况。结果发现,在抗原肽存在的条件下,一旦DCs和T细胞共孵育,上清中ATP的浓度迅速增高,在第四个小时达到高峰(约100nM),然后迅速回落,维持在50nM左右的水平达40个小时以上。DCs的Fas缺陷对ATP分泌的高峰没有影响,但在维持后期ATP的浓度时发挥重要作用。另外,培养上清中的LDH没有观察到明显的释放。可见,在DCs刺激T细胞增殖时有高浓度的ATP存在并发挥重要作用,而DCs的Fas信号在ATP的释放中也起关键作用。
     综上所述,Fas信号可以通过促进DCs内源性ATP的释放从而触发ATP-P2X7R-ERK-Caspase-1-IL-1β通路导致IL-1β的成熟、释放,释放后的IL-1β可以以自分泌的方式作用于DCs本身促进DCs的成熟与活化,最终促进抗原特异性T细胞的增殖。本研究发现了Fas信号参与炎症反应的直接证据,对于DCs参与免疫调控提出了新的学术观点,将有助于更好地理解FasL-Fas系统与炎症之间错综复杂的关系以及为某些炎症性临床疾病发病机制的研究提供了理论基础,也为相关疾病的治疗提供了潜在的靶标。
Fas (CD95/Apo-1), a representative of tumor necrosis factor (TNF) receptor superfamily, triggers cell apoptosis following engagement by Fas ligand (FasL, CD95 ligand, TNFSF6) or by agonistic anti-Fas antibodies. It is generally accepted that Fas-mediated apoptosis is essential for the maintenance of immune homeostasis and immune privilege in brain, eye and testis. Fas-mediated apoptosis is considered to be a non-inflammatory process, leading to the resolution of immune and inflammatory responses. However, accumulating evidence indicates that Fas also initiates proliferative and activating signals, contributing to inflammatory responses. It is now well established that Fas signal can trigger the secretion of chemotactic factors and proinflammatory cytokines. Fas ligation has been reported to stimulate chemokine production by dendritic cells (DCs), early passage fetal human astrocytes and human vascular smooth muscle cells. Moreover, Fas also triggers the production of inflammatory cytokines such as TNFa, IL-6 and IL-8 in macrophages, fibroblasts, epithelial cells and synoviocytes. In addition, activation of CD95 also triggers the secretion of key inflammatory cytokine IL-1β. As yet the mechanisms how Fas ligation triggers the secretion of IL-1βremain elusive.
     In contrast to other inflammatory cytokines, IL-1βis produced as inactive cytoplasmic precursors (pro-IL-1β), which is cleaved by caspase-1 (IL-1β-converting enzyme [ICE]) to its mature active form. IL-18 and IL-33 also need to be processed by caspase-1 to become their active forms as IL-1β. It is well documented that caspase-1 activation requires a molecular complex termed the "inflammasome". Inflammasome recognizes specific ligands such as muramyl dipeptide, ATP or uric acid, leading to conformational change of the complex and activation of caspase-1. ATP, a well known danger signal, binds purinergic P2X7 receptor (P2X7R) to trigger NALP3 inflammasome activation. NOD-like receptor family members such as NALP3, NALP1 or IPAF is responsible for the detection of the danger signals or PAMPs (pathogen-associated molecular patterns).
     Dendritic cells (DCs) are professional antigen-presenting cells (APCs), which are crucial for initiating immune responses. Several studies have demonstrated that DCs, irrespective of their maturation state, are resistant to Fas-mediated apoptosis even though the existence of Fas on the surfaces of DCs. Increased expression of the anti-apoptotic protein FLICE-inhibitory protein (FLIP) may account for the resistance of DCs to Fas-mediated apoptosis. Our previous studies also showed that Fas ligation induces DCs maturation and survival instead of apoptosis. Thus, Fas signals an alternative pathway rather than the classical apoptotic signaling pathway in DCs, which may benefit DCs to fulfill antigen presentation in initiating immune response in vivo. However, Fas-triggered non-apoptotic signaling pathway in DCs remains unclear.
     Our previous studies showed that Fas ligation on DCs triggers the secretion of IL-1p, and this encourages us to explore whether Fas signal induces inflammasome assembly. In the present study, we demonstrate that Fas ligation by the agonistic anti-Fas monoclonal antibody (mAb) Jo-2 causes the release of endogenous ATP from DCs. Then the released ATP activates P2X7R in DCs via autocrine loop and subsequently triggers a series of signaling pathway that induces NALP3 inflammasome activation, leading to IL-1βsecretion and maturation of DCs.
