多模GNSS实时电离层精化建模及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电离层是日地空间环境的重要组成部分,认识电离层的结构和活动规律,是人类对自身生存环境认识和利用的重要基础。电离层的研究对于研究日地空间环境及高空大气各层之间的相互关系和作用,提高测速、定位、授时、导航等系统的精度等方面,都具有非常重要的价值。
     相比较于传统电离层探测技术,GNSS探测技术能够实现连续运行、高密度覆盖。目前,四大全球卫星导航系统(Global Navigation Satellite System, GNSS)并存与发展的局面已初步形成。随着多模CNSS连续运行跟踪站数量增加与观测数据质量不断提升,针对多模GNSS系统不同特点进行深入研究,开展基于多模GNSS系统的电离层建模十分必要。
     由于电离层模型、伪距观测值精度等因素影响,单频单点定位仅可获得分米至米级定位精度。通过不同频率组合,双频用户可以消除超过99%的电离层误差影响。但观测值组合放大了观测噪声,需要更多的时间实现双频PPP收敛。因此,进一步提高电离层模型精度,可有助于提高单频定位精度、加速双频PPP收敛速度。
     电离层延迟对单频导航用户影响很大,但导航系统自身提供的实时改正产品效果有限,难以获得高精度定位结果。因此,基于区域或者全球的跟踪站网络提供的实时观测数据流,建立实时电离层模型,能够有效提高服务区域内单频用户定位精度。同时,利用实时电离层模型能够实现高精度的电离层监测,有助于研究电离层扰动及不规则变化。
     本文针对电离层二维层析中的一些问题,对数据预处理、电离层提取方法等进行深入分析;利用实测GPS/Beidou数据建立中国区域电离层模型,分析多模系统对电离层模型、硬件延迟估计精度影响;分析GLONASS伪距频间偏差特性,提出一种先验改正的方法,可有效消除伪距频间偏差对GLONASS卫星电离层延迟提取的影响;利用区域密集的参考站,建立基于单颗卫星的精化电离层模型,提出一种基于精化电离层产品的双频PPP快速收敛算法;利用中国区域实时数据流开发了一套实时电离层模型系统,为中国区域用户提供实时电离层延迟产品,可应用于中国区域单频定位及电离层变化监测。本文的主要研究内容包括:
     1.针对观测数据中钟跳问题,采用星间单差MW组合辅助非差MW、GF探测周跳、钟跳;对比分析了采用相位平滑伪距及组合观测值分解方法提取电离层延迟的精度;对中国区域电离层建模的布站选择进行分析,实验结果说明采用60个左右分布均匀的跟踪站即可获得较高的模型精度。
     2.利用Beidou/GPS双模实测数据建立了中国区域电离层模型。在当前卫星、跟踪站分布状态下,利用单模Beidou系统建立电离层模型在高、低纬度等边缘区域精度较低,在中纬度区域精度略低于单模GPS系统;Beidou卫星硬件延迟比较稳定,月平均变化不超过1.8ns。
     3.利用GLONASS并址站数据分析伪距频间偏差特性,认为不同卫星的接收机P1P2频间偏差变化稳定,但差异较大,且没有体现与频率有显著的线性关系:鉴于此,本文提出一种顾及频间偏差的多模电离层建模算法,首先估计出全部基准站相对某一测站的频间偏差并修正,再进行电离层建模,该算法可有效提高电离层模型及硬件延迟分离精度。
     4.为减少建模过程中造成的精度损失,建立基于单颗卫星的区域精化电离层模型。同时,基于精化电离层产品、宽巷UPD及单差残余硬件延迟产品,提出一种PPP快速收敛算法。利用精化电离层模型产品进行单频PPP解算,在N、E、U三个方向的平均RMS值分别为3.8,4.3和9.2cm;采用快速收敛算法,双频PPP用户的收敛时间显著降低,大约50%的流动站可以在5分钟内收敛到2dm。
     5.基于中国陆太网络实时数据流搭建了电离层实时估计服务软件,对实时数据处理中的定权、抗差、硬件延迟处理策略以及背景场的选择等进行探讨;通过与自估产品、CODE事后产品以及流动站反演等多种手段评估,在中高纬度地区实时模型精度可达2-3TECu,低纬度地区略低约为3-4TECu。利用实时电离层产品进行单频SPP、PPP定位,在中高纬度地区,单频SPP的3D偏差优于1.2m,低纬度地区优于2.2m;单频PPP可以达到平面0.2m,高程0.5m的精度;实时电离层产品有效监测了2013年076日磁暴期间中国区域电子密度的变化。
Ionosphere is an important part of the space environment, understanding the structure of ionosphere and the rule of the ionospheric activity is an important basis to better understand human living environment. The research on ionosphere has very important value for the study of the relationship between solar-terrestrial space environment and atmosphere, and improving speed, positioning, timing and navigation system's precision.