     1. Fas signal induces IL-1βsecretion from DCs by activating NALP3 inflammasome
     To investigate the role of Fas signal in DCs functions, we first tested whether Fas signal induces apoptosis in DCs. In our experimental context, we used the agonistic anti-Fas monoclonal antibody (mAb) Jo-2 to stimulate CD11c positive DCs derived from bone marrow. In accordance with previous studies, we found that Jo-2, even in a high concentration with 24 hours incubation, failed to induce apoptosis in both immature DCs (imDCs) and mature DCs (mDCs). In contrast, the thymocytes, as positive control, were sensitive to Jo-2-induced cell apoptosis, but not thymocytes from Fas deficient mice. These results suggest that DCs, irrespective their maturation state, were not sensitive to Fas-mediated apoptosis.
     We next examined the effects of Jo-2 on the cytokine production from DCs. We showed that Jo-2 specifically elicited IL-1βproduction but not TNF-a or IL-6 from DCs. The control antibody showed no any effects on cytokine production from DCs. FasL showed similar effects on cytokine production from DCs as Jo-2. Interestingly, IL-1βproduction induced by Jo-2 stimulation could be inhibited by Caspase-1 specific inhibitor YVAD. We confirmed the Caspase-1 activation induced by Jo-2 stimulation using Western blot assay. Since the Caspase-1 activation is a hallmark of inflammasome activation, we presumed a link between Fas signal and inflammasome in DCs. More interestingly, we found that Jo-2 stimulation induced a striking increase in IL-1βproduction from LPS-primed DCs, and the increase in IL-1βproduction could be inhibited by Caspase-1 specific inhibitor YVAD or ATP channel antagonists. It is well known that LPS turns on the gene expression of components of NALP3 inflammasome. Jo-2 induced large amounts of IL-1βproduction from LPS-primed DCs may be associated with inflammasome activation and ATP channel P2X7R.
     To elucidate the association of Fas signal and inflammasome, we performed Real-time PCR analysis to measure the effects of Jo-2 on inflammasome expression. Real-time PCR analysis showed that Jo-2 increased the expression of NALP3 and IL-1β, but did not affect ASC and Caspase-1 mRNA expression. NF-κB specific inhibitor PDTC blocked the increase in NALP3 and IL-1βmRNA expression induced by Jo-2 stimulation. Therefore, Jo-2 stimulates the expression of NALP3 inflammasome components via NF-κB signaling pathway. We confirmed Jo-2 induced NF-κB activation as evidenced by the phosphorylation and degradation of NF-κB inhibitor protein IκB. To further investigate the relationship of Fas signal and NALP3 inflammasome activation, we measured Jo-2 stimulation induced IL-1βproduction after knockdown of components of NALP3 inflammasome. We found that IL-1βproduction induced by both LPS and Jo-2 was significantly inhibited after knockdown of NALP3 inflammasome components. These results suggest that Fas-signal induced IL-1βproduction was dependent on NALP3 inflammasome.
     2. Fas signal triggers the release of endogenous ATP to activate NALP3 inflammasome
     Since our results indicate that Jo-2 induced IL-1 p secretion was correlated with ATP, we next examined the effects of Fas signal on ATP release using reporter gene assay. We found that LPS elicited ATP release from DCs, whereas FasL or Jo-2 induced large amounts of ATP release that could not be inhibited by pan Caspase inhibitor zVAD. Ecto-ATPase inhibitor ARL increased ATP concentration about two folds. These results suggest that Jo-2 elicited endogenous ATP release which was not correlated with cell death. Accordingly, LPS and Jo-2 induced IL-1βproduction that could be inhibited by pan Caspase inhibitor zVAD, this may associate with Caspase-1 inhibition. ARL increased IL-1βproduction from DCs induced by LPS and Jo-2 stimulation. LDH release assay showed that both LPS and Jo-2 failed to trigger LDH release from DCs. These results demonstrate that Jo-2 specifically elicits endogenous ATP release from DCs without inducing cell death.
     Extracellular ATP engages on P2X7R on cell surface to initiate intracellular signal transduction, leading to NALP3 inflammasome activation. We next focused on the role of P2X7R in Fas signal-induced IL-1βsecretion. Pretreatment DCs with P2X7R specific inhibitors compromised Jo-2-induced IL-1βsecretion and DCs maturation as indicated by lab and CD86 staining. We confirmed the prerequisite role of IL-1βduring Jo-2-induced DCs maturation. Actually, the antagonists of P2X7R inhibited Jo-2-induced DCs maturation via inhibition of IL-1βsecretion.
     We next explored signal transduction pathways in DCs elicited by ATP. Western blot assay showed that Jo-2 stimulation induced potent ERK activation after engagement on DCs. Whereas P2X7R antagonists could reduce Jo-2-induced both ERK and Caspase-1 activation dose dependently, indicating that ATP acted upstream of ERK and Caspase-1. In addition, ERK specific inhibitor PD98059 also inhibited Jo-2-induced both ERK and Caspase-1 activation dose dependently. Therefore, ERK signaled upstream of Caspase-1. Accordingly, both PD98059 and Caspase-1 inhibitor YVAD inhibited IL-1βproduction and DCs maturation. In sum, we showed that the signaling axis ATP-P2X7R-ERK-Caspase-1 was required for Fas signal-induced IL-1βsecretion and DCs maturation.