     Compared to the traditional ionosphere detection technology, GNSS detection technology can achieve continuous operation and high density. At present, the situation of the four Global Navigation Satellite System (GNSS) coexistence and development has been initially formed. With the improvement of multimode CNSS continuously tracking station number and observation data quality, the research on different characteristics of multimode GNSS system is conducted. It is necessary to carry out ionosphere modeling based on multimode GNSS system.
     Due to the inaccurate ionosphere model and pseudorange observation accuracy, it can only achieve decimeter to meter accuracy for single frequency single point positioning. Through the combination of different frequencies observations, double-frequency users can eliminate more than99%of the ionosphere error. But the linear combination observations magnified observation noises; it needs more time to implement dual-frequency PPP convergence. Improving the ionosphere model accuracy can help to improve positioning precision accuracy and accelerate convergence speed.
     Ionospheric delay has great influence on single frequency user, but the effect of real-time ionospheric delay correction provided by the navigation system is limited, it's difficult to get high precision positioning results in this case. Therefore, using real-time observation data streams based on regional or global tracking station network, to build real-time ionospheric model can effectively improve ionospheric model accuracy. At the same time, using real-time ionospheric model can help to monitor the ionosphere, which is useful for the research on ionospheric disturbance and irregular change.
     In this paper, some problems in the ionosphere two-dimensional chromatography are discussed, such as observation pretreatment, ionosphere extracting method and so on; China regional ionospheric model is built based on observed GPS/Beidou data, and the multimode system impact on the ionosphere model, hardware delay estimation precision is analyzed; Through the analysis of numerous GLONASS observations, GLONASS pseudorange deviations between different frequency are analyzed; we put forward a prior correction method, which can effectively eliminate the pseudorange frequency deviation of GLONASS satellites in ionospheric modeling. For the local area with dense reference stations, we build the ionospheric model based on single satellite, and put forward a double-frequency PPP fast convergence algorithm. Based on Chinese real-time data stream, we develope a real-time ionospheric model system, which can provide real-time ionospheric delay for the regional user products in China. In this paper, the main research contents include:
     1. Against the clock jump problem, we use satellite single-difference MW combination together with undifference MW and GF to detect cycle slips; we analyze the difference of phase smoothed pseudorange method and combined observations decomposition method and their effects on ionospheric delay extracting; the stations selected strategies for modeling ionospheric delay is analyzed in China, experimental results show that using60uniformly distributed tracking stations can achieve considerable accuracy.
     2. We use the measured Beidou/GPS dual mode data to establish a Chinese regional ionospheric model; under the current satellites and stations distribution situation, the accuracy of ionosphere model using single Beidou system is low at high and low latitudes, especially for the edge region, and is slightly lower than single GPS system in middle latitudes; Beidou satellites hardware delay are relatively stable, the average monthly variation is less than1.8ns.
     3. We use numerous GLONASS observations to analyze the pseudorange deviations between different frequencies, the results show that GLONASS pseudorange ICB is very stable but with significant differences from each other, we put forward a new multi-mode ionospheric modeling algorithm considering the impact of inter-frequency bias;, which can effectively eliminate the pseudorange frequency deviation of GLONASS satellites in ionospheric modeling.
     4. In order to reduce accuracy losses in regional ionospheric modeling, we build the ionospheric model for each satellite in regional area; meanwhile, we propose a new PPP rapid convergence algorithms based on the ionosphere refined products, wide lane UPD and residual SD hardware delay. Using the refined products, the single-frequency PPP users can obtain precision positioning results, for the N, E, U directions, the average RMS values are3.8,4.3and9.2cm; using the fast convergence algorithm, dual PPP users significantly reduce the convergence time, about50%of the rovers can converge to2dm within5minutes.
     5. We build real-time ionospheric estimated service system based on Chinese real-time data stream, and discuss the weight, robust, hardware delay processing strategy and background field in real-time modeling. Compared with the self-assessment products, CODE afterwards products and other means, in the high and middle latitudes, the real-time model accuracy is about2-3TECu and slightly in lower latitudes, around3-4TECu. Using the real-time ionospheric products, for the single frequency SPP users, the3D deviation is less than1.2m, for the lower latitudes is than2.2m; the single frequency PPP users can achieve0.2m for the horizontal,0.5m for the vertical direction accuracy. We use the real-time products to analyze the electron density magnetic storms impact on the China's regional ionosphere at DoY076,2013.
引文
1. Abdullah, M., D. Azra, A. Mat, A. Faizal, M. Zain, S. Abdullah, S. Sarah, and N. Zulkifli (2007), Analysis of Ionospheric Models during Ionospheric Disturbances, Radio Science,2(2),7-10.
    2. Al-Shaery, A., S. Zhang and C. Rizos(2012), An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK. GPS Solutions.
    3. Arthur Niel (1996)1. Global mapping functions for the atmosphere delay at radio wavelengths. JGR,1996,101,B2,3227-3246.
    4. Arthur Niell (2000). Improved atmospheric mapping functions for VLBI and GPS.Earth Planets Space,2000,52:699-702.
    5. Austen, J. R., J. Franke, and C. H. Liu (1988), Ionospheric imaging using computerized tomography, Radio Sci.,23(3),299-307.
    6. Bassiri S, Hajj GA (1992), Modeling the global positioning system signal propagation through the ionosphere. Telecommunications and Data Acquisition Progress Report 42-110:92-103, NASA Jet Propulsion Laboratory, Caltech, Pasadena,1992.
    7. Bassiri S, Hajj GA (1993), Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscr Geod,1993,18:280-289.
    8. Bent, R. B., S. K. Llewellyn, and M. K. Walloch (1972a), Description and Evaluation Bent Ionospheric ModelRep., Florida.
    9. Bent, R. B., S. K. Llewellyn, and P. E. Schmid (1972b), A Highly Successful Model for the Worldwide Ionospheric Electron Density ProfileRep., Florida.
    10. Beutler, G., M. Rothacher, S. Schaer, T.A. Springer, J. Kouba, R.E. Neilan (1999), The International GPS Service (IGS):An Interdisciplinary Service in Support of Earth Sciences, Adv. Space Res., 23(4),1999,pp.631-635.
    11. Bilitza, D. (1986), International Reference Ionosphere-Recent Developments, Radio Science,21(3), 343-346.
    12. Bilitza, D., and B. W. Reinisch (2008), International Reference Ionosphere 2007:Improvements and new parameters, Advances in Space Research,42(4),599-609.
    13. Bilitza, D., L. A. McKinnell, B. Reinisch, and T. Fuller-Rowell (2011), The international reference ionosphere today and in the future, Journal of Geodesy,85(12),909-920.
    14. Bisnath SB, Gao Y (2008), Current state of precise point positioning and future prospects and limitations. In:Proceedings of International Association of Geodesy Symposia:observing our changing earth, vol 133,2008, pp 615-623. Springer, Berlin.
    15. Blewitt, G.(1990), An automatic editing algorithm for GPS data. Geophysical Research Letters,1990. 17:pp.199-202.
    16. Brunini, C., A. Meza, F. Azpilicueta, I. A. A. V. A. N. Zele, M. Gende, and D. Alejandro 129 (2004), A new ionosphere monitoring technology based on gps, Astrophysics and Space Science,415-429.
    17. Bugoslavskaya N. Y. (1962), Solar Activity and the Ionosphere, for Radio Communications Specialists, Pergamon Press Ltd, New York.
    18. Bust, G.S. and C.N. Mitchell (2008), History, current state, and future directions of ionospheric imaging. Rev. Geophys.,2008.46(1):p. RG1003.
    19. Chao, Y.C. (1997), Real Time Implementation of the Wide Area Augmentation System for the Global Positioning System with an Emphasis on Ionospheric Modeling.1997, Stanford University.
    20. Coco, D.S., C. Coker, S.R. Dahlke, et al. (1991), Variability of GPS satellite differential group delay biases. IEEE Transactions on Aerospace Electronic Systems,1991.27:p.931-938.
    21. Collins P, Bisnath S, Lahaye F, Heroux P (2010), Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. J Inst Navigat 57(2),2010, pp.123-135.
    22. Crossley, D., J. Hinderer, J. P. Boy, and D. W. Pierce (2005), Empirical orthogonal function(EOF) software, Geophysical Journal International,161(2),257-264.
    23. Datta-Barua, S., T. Walter, J. Blanch, and P. Enge (2008), Bounding higher-order ionosphere errors for the dualfrequency GPS user, Radio Sci.,43, RS5010, doi:10.1029/2007RS003772.