     3. Fas signal promotes DCs to prime T cells by inducing endogenous ATP release and IL-1βsecretion
     The source of ATP in vivo remains elusive since ATP is quickly degraded by ATPase once secreted into extracelluar compartment. The concentration of ATP is tightly controlled in vivo. Since our results suggested that Fas signal triggered the release of endogenous ATP, we presumed that FasL-Fas cross-linking may play important role in DC-T interaction by inducing ATP release.
     We examined the role of ATP in DC-T interaction by detecting peptide-specific T cell proliferation triggered by peptide-pulsed DCs. We introduced P2X7R antagonist KN-62 and ATPase (apyrase) into the DC-T coculture system. ELISA assay showed that both KN-62 and apyrase significantly inhibited IL-1βproduction during DC-T cognate interaction. In addition, KN-62 or apyrase also impaired the production of IL-2 and IFN-γ, and the inhibitory effects on cytokine production by KN-62 could be partially restored by recombinant IL-1β. More importantly, both KN-62 and apyrase also inhibited peptide specific T cell proliferation, and the inhibition of T cell proliferation by KN-62 could be restored by recombinant IL-1β. These results suggest that ATP involves in the initiation of antigen-specific T cell proliferation via regulation of IL-1βor other cytokine production during DC-T cognate interaction. To directly document the presence of ATP during the priming of T cells by DCs, we measured the ATP level in the supernatants of DC-T co-culture system. We found that ATP was released quickly into the DC-T co-culture supernatant and peaked (approximately 100nM) at four hours in the presence of antigen specific peptide, then decreased and maintained at almost 50nM level for more than 40 hours. Fas signal in DCs was not required for the peak of ATP release but was crucial in the maintenance of ATP concentration in the later period. In addition, we did not found evident LDH release into the DC-T cu-culture supernatant. Therefore, our data showed the presence of ATP during the priming T cells by DCs, and Fas signal in DCs is crucial for ATP release, and consequently Fas signal-induced ATP release may contribute to the priming of T cells by DCs.
     In conclusion, Fas signal triggers the release of endogenous ATP from DCs, which functions in an autocrine manner to initiate the axis ATP-P2X7R-ERK-Caspase-1-IL-1βwith resultant IL-1βsecretion. IL-1βalso acts through an autocrine manner to promote the maturation of DCs, leading to the enhanced proliferation of antigen specific T cells. Our study provides the direct evidence of Fas signal in inflammation and raises new view of DCs in immune regulation. This will contribute to a better understanding of the relationship between FasL-Fas and inflammation, and provide insight into the pathogenesis of inflammation-associated diseases. Moreover, our study might also identify potential targets for therapeutic intervention of inflammation-associated diseases.
引文
[1]Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999; 17: 331-367.
    [2]Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281: 1305-1308.
    [3]Krammer PH. CD95's deadly mission in the immune system. Nature 2000; 407:789-795.
    [4]Restifo NP. Not so Fas:Re-evaluating the mechanisms of immune privilege and tumor escape. Nat Med 2000; 6: 493-495.
    [5]Wajant H, Pfizenmaier K, Scheurich P. Non-apoptotic Fas signaling. Cytokine Growth Factor Rev 2003; 14: 53-66.
    [6]Nagata S, Suda T. Fas and Fas ligand:Ipr and gld mutations. Immunol Today 1995; 16: 39-43.
    [7]Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J. Melanoma cell expression of Fas(Apo-1/CD95) ligand:implications for tumor immune escape. Science 1996; 274: 1363-1366.
    [8]O'Connell J, O'Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996; 184:1075-1082.
    [9]Bonfoco E, Stuart PM, Brunner T, Lin T, Griffith TS, Gao Y, Nakajima H, Henkart PA, Ferguson TA, Green DR. Inducible nonlymphoid expression of Fas ligand is responsible for superantigen-induced peripheral deletion of T cells. Immunity 1998; 9:711-720.
    [10]Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature 1995; 377:630-632.
    [11]Savill J. Apoptosis in resolution of inflammation. Kidney Blood Press Res 2000; 23: 173-174.
    [12]Guo Z, Zhang M, Tang H, Cao X. Fas signal links innate and adaptive immunity by promoting dendritic-cell secretion of CC and CXC chemokines. Blood 2005; 106:
    2033-2041.
    [13]Saas P, Boucraut J, Quiquerez AL, Schnuriger V, Perrin G, splat-Jego S, Bernard D, Walker PR, Dietrich PY. CD95 (Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory responses: a key role in brain inflammation? J Immunol 1999; 162: 2326-2333.
    [14]Schaub FJ, Han DK, Liles WC, Adams LD, Coats SA, Ramachandran RK, Seifert RA, Schwartz SM, Bowen-Pope DF. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat Med 2000; 6: 790-796.