    24. de Wilde W, Boon F, Sleewaegen JM, Wilms F (2007) More Compass points tracking China's MEO satellite on a hardware receiver. Inside GNSS 2(5):44-48.
    25. Deng Z, Bender M, Dick G, Ge M, Wickert J, Ramatschi M, Zou X (2009), Retrieving tropospheric delays from GPS networks densified with single frequency receivers. Geophys Res Lett 36:L19802.
    26. Dodson AH (1988), The effects of atmospheric refraction on GPS measurements. Seminar on the Global Positioning System, Nottingham University.
    27. Farah AMA(2008), Comparison of GPS/GALILEO single frequency ionospheric models with vertical TEC maps. Artificial Satellites,43(2):75-90.
    28. Fang P, Gendt G, Springer T, Mannucci T (2001), IGS near real-time products and their applications. GPS Solut 4(4),2001, pp.2-8.
    29. Frei, E. and G. Beutler (1989), Some Considerations Concerning an Adaptive, Optimized Technique to Resolve the Initial Phase Ambiguities for Static and Kinematic GPS Surveying Techniques, Proceedings of the Fifth International Geodetic Symposium on Satellite Positioning, DMA, DoD, NGS, NOAA, Las Cruces, N.M., March 13-17, New Mexico State University, Vol.2, pp.671-686.
    30. Fuller-Rowell, T., E. Araujo-Pradere, C. Minter, et al.(2006), US-TEC:A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data. Radio Sci.,2006.41(6):p. RS6003.
    31. Gao, Y., and Z. Z. Liu (2002), Precise Ionosphere Modeling Using Regional GPS Network Data, Engineering,1(1),18-24.
    32. Garcia-Fernandez, M. (2004), Contributions to the 3D ionospheric sounding with GPS data,Universitat Politecnica de Catalunya.
    33. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008), Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7), pp.389-399.
    34. Ge M, Zou X, Dick G, Jiang W Wickert J, Liu J (2010), An alternative Network RTK approach based on undifferenced observation corrections, ION GNSS 2010, Portland, Oregon.
    35. Geng J.H., Teferle F.N., Shi C, Meng X, Dodson A.H.(2009), and Liu J.N. Ambiguity resolution in precise point positioning with hourly data, GPS Solutions,2009,13,263-270.
    36. Geng J, Meng X, Dodson A, Ge M, Teferl F (2010), Rapid re-convergences to ambiguity-fixed solutions in precise point positioning. J Geod. doi:10.1007/s00190-010-0404-4.
    37. Georgiadou,Y.,and A.K.leusberg(1988).On the Effect of Ionospheric Delay on Geodetic Relative GPS Positioning,Manuscripta Geodaetica,13:1-8.
    38. Georgiadiou, Y., T. H. Delft, and D. G. C. Centre (1994), Modelling the Ionosphere for anActive Control Network of GPS Stations, Delft Geodetic Computing Centre.
    39. Habrich,H.(1998). Experiences of the BKG in processing GLONASS and combined GLONASS/GPS observations. Germany:Frankfurt Main.
    40. Habrich, H. (1999). Geodetic Applications of the Global Navigation Satellite System (GLONASS) and of GLONASS/GPS Combinations. PHD Thesis, University of Bern, Switzerland (der Universitat Bern), April,1999.
    41. Haines, G. V. (1985), Spherical Cap Harmonic Analysis of Geomagnetic Secular VariationOver Canada 1960-1983, Journal of Geophysical Research,90(B14),12563-12563.
    42. Hajj, G. a., R. Ibanez-Meier, E. R. Kursinski, and L. J. Romans (1994), Imaging the ionosphere with the global positioning system, edited, pp.174-187.
    43. Hansen, A. J. (1998), Real-time Ionospheric Tomography Using Terrestrial GPS Sensors,Biography An Interdisciplinary Quarterly.
    44. Hauschild A, Montenbruck O, Sleewaegen JM, Huisman L, Teunissen P (2012) Characterization of Compass M-1 signals. GPS Solution 16(1):117-126. Doi:10.1007/s10291-011-0210-3.
    45. Hernandez-Pajares, M., J. M. Juan, and J. Sanz (1999), New approaches in global ionospheric determination using ground GPS data, Journal of Atmospheric and Solar-Terrestrial Physics,61(16), 1237-1247.
    46. Hendricks, J. R., R. R. Leben, G. H. Born, and C. J. Koblinsky (1996), Empirical orthogonalfunction analysis of global TOPEX/POSEIDON altimeter data and implications for detectionof global sea level rise, J Geophys Res-Oceans,101(C6),14131-14145.
    47. Hernandez-Pajares, M., J.M. Juan, J. Sanz (2008), Correction to Second-order ionospheric term in GPS:Implementation and impact on geodetic estimates. J. Geophys. Res.,2008.113(B6):p. B06407.
    48. Hoque, M.M. and N. Jakowski (2008), Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci.,2008.43(5):p. RS5008.
    49. Howe, B. M. (1997),4-D simulations of ionospheric tomography, Proceedings of the 131 National Technical Meeting-Navigation and Positioning in the Information Age,269-278.
    50. Howe, B. M., K. Runciman, and J. A. Secan (1998), Tomography of the ionosphere:Four-dimensional simulations, Radio Science,33(1),109-128.
    51. IERS Standards (1989), IERS Technical Note 3, (ed. D.D.McCarthy).
    52. Jee, G., H.B. Lee, Y.H. Kim, et al. (2010), Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data:Ionospheric perspective. J. Geophys. Res.,2010.115(A10):p. A10319.
    53. Johannes Boehm and Harald Schuh (2004). Vienna mapping functions in VLBI analyses. Geophysical Research Letters,2004,31(1):doi:10.1029/2003GL018984.
    54. Johannes Boehm, Arthur Niell, Paul Tregoning and Harald Schuh (2006a). Global Mapping Function(GMF):A new empirical mapping function based on numerical weather model data.GRL, 2006,33:L07304, doi:10.1029/2005GL025546.
    55. Johannes Boehm, Birgit Werl, and Harald Schuh (2006b). Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data.JGR,2006,111(B02406).
    56. Juan, J.M., A. Rius, Hernandez, et al. (1997), A two layer model of the ionosphere using Global Positioning System data. Geophys. Res. Lett.,1997.24(4):p.393-396.
    57. Kang, J., Y.Lee, J. Park, E.Lee(2002). Application of GPS/GLONASS Combination to the Revision of Digital Map. Proceedings of FIG ⅩⅫ International Congress, Washington, D.C. USA, April 19-26,2002.
    58. Ken MacLeod and Mark Caissy (2010). Real time IGS pilot project (RT-PP) status report. IGS Workshop, Newcastle UK, June 28,2010.
    59. Kim B C, Tinin M V (2011), Potentialities of multifrequency ionospheric correction in global navigation satellite systems. J Geod,85,2011,pp.159-169.
    60. Klobuchar, J.A. (1987), Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. Aerospace and Electronic Systems, IEEE Transactions on,1987. AES-23(3):p.325-331.
    61. Komjathy, A. (1997), Global Ionospheric Total Electron Content Mapping Using the Global Positioning System, in Department of Geodesy and Geomatics Engineering Technical Report No.188. 1997, University of New Brunswick:New Brunswick.
    62. Komjathy, A., L. Sparks, A.J. Mannucci, et al. (2002), An Assessment of the Current WAAS Ionospheric Correction Algorithm in the South American Region, in ION GPS 2002:Oregon Convention Center Portland.
    63. Komjathy, A., L. Sparks, B.D. Wilson, et al. (2005), Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci.,2005.40(6):p. RS6006.
    64. Kouba J, Herous P (2001), Precise point positioning using IGS orbit and clock products. GPS Solut 5(2),2001,pp.12-28. doi:10.1007/PL00012883.
    65. Kozlov, D. and M. Tkachenko(1998), Centimeter-Level, Real-Time Kinemtic Positioning with GPS+GLONASS C/A Receivers. Navigation,45(2),137-147,1998.
    66. Kozlov D, Tkachenko M, Tochilin A (2000), Statistical characterization of hardware biases in GPS+GLONASS receivers. In:Proceedings of ION GPS 2000, pp 817-826.
    67. Kunitake, M., K. Ohtaka, T. Maruyama, M. Tokumaru, A. Morioka, and S. Watanabe (1995), Tomographic imaging of the ionosphere over Japan by the modified truncated SVD method, Ann Geophys-Atm Hydr,13(12),1303-1310.
    68. Kunitsyn, V. E., E. S. Andreeva, and O. G. Razinkov (1997), Possibilities of the near-space environment radio tomography, Radio Science,32(5),1953-1963.
    69. Lanyi, G. E. and T. Roth (1988), A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations, Radio Sci.,23,483-492.
    70. Laurichesse D, Mercier F (2007), Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In:Proceedings of 20th Int Tech Meet Satellite Div Inst Navigation GNSS 2007,25-28 Sep, Fort Worth, TX, USA.