    [15]Park DR, Thomsen AR, Frevert CW, Pham U, Skerrett SJ, Kiener PA, Liles WC. Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macrophages. J Immunol 2003; 170:6209-6216.
    [16]Ahn JH, Park SM, Cho HS, Lee MS, Yoon JB, Vilcek J, Lee TH. Non-apoptotic signaling pathways activated by soluble Fas ligand in serum-starved human fibroblasts. Mitogen-activated protein kinases and NF-kappaB-dependent gene expression. J Biol Chem 2001; 276: 47100-47106.
    [17]Imamura R, Konaka K, Matsumoto N, Hasegawa M, Fukui M, Mukaida N, Kinoshita T, Suda T. Fas ligand induces cell-autonomous NF-kappaB activation and interleukin-8 production by a mechanism distinct from that of tumor necrosis factor-alpha. J Biol Chem 2004;279:46415-46423.
    [18]Sekine C, Yagita H, Kobata T, Hasunuma T, Nishioka K, Okumura K. Fas-mediated stimulation induces IL-8 secretion by rheumatoid arthritis synoviocytes independently of CPP32-mediated apoptosis. Biochem Biophys Res Commun 1996; 228:14-20.
    [19]Miwa K, Asano M, Horai R, Iwakura Y, Nagata S, Suda T. Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med 1998;4:1287-1292.
    [20]Guo Z, Zhang M, An H, Chen W, Liu S, Guo J, Yu Y, Cao X. Fas ligation induces IL-1 beta-dependent maturation and IL-1 beta-independent survival of dendritic cells: different roles of ERK and NF-kappaB signaling pathways. Blood 2003; 102:4441-4447.
    [21]Martinon F, Burns K, Tschopp J. The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of prolL-beta. Mol Cell 2002; 10: 417-426.
    [22]Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 2004; 14:1929-1934.
    [23]Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440:228-232.
    [24]Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440:237-241.
    [25]Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 1995; 267:2000-2003.
    [26]Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23:479-490.
    [27]Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol 2009; 27:229-265.
    [28]Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245-252.
    [29]Ashany D, Savir A, Bhardwaj N, Elkon KB. Dendritic cells are resistant to apoptosis through the Fas (CD95/APO-1) pathway. J Immunol 1999; 163: 5303-5311.
    [30]Hasebe H, Sato K, Yanagie H, Takeda Y, Nonaka Y, Takahashi TA, Eriguchi M, Nagawa H. Bcl-2, Bcl-xL and c-FLIP(L) potentially regulate the susceptibility of human peripheral blood monocyte-derived dendritic cells to cell death at different developmental stages. Biomed Pharmacother 2002; 56:144-151.
    [31]Willems F, Amraoui Z, Vanderheyde N, Verhasselt V, Aksoy E, Scaffidi C, Peter ME, Krammer PH, Goldman M. Expression of c-FLIP(L) and resistance to CD95-mediated apoptosis of monocyte-derived dendritic cells:inhibition by bisindolylmaleimide. Blood 2000; 95:3478-3482.
    [32]Leverkus M, Walczak H, McLellan A, Fries HW, Terbeck G, Brocker EB, Kampgen E. Maturation of dendritic cells leads to up-regulation of cellular FLICE-inhibitory protein and concomitant down-regulation of death ligand-mediated apoptosis. Blood 2000; 96:
    2628-2631.
    [33]Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galan JE, Askenase PW, Flavell RA. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 2006; 24:317-327.
    [34]Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH. Fas transduces activation signals in normal human T lymphocytes. J Exp Med 1993; 178:2231-2235.
    [35]Jenkins M, Keir M, McCune JM. Fas is expressed early in human thymocyte development but does not transmit an apoptotic signal. J Immunol 1999; 163:1195-1204.
    [36]Mapara MY, Bargou R, Zugck C, Dohner H, Ustaoglu F, Jonker RR, Krammer PH, Dorken B. APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression. Eur J Immunol 1993; 23:702-708.
    [37]Aggarwal BB, Singh S, LaPushin R, Totpal K. Fas antigen signals proliferation of normal human diploid fibroblast and its mechanism is different from tumor necrosis factor receptor. FEBS Lett 1995; 364: 5-8.
    [38]Rescigno M, Piguet V, Valzasina B, Lens S, Zubler R, French L, Kindler V, Tschopp J, Ricciardi-Castagnoli P. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med 2000; 192:1661-1668.
    [39]Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1 beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004; 20:319-325.
    [40]Humphreys BD, Virginio C, Surprenant A, Rice J, Dubyak GR. Isoquinolines as antagonists of the P2X7 nucleotide receptor: high selectivity for the human versus rat receptor homologues. Mol Pharmacol 1998; 54:22-32.
    [41]Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, Mizukami M, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 2000; 275:15239-15245.
    [42]Heufler C, Koch F, Schuler G. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med 1988; 167: 700-705.