    71. Laurichesse, D., Mercier, F., Berthias, J.-P., Broca, P., Cerri, L.(2009), Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination, Navigation 56(2),2009, pp.135-149.
    72. Le AQ, Tiberius CCJM (2007), Single-frequency precise point positioning with optimal filtering. GPS Solut 11(1),2007,pp.61-69.
    73. Li X, Zhang X, Ge M (2010), Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J Geod(2010). doi:10.1007/s00190-010-0424-0.
    74. Liu, Z. (2004), Ionosphere Tomography Modeling and Applications Using Global Positioning System (GPS) Measurements, Doctor thesis, University of Calgary.
    75. Ma G., and T. Maruyama (2003), Derivation of TEC and estimation of instrumental biases from GEONET in Japan, Ann Geophys-Germany,2083-2093.
    76. Mao, T., W. X. Wan, X. N. Yue, L. F. Sun, B. Q. Zhao, and J. P. Guo (2008), An empirical orthogonal function model of total electron content over China, Radio Science,43(2).
    77. Mandrake, L., B. Wilson, C. Wang, et al. (2005), A performance evaluation of the operational Jet Propulsion Laboratory/University of Southern California Global Assimilation Ionospheric Model (JPL/USC GAIM). J. Geophys. Res.,2005.110(A12):p. A12306.
    78. Mannucci, A. J., Wilson, B. D., and Edwards, C. D. (1993), A new method for monitoring the earth's ionospheric total electron content using the GPS global network, Proc. of ION GPS-93, Inst of Navigation,1323-1332.
    79. Mannucci, A.J., B.D. Wilson, D.N. Yuan, et al. (1998), A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci.,1998.33(3):p.565-582.
    80. Manuel Hernandez-Pajares etc (2011). The ionosphere:effects, GPS modeling and the benefits for space geodetic techniques Journal of Geodesy,Volume 85, Number 12,2011,887-907.
    81. Mei, B., and W. X. Wan (2008), An empirical orthogonal function (EOF) analysis ofionospheric electron density profiles based on the observation of incoherent scatter radar atMillstone Hill, Chinese J Geophys-Ch,51(1),10-16.
    82. M. Pratt et al. (1997), Single-Epoch Integer Ambiguity Resolution with GPS L1-L2 Carrier Phase Measurements, Proc. ION 97, The Institute of Navigation, pp.1737-1746,1997.
    83. Oliver Montenbruck, Andre'Hauschild, etc (2012). Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solution,2012. Doi:10.1007/s10291-012-0272-x.
    84. Pireaux, S., P. Defraigne, L. Wauters, et al. (2010), Higher-order ionospheric effects in GPS time and frequency transfer. GPS Solutions,2010.14(3):p.267-277.
    85. Radicella, S. M., B. A. Nava, and P. Coi (2008), Atmospheric and Solar-Terrestrial Physics A new version of the NeQuick ionosphere electron density model, Journal of Atmospheric and Solar-Terrestrial Physics,70,1856-1862.
    86. Revnivykh S (2010) GLONASS Status and Progress. In:Proceedings of ION GNSS 2010, pp 609-633.
    87. Rius, A., G. Ruffini, and L. Cucurull (1997), Improving the vertical resolution of ionospheric tomography with GPS occultations Brief Description of the Tomographic,24(18),2291-2294.
    88. RoBbach, U. (2000). Positioning and Navigation Using the Russian Satellite System GLONASS[D].PHDThesis, University of the Federal Armed Forces Munich,Germany (Universitat der Bundeswehr Munchen), June,2000.
    89. Rossbach, U. and G. Hein(1996), Treatment of Integer Ambiguities in DGPS/DGLONASS Double Difference Carrier Phase Solution. In:Proceedings Of ION GPS-96,909-916,1996.
    90. Rocken C, Johnson JM, Braun JJ (2000), Improving GPS surveying with modeled ionospheric corrections. Geophys Res Lett 27(23),2000, pp.3821-3824.
    91. Sard6n, E., A. Rius, and N. Zarraoa (1994), Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci.,1994.29(3):p.577-586.
    92. Schaer, S. (1999), Mapping and predicting the Earth's ionosphere using the Global Positioning System. Geod.-Geophys. Arb. Schweiz, Vol.59,1999.59.
    93. Scherliess, L., R.W. Schunk, J.J. Sojka, et al.(2006), Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere:Model description and validation. J. Geophys. Res.,2006. 111(A11):p. A11315.
    94. Shi Chuang, Yi Wenting, Song Weiwei, Lou Yidong, Yao yibin, Zhang Rui (2013), GLONASS pseudorange inter-channel biases and their effects on combined GPS/GLONASS precise point positioning GPS Solutions October 2013, Volume 17, Issue 4, pp 439-451.
    95. Skone, S.H., Wide area ionosphere grid modelling in the auroral region.1999. p.364.
    96. Sunda, S., S.M. Regar, S. Shrivastava, et al (2007), TEC estimation and its validation for real time implementation of satellite navigation in GAGAN. in Institute of Navigation National Technical Meeting, NTM 2007, January 22,2007-January 24,2007.2007. San Diego, CA, United states: Institute of Navigation.
    97. Teunissen P. J. G.,de Jonge P. J.Tiberius C. C. J. M (1995), The LAMBDA method for fast GPS surveying. Proceedings of International Symposium'GPS technology applications', Bucharest, Romania,1995, September 26-29, pp.203-210.
    98. Thompson, D.C., L. Scherliess, J.J. Sojka, et al. (2009), Plasmasphere and upper ionosphere contributions and corrections during the assimilation of GPS slant TEC. Radio Sci.,2009.44:p. RS0A02.
    99. Toshiaki Tsujii, M.H.T.I.(2000), Flight tests of GPS/GLONASS precise positioning versus dual frequency KGPS profile. Earth Planet Space,2000.52:p.825-829.
    100. Walter, T., Hansen, A., Blanch, J., et al. (2001), Robust Detection of Ionospheric Irregularities, Navigation,48(2),2001, pp.89-100.
    101. Wanninger L,Wallstab-Freitag S (2007), Combined processing of GPS,GLONASS, and SBAS code phase and carrier phase measurements.In:Proceedings of ION GNSS 2007, pp 866-875.
    102. Wanninger, L.(2012), Carrier-phase inter-frequency biases of GLONASS receivers. Journal of Geodesy,2012.86(2):p.139.
    103. Wild, U. (1994), Ionosphere and geodetic satellite systems:permanent GPS tracking data for modelling and monitoring. Geod.-Geophys. Arb. Schweiz, Vol.48,1994.48.
    104. Wilson, B.D.a.A.J.M. (1993), Instrumental Biases in Ionospheric measurements Derived from GPS Data, in ION GPS 93.1993:Salt Like City.
    105. Wu,J.T., C.Wu, G.A. Hajj, W.I. Bertiger, and S.M. Liehten (1993), Effeets of antenna orientation on GPS carrier phase, Manuscripta Geodaetiea,18, pp.91-98.
    106. Xiaoli Wu, XiaogongHu,Gang Wang,Huijuan Zhong,Chengpan Tang (2013), Evaluation of COMPASS ionospheric model in GNSS positioning. Advances in $pace Research Volume 51, Issue 6,15 March 2013, Pages 959-968.
    107. Yamanda H, Takasu T, Kubo N, Yasuda A (2010), Evaluation and calibration of receiver inter-channel biases for RTK-GPS/GLONASS. In:Proceedings of'ION GNSS 2010, pp 1580-1587
    108. Yibin Yao, Peng Chen, Shun Zhang, Jiajun Chen (2013). A new ionospheric tomography model combining pixel-based and function-based models. Advances in ace Research Volume 52, Issue 4,15 August 2013, Pages 614-621.
    109. Yunck TP (1996), Orbit determination. In:Parkinson BW, Spilker JJ (eds) Global positioning system. Theory and Applications AIAA Publications, Washington DC(1996).
    110. Yuan, Y., and J. Ou (2004), A generalized trigonometric series function model fordetermining ionospheric delay, Progress in Natural Science(11),74-78.
    111.Zinoviev AE (2005) Using GLONASS in combined GNSS receivers:current status. In: Proceedings of ION GNSS 2005, pp 1046-1057
    112. Zishen Li,Yunbin Yuan,Hui Li, Jikun Ou,Xingliang Huo(2012), Two-step method for the determination of the differential code biases of COMPASS satellitesJournal of Geodesy November 2012, Volume 86, Issue 11, pp 1059-1076.
    113. Zou X, Deng Z, Ge M, Dick G, Jiang W, Liu J (2010), GPS data) processing of networks with mixed single-and dual-frequency receivers for deformation monitoring. J Adv Space Res,2010.
    114. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH(1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3),1997, pp.5005-5017.
    115.安家春(2011),极区电离层层析模型及应用研究[D],武汉大学.
    116.北斗卫星导航系统网(2012).http://www.beidou.gov.cn/.
    117.蔡昌盛(2008)GPS/GLONASS组合精密单点定位理论与方法[D].徐州:中国矿业大学,2008.