    [43]Koide SL, Inaba K, Steinman RM. Interleukin 1 enhances T-dependent immune responses by amplifying the function of dendritic cells. J Exp Med 1987; 165: 515-530.
    [44]Murgia M, Hanau S, Pizzo P, Rippa M, Di VF. Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem 1993; 268: 8199-8203.
    [45]Elssner A, Duncan M, Gavrilin M, Wewers MD. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol 2004; 172: 4987-4994.
    [46]Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di VF. Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med 1997; 185: 579-582.
    [47]Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1 beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci U S A 2008; 105: 8067-8072.
    [48]Karczewska J, Martyniec L, Dzierzko G, Stepinski J, Angielski S. The relationship between constitutive ATP release and its extracellular metabolism in isolated rat kidney glomeruli. J Physiol Pharmacol 2007; 58: 321-333.
    [49]Joseph SM, Buchakjian MR, Dubyak GR. Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 2003; 278: 23331-23342.
    [50]Behrens CK, Igney FH, Arnold B, Moller P, Krammer PH. CD95 ligand-expressing tumors are rejected in anti-tumor TCR transgenic perforin knockout mice. J Immunol 2001; 166: 3240-3247.
    [51]Chen JJ, Sun Y, Nabel GJ. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 1998; 282:1714-1717.
    [52]Seino K, Kayagaki N, Okumura K, Yagita H. Antitumor effect of locally produced CD95 ligand. Nat Med 1997; 3:165-170.
    [53]Allison J, Georgiou HM, Strasser A, Vaux DL. Transgenic expression of CD95 ligand on
    islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci U S A 1997; 94:3943-3947.
    [54]Petrilli V, Dostert C, Muruve DA, Tschopp J. The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 2007; 19: 615-622.
    [55]Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10: 241-247.
    [56]Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1 beta release by the ATP-gated P2X7 receptor. EMBO J 2006; 25: 5071-5082.
    [57]Pelegrin P, Surprenant A. Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1 beta release through a dye uptake-independent pathway. J Biol Chem 2007; 282: 2386-2394.
    [58]Pfeiffer ZA, Aga M, Prabhu U, Watters JJ, Hall DJ, Bertics PJ. The nucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho. J Leukoc Biol 2004; 75:1173-1182.
    [59]Auger R, Motta I, Benihoud K, Ojcius DM, Kanellopoulos JM. A role for mitogen-activated protein kinase(Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem 2005; 280:28142-28151.
    [60]Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 2007; 282:2871-2879.
    [61]Suzuki I, Martin S, Boursalian TE, Beers C, Fink PJ. Fas ligand costimulates the in vivo proliferation of CD8+ T cells. J Immunol 2000; 165:5537-5543.
    [62]Suzuki I, Fink PJ. The dual functions of fas ligand in the regulation of peripheral CD8+ and CD4+ T cells. Proc Natl Acad Sci U S A 2000; 97:1707-1712.
    [63]Dinarello CA. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 2006; 83: 447S-455S.
    [1]Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124:783-801.
    [2]Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S. Host innate immune receptors and beyond:making sense of microbial infections. Cell Host Microbe 2008; 3:352-363.
    [3]Ye Z, Ting JP. NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 2008; 20:3-9.
    [4]Franchi L, McDonald C, Kanneganti TD, Amer A, Nunez G. Nucleotide-binding oligomerization domain-like receptors:intracellular pattern recognition molecules for pathogen detection and host defense. J Immunol 2006; 177:3507-3513.
    [5]Franchi L, Park JH, Shaw MH, Marina-Garcia N, Chen G, Kim YG, Nunez G. Intracellular NOD-like receptors in innate immunity, infection and disease. Cell Microbiol 2008; 10:1-8.
    [6]Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, Hoffman HM, Hugot JP, Inohara N, Mackenzie A, Maltais LJ, Nunez G, Ogura Y, Otten LA, Philpott D, Reed JC, Reith W, Schreiber S, Steimle V, Ward PA. The NLR gene family: a standard nomenclature. Immunity 2008; 28:285-287.
    [7]Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 2006; 300:349-365.
    [8]Inohara N, Nunez G. NODs:intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 2003; 3:371-382.
    [9]Inohara N, Nunez G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 2001; 20:6473-6481.
    [10]McDonald C, Inohara N, Nunez G. Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 2005; 280:20177-20180.
    [11]Kim YG, Park JH, Shaw MH, Franchi L, Inohara N, Nunez G. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity 2008; 28:246-257.
    [12]Masumoto J, Yang K, Varambally S, Hasegawa M, Tomlins SA, Qiu S, Fujimoto Y, Kawasaki A, Foster SJ, Horie Y, Mak TW, Nunez G, Chinnaiyan AM, Fukase K, Inohara N. Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J Exp Med 2006; 203:203-213.
    [13]Shaw MH, Reimer T, Kim YG, Nunez G. NOD-like receptors (NLRs):bona fide intracellular microbial sensors. Curr Opin Immunol 2008; 20:377-382.
    [14]Martinon F, Tschopp J. Inflammatory caspases and inflammasomes:master switches of inflammation. Cell Death Differ 2007; 14:10-22.
    [15]Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999; 6:1028-1042.
    [16]Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van NK, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA,. Molecular cloning of the interleukin-1 beta converting enzyme. Science 1992; 256:97-100.
    [17]Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J,. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 768-774.
    [18]Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 2004; 117:561-574.
    [19]Arend WP. Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 2008; 223:20-38.
    [20]Lamkanfi M, Kanneganti TD, Van DP, Vanden BT, Vanoverberghe I, Vandekerckhove J, Vandenabeele P, Gevaert K, Nunez G. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics 2008; 7: 2350-2363.
    [21]Keller M, Ruegg A, Werner S, Beer HD. Active caspase-1 is a regulator of unconventional protein secretion. Cell 2008; 132:818-831.
    [22]Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 2006; 126:1135-1145.
    [23]Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of prolL-beta. Mol Cell 2002; 10: 417-426.
    [24]Lamkanfi M, Kanneganti TD, Franchi L, Nunez G. Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol 2007; 82:220-225.
    [25]Dowds TA, Masumoto J, Chen FF, Ogura Y, Inohara N, Nunez G. Regulation of cryopyrin/Pypaf1 signaling by pyrin, the familial Mediterranean fever gene product. Biochem Biophys Res Commun 2003; 302:575-580.
    [26]Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A, Kelly R, Carlson A, Merriam S, Lora JM, Briskin M, DiStefano PS, Bertin J. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 2002; 530:73-78.
    [27]Wang L, Manji GA, Grenier JM, Al-Garawi A, Merriam S, Lora JM, Geddes BJ, Briskin M, DiStefano PS, Bertin J. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 2002; 277:29874-29880.
    [28]Miao EA, puche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1 beta via Ipaf. Nat Immunol 2006; 7:569-575.
    [29]Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Nunez G. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1 beta in salmonella-infected macrophages. Nat Immunol 2006; 7:576-582.
    [30]Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004; 430:213-218.
    [31]Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 2007; 25:713-724.
    [32]Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Nunez G. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 2006; 440:233-236.
    [33]Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galan JE, Askenase PW, Flavell RA. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 2006; 24:317-327.
    [34]Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440:228-232.
    [35]Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Nunez G. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 2006; 281:35217-35223.
    [36]Bruey JM, Bruey-Sedano N, Newman R, Chandler S, Stehlik C, Reed JC. PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-kappaB and caspase-1 activation in macrophages. J Biol Chem 2004; 279:51897-51907.
    [37]Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR. The Bircle cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 2006; 7:318-325.
    [38]Lightfield KL, Persson J, Brubaker SW, Witte CE, von MJ, Dunipace EA, Henry T, Sun YH, Cado D, Dietrich WF, Monack DM, Tsolis RM, Vance RE. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 2008; 9:1171-1178.
    [39]Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nunez G. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 2007; 3: e111.
    [40]Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 2007; 37: 3030-3039.
    [41]Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak Bl, Flavell RA. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 2007; 204:3235-3245.
    [42]Galan JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type Ⅲ secretion machines. Nature 2006; 444:567-573.
    [43]Sun YH, Rolan HG, Tsolis RM. Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem 2007; 282:33897-33901.
    [44]Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10:241-247.
    [45]Lamkanfi M, Amer A, Kanneganti TD, Munoz-Planillo R, Chen G, Vandenabeele P, Fortier A, Gros P, Nunez G. The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 2007; 178:8022-8027.
    [46]Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, Deretic V. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 2008; 3:224-232.
    [47]Ishii KJ, Akira S. Toll or toll-free adjuvant path toward the optimal vaccine development. J Clin Immunol 2007; 27:363-371.
    [48]Masumoto J, Dowds TA, Schaner P, Chen FF, Ogura Y, Li M, Zhu L, Katsuyama T, Sagara J, Taniguchi S, Gumucio DL, Nunez G, Inohara N. ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun 2003; 303:69-73.
    [49]Kagan JC, Roy CR. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 2002; 4:945-954.
    [50]Hsu LC, Ali SR, McGillivray S, Tseng PH, Mariathasan S, Humke EW, Eckmann L, Powell JJ, Nizet V, Dixit VM, Karin M. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci U S A 2008; 105:7803-7808.
    [51]Boyden ED, Dietrich WF. Nalplb controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 2006; 38:240-244.
    [52]Leppla SH, Arora N, Varughese M. Anthrax toxin fusion proteins for intracellular delivery of macromolecules. J Appl Microbiol 1999; 87:284.
    [53]Kang TJ, Basu S, Zhang L, Thomas KE, Vogel SN, Baillie L, Cross AS. Bacillus anthracis
    spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur J Immunol 2008; 38:1574-1584.
    [54]Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors in host defense and disease. Immunity 2007; 27:549-559.