    118.常青(2000),GPS系统硬件延迟修正方法[J].科学通报,2000, 45(15).
    119.陈鹏(2012),GNSS电离层层析及震前电离层异常研究[D],武汉大学.
    120.陈小明(1997).高精度GPS动态定位的理论与实践[D].武汉测绘科技大学.
    121.耿长江(2011),利用地基GNSS数据实时监测电离层延迟理论与方法研究[D].武汉大学,2011.
    122.李建成(1993),物理大地测量中的谱方法[D],武汉测绘科技大学,武汉.
    123.李敏(2011),多模GNSS融合精密定轨理论及其应用研究[D].武汉大学.
    124.李征航,黄劲松(2005),GPS测量与数据处理[M],武汉:武汉大学出版社.
    125.柳景斌,利用球冠谐分析方法和GPS数据建立中国区域电离层TEC模型[J].武汉大学学报(信息科学版),2008.33(8):p.4.
    126.刘经南,陈俊勇,张燕平(1999),广域差分GPS原理和方法[M].
    127.刘瑞源,权坤海,戴开良,罗发根,孙宪儒,李忠勤(1994),国际参考电离层用于中国地区的修正计 算方法[J].地球物理学报,1994,37(4):422-432.
    128.宋伟伟(2011),导航卫星实时精密钟差确定及实时精密单点定位理论方法研究[D],武汉大学.
    129.施闯,耿长江,章红平,唐卫明(2010),基于EOF的实时三维电离层模型精度分析[J],武汉大学学报(信息科学版)(10),1143-1146.
    130.施闯,赵齐乐,李敏等(2012),北斗卫星导航系统的精密定轨与定位研究[J].中国科学:地球科学,2012.06.
    131.万卫星,宁百齐,刘立波(2007),中国电离层TEC现报系统[J],地球物理学进展2007(04).
    132.闻德保(2007),基于GPS的电离层层析算法及其应用研究[D],中科院测量与地球物理研究所.
    133.熊年禄,唐存琛,李行健(1997),电离层物理概论[M].武汉:武汉大学出版社.
    134.徐继生,邹玉华(2003),时变三维电离层层析成像重建公式[J].地球物理学报,2003,46(4):438-445.
    135.徐绍铨,张华海,杨志强,王泽民(2003).GPS测量原理及应用[M].武汉:武汉大学出版社.
    136.徐文耀(2009),地球电磁现象物理学[M],中国科学技术大学出版社,合肥.
    137.杨元喜,李金龙,徐君毅等(2011),中国北斗卫星导航系统对全球PNT用户的贡献[J].科学通报,2011,56(21):1734-1740.
    138.叶世榕(2002),GPS非差相位精密单点定位理论与实现[D].武汉大学,2002
    139.袁运斌(1999),GPS观测数据中的仪器偏差对确定电离层延迟的影响及处理方法[J].测绘学报,1999.28(2).
    140.袁运斌(2002),基于GPS的电离层监测及延迟改正理论与方法的研究[D].中科院测量与地球物理研究所.
    141.袁运斌(2003),利用IGS的GPS资料确定全球电离层TEC的初步结果与分析[J].自然科学进展,2003.13(8).
    142.乐新安(2008),中低纬电离层模拟与数据同化研究[D].中国科学院武汉物理与数学研究所.
    143.张成军,贾学东(2009),接收机钟跳对GPS定位的影响及探测方法[J].测绘通报,2009,12期.
    144.张东和(2000),利用GPS计算TEC的方法及其对电离层扰动的观测[J].地球物理学报,2000.43(4).
    145.章红平(2006),基于地基GPS的中国区域电离层监测与延迟改正研究[D].中国科学院上海天文台.
    146.章红平(2012),地基GNSS全球电离层延迟建模[J],武汉大学信息学报,第37卷第10期,2012年.
    147.张勤,李家权(2005),GPS测量原理及应用[M].北京:科学出版社.
    148.张小红,李征航,蔡昌盛(2001),用双频GPS观测值建立小区域电离层延迟模型研究[J],武汉大学学报(信息科学版)(2),140-143+159.
    149.张小红(2006),动态精密单点定位(PPP)的精度分析[J].全球定位系统,2006,1:7-11.
    150.张小红,郭斐,李盼,左翔(2012),GNSS精密单点定位中的实时质量控制[J].武汉大学学报(信息科学版),2012(8):940-943.
    151.邹玉华(2004),GPS地面台网和掩星观测结合的时变三维电离层层析[D].武汉大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700