    [55]Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L, Taraporewala ZF, Miller D, Patton JT, Inohara N, Nunez G. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 2006; 281:36560-36568.
    [56]Marina-Garcia N, Franchi L, Kim YG, Miller D, McDonald C, Boons GJ, Nunez G. Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol 2008; 180:4050-4057.
    [57]Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 2008; 452:103-107.
    [58]Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 2004; 14: 1929-1934.
    [59]Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 2009; 323: 1057-1060.
    [60]Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458:514-518.
    [61]Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009; 458: 509-513.
    [62]Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL, Superti-Furga G. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009; 10:266-272.
    [63]Dostert C, Petrilli V, Van BR, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008; 320: 674-677.
    [64]Kahlenberg JM, Lundberg KC, Kertesy SB, Qu Y, Dubyak GR. Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-kappaB-driven protein synthesis. J Immunol 2005; 175: 7611-7622.
    [65]Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di VF. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 2006; 176: 3877-3883.
    [66]Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1 beta release by the ATP-gated P2X7 receptor. EMBO J 2006; 25:5071-5082.
    [67]Pelegrin P, Barroso-Gutierrez C, Surprenant A. P2X7 receptor differentially couples to distinct release pathways for IL-1 beta in mouse macrophage. J Immunol 2008; 180: 7147-7157.
    [68]Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 2007; 26:433-443.
    [69]Pan Q, Mathison J, Fearns C, Kravchenko W, Da Silva CJ, Hoffman HM, Kobayashi KS, Bertin J, Grant EP, Coyle AJ, Sutterwala FS, Ogura Y, Flavell RA, Ulevitch RJ. MDP-induced interleukin-1 beta processing requires Nod2 and CIAS1/NALP3. J Leukoc Biol 2007; 82:177-183.
    [70]Ozoren N, Masumoto J, Franchi L, Kanneganti TD, Body-Malapel M, Erturk I, Jagirdar R, Zhu L, Inohara N, Bertin J, Coyle A, Grant EP, Nunez G. Distinct roles of TLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in response to Listeria monocytogenes. J Immunol 2006; 176:4337-4342.
    [71]Cervantes J, Nagata T, Uchijima M, Shibata K, Koide Y. Intracytosolic Listeria monocytogenes induces cell death through caspase-1 activation in murine macrophages. Cell Microbiol 2008; 10:41-52.
    [72]Franchi L, Kanneganti TD, Dubyak GR, Nunez G. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 2007; 282:18810-18818.
    [73]Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A. Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 2008; 180:
    7558-7564.
    [74]Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991-1045.
    [75]Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol 2008; 3: 99-126.
    [76]Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol 2008; 8: 279-289.
    [77]Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol 2009; 27:229-265.
    [78]Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425:516-521.
    [79]Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440:237-241.
    [80]Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G, Akira S, Rock KL. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 2006; 116: 2262-2271.
    [81]So A, De ST, Revaz S, Tschopp J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 2007; 9: R28.
    [82]Eigenbrod T, Park JH, Harder J, Iwakura Y, Nunez G. Cutting edge:critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol 2008; 181:8194-8198.
    [83]Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA, Sutterwala FS. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A 2008; 105: 9035-9040.
    [84]Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008; 9: 847-856.
    [85]Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008; 453:1122-1126.
    [86]Franchi L, Nunez G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur J Immunol 2008; 38: 2085-2089.
    [87]Kool M, Petrilli V, De ST, Rolaz A, Hammad H, van NM, Bergen IM, Castillo R, Lambrecht BN, Tschopp J. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 2008; 181:3755-3759.
    [88]Li H, Willingham SB, Ting JP, Re F. Cutting edge: inffammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J Immunol 2008; 181:17-21.
    [89]Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008; 9:857-865.
    [90]Willingham SB, Bergstralh DT, O'Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M, Hoffman HM, Ting JP. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2007; 2:147-159.
    [91]Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol 2004; 82: 497-505.
    [92]Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, Nemazee D. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 2006; 314:1936-1938.
    [93]Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008; 456: 264-268.
    [94]Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007: 14:1583-1589.
    [95]Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 2007; 282: 2871-2879.
    [96]Walev I, Klein J, Husmann M, Valeva A, Strauch S, Wirtz H, Weichel O, Bhakdi S. Potassium regulates IL-1 beta processing via calcium-independent phospholipase A2. J Immunol 2000; 164: 5120-5124.
    [97]Henry T, Brotcke A, Weiss DS, Thompson LJ, Monack DM. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J Exp Med 2007; 204:987-994.
    [98]Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Goktuna SI, Neuenhahn M, Fierer J, Paxian S, Van RN, Xu Y, O'Cain T, Jaffee BB, Busch DH, Duyster J, Schmid RM, Eckmann L, Karin M. NF-kappaB is a negative regulator of IL-1 beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 2007; 130: 918-931.
    [99]Stehlik C, Dorfleutner A. COPs and POPs: modulators of inflammasome activity. J Immunol 2007; 179:7993-7998.
    [100]Dorfleutner A, Talbott SJ, Bryan NB, Funya KN, Rellick SL, Reed JC, Shi X, Rojanasakul Y, Flynn DC, Stehlik C. A Shope Fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes 2007; 35: 685-694.
    [101]Benedict CA, Ware CF. Poxviruses aren't stuPYD. Immunity 2005; 23: 553-555.
    [102]Johnston JB, Barrett JW, Nazarian SH, Goodwin M, Ricciuto D, Wang G, McFadden G. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 2005; 23: 587-598.
    [103]Bedoya F, Sandier LL, Harton JA. Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J Immunol 2007; 178:3837-3845. [104] A candidate gene for familial Mediterranean fever. Nat Genet 1997; 17: 25-31.
    [105]Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, Kastner DL. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 2003; 11:591-604.
    [106]Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, Kastner DL. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1 beta production. Proc Natl Acad Sci U S A 2006; 103:9982-9987.
    [107]Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD, Grutter C, Grutter M, Tschopp J. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits prolL-1beta processing. Cell Death Differ 2007; 14:1457-1466.
    [108]Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES. The pyroptosome:a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 2007; 14:1590-1604.
    [109]McDermott MF. A common pathway in periodic fever syndromes. Trends Immunol 2004; 25: 457-460.
    [110]Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA, Kastner DL. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A 2003; 100: 13501-13506.
    [111]Grosse J, Chitu V, Marquardt A, Hanke P, Schmittwolf C, Zeitlmann L, Schropp P, Barth B, Yu P, Paffenholz R, Stumm G, Nehls M, Stanley ER. Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease. Blood 2006; 107: 3350-3358.
    [112]Ferguson PJ, Bing X, Vasef MA, Ochoa LA, Mahgoub A, Waldschmidt TJ, Tygrett LT, Schlueter AJ, El-Shanti H. Amissense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone 2006; 38: 41-47.
    [113]da Cunha JP, Galante PA, de Souza SJ. Different evolutionary strategies for the origin of caspase-1 inhibitors. J Mol Evol 2008; 66: 591-597.
    [114]Kersse K, Vanden BT, Lamkanfi M, Vandenabeele P. A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem Soc Trans 2007; 35:1508-1511.
    [115]Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG, Zehnbauer BA, Hayden MR, Farrer LA, Roy S, Nicholson DW. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 2004; 429:75-79.
    [116]Kachapati K, O'Brien TR, Bergeron J, Zhang M, Dean M. Population distribution of the functional caspase-12 allele. Hum Mutat 2006; 27:975.
    [117]Wang X, Grus WE, Zhang J. Gene losses during human origins. PLoS Biol 2006; 4:e52.
    [118]Xue Y, Daly A, Yngvadottir B, Liu M, Coop G, Kim Y, Sabeti P, Chen Y, Stalker J, Huckle E,
    Burton J, Leonard S, Rogers J, Tyler-Smith C. Spread of an inactive form of caspase-12 in humans is due to recent positive selection. Am J Hum Genet 2006; 78: 659-670.
    [119]Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N, Ulevitch RJ, Green DR, Nicholson DW. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 2006; 440:1064-1068.
    [120]Roy S, Sharom JR, Houde C, Loisel TP, Vaillancourt JP, Shao W, Saleh M, Nicholson DW. Confinement of caspase-12 proteolytic activity to autoprocessing. Proc Natl Acad Sci U S A 2008; 105:4133-4138.
    [121]Ting JP, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 2006; 6:183-195.
    [122]Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1 beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004; 20:319-325.
    [123]Dowds TA, Masumoto J, Zhu L, Inohara N, Nunez G. Cryopyrin-induced interleukin 1 beta secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J Biol Chem 2004; 279: 21924-21928.
    [124]Gattorno M, Tassi S, Carta S, Delfino L, Ferlito F, Pelagatti MA, D'Osualdo A, Buoncompagni A, Alpigiani MG, Alessio M, Martini A, Rubartelli A. Pattern of interleukin-1beta secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum 2007; 56: 3138-3148.
    [125]Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med 2003; 348:2583-2584.
    [126]Hawkins PN, Lachmann HJ, Aganna E, McDermott MF. Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum 2004; 50:607-612.
    [127]Sokolovska A, Hem SL, HogenEsch H. Activation of dendritic cells and induction of CD4(+) T cell differentiation by aluminum-containing adjuvants. Vaccine 2007; 25:4575-4585.
    [128]Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR, Spritz RA. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 2007; 356: 1216-1225.
    [129]Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S, Stone CD, Brunt EM, Xavier RJ, Sleckman BP, Li E, Mizushima N, Stappenbeck TS, Virgin HW. A key role for autophagy and the autophagy gene Atg1611 in mouse and human intestinal Paneth cells. Nature 2008; 456: 259-263.
    [130]Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 2010; 327:296-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700