聚乳酸/次磷酸盐复合材料的制备、阻燃机理以及烟气毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸(PLA)是一种以可再生资源为原料制备的可降解聚合物。由于其优良的力学性能和生物相容性,聚乳酸公被认为是最具有发展潜质的非石油基聚合物。但是,其易燃性、燃烧过程中出现的大量有毒烟气以及熔融滴落严重制约了聚乳酸在相关领域的发展,因此,为了扩大聚乳酸材料的使用范围,研究和发展阻燃性聚乳酸材料显得非常重要。本文首先系统性综述了近几十年所开发出的无卤阻燃技术,探讨这些无卤阻燃技术在在聚乳酸中应用的可行性。其次,研究了几种次磷酸盐在聚乳酸复合材料中的热解以及阻燃机理。最后,采用稳态管式炉烟气毒性试验平台(SSTF)研究了几种聚乳酸复合材料在不同条件下的燃烧烟气毒性。
     1.采用新型阻燃剂次磷酸铝(AHP),将其应用于聚乳酸的阻燃,制备出一系列PLA/AHP复合材料。热重测试表明,复合材料的成炭有明显提高,质量损失速率有明显降低。极限氧指数测试和垂直燃烧测试表明次磷酸铝可以提高复合材料的阻燃性能,20%次磷酸铝添加量即可使得次磷酸铝/次磷酸铝(PLA/AHP)复合材料达到UL-94VO级别,燃烧过程中的熔融滴落现象完全消失,极限氧指数达到27.5vol%;MCC测试和锥形量热测试表明次磷酸铝的加入可以有效降低热释放速率峰值;对燃烧后的炭渣进行SEM测试,燃烧形成的炭层更加致密。与此同时,DSC和DMA测试表明,次磷酸铝的加入有效提高了复合材料的结晶性能和储能模量。
     2.借鉴次磷酸铝(AHP)在聚乳酸复合材料的优异表现,将次磷酸钙(CaHP)作为一种潜在的阻燃剂应用聚乳酸,制备出一系列聚乳酸/次磷酸钙阻燃复合材料。研究表明,次磷酸钙的加入亦有效提高聚乳酸/次磷酸钙(PLA/CaHP)复合材料的极限氧指数,30%次磷酸钙添加量可以使得复合材料达到UL94VO级别,滴落完全消失,极限氧指数为26.5vol%。MCC测试结果表明,次磷酸钙的加入可以降低复合材料的PHRR;TGA测试表明次磷酸钙的加入虽然使得复合材料的热稳定性和成炭量都有了明显的提高;对炭渣的测试研究表明,随着次磷酸钙的加入,复合材料的炭渣更加致密稳定.
     3.将膨胀石墨(EG)作为阻燃协效剂与次磷酸铝复配用于聚乳酸复合材料阻燃,制备出聚乳酸/次磷酸铝/膨胀石墨(PLA/AHP/EG)三元阻燃复合材料。将次磷酸铝和膨胀石墨以3:1的比例按照进行复配在20%添加量条件下可以明显提高复合材料的极限氧指数和垂直燃烧级别。MCC和锥形量热测试表明,次磷酸铝和膨胀石墨复配可以明显降低复合材料的热释放塑料峰值(pHRR)和总热释放量(THR)。TGA测试表明,复合材料中的次磷酸铝成分在空气条件下能有效抑制复合材料在高温段的降解。TG-IR测试表明,在次磷酸铝/膨胀石墨的复配能有效降低挥发性气体的产生;同时,SEM研究表明,膨胀石墨燃烧过程中出现剥离膨胀覆盖在多孔炭渣的表面,从而有利于致密炭渣的形成,有效抑制燃烧区域物质和能量的交换。在此基础上,提出次磷酸铝膨胀石墨复配体系阻燃机理:膨胀石墨作为成炭剂在燃烧初期迅速膨胀,次磷酸铝降解成分复合形成致密的膨胀炭层,有效阻止燃烧区物质、能量以及氧气的交换,延缓了燃烧的进行;同时膨胀石墨膨胀形成的蠕虫状结构中的微小空间可以作为微反应器有利于聚乳酸降解产物以及有毒气体的相互反应,有效降低上述成分的产量,同时也利于成炭量的提高,从而有效提高复合材料的阻燃性能。
     4.合成了两种稀土次磷酸盐次磷酸镧(LaHP)和次磷酸铈(CeHP)。SEM研究表明,两种稀土次磷酸盐均呈微米尺度的棒状结构。TGA测试表明:这两种次磷酸盐在不同燃烧氛围下呈现完全不同的降解机制。以LaHP和CeHP为阻燃添加剂,制备出一系列聚乳酸阻燃复合材料(FR-PLA)。TGA测试表明,两种稀土次磷酸盐的加入均提高了聚乳酸阻燃复合材料的热稳定性。30%添加量的次磷酸镧和次磷酸铈使得复合材料达到UL-94VO级别,氧指数为28.5vo1%.TG-IR测试表明,两种稀土次磷酸盐的加入可以有效降低挥发性气体的产生。MCC和锥形量热测试均表明LaHP和CeHP的加入能有效降低热释放塑料峰值(pHRR)。同时,采用SEM研究炭渣,表明不同稀土次磷酸盐添加量对炭渣形貌有很大的影响;采用XPS对炭渣进行元素分析,表明复合材料的燃烧产物主要为次磷酸盐降解产物和催化成炭产物。
     5.按照国际标准,搭建中国首台稳态管式炉烟气毒性试验平台(SSTF)。在此基础上研究了聚乳酸,聚乳酸/次磷酸铝,聚乳酸/次磷酸钙,聚乳酸/次磷酸镧和聚乳酸/次磷酸铈复合材料的烟气毒性。研究表明:聚乳酸燃烧过程中,其氧气消耗与二氧化碳生成存在高度关联,燃烧过程中消耗的氧气主要进入二氧化碳中;不同氧气供应条件下,聚乳酸以及聚乳酸复合材料的烟气产生迥异,其在等值比附近氧气最大限度转化为二氧化碳,一氧化碳浓度最低,此时烟气毒性最小;不同金属阳离子的次磷酸盐对复合材料烟气毒性影响显著,其中,聚乳酸/稀土次磷酸盐复合材料燃烧烟气毒性最低。
Polylactic acid (PLA) was a degradable polymer which was derived from renewable resource. PLA present excellent mechanical properties and biocompatibility, it was considered to replace polyolefins to some extent. However, the development and application of PLA was limited due to its poor fire resistance and serious dripping when subjected to elevated temperatures or combustion. So, it was important to research and develop flame retarded PLA. Firstly, this thesis systematically reviewing previous studies on halogen-free flame retardant technology, discussing the application feasibility of several these technologies in PLA. Secondly, several PLA/hypophosphite salts composites were prepared, and also, the degradation and flame retardant mechanism of these composites were investigated. Thirdly, the author successfully constructed first static state tube furnace toxicity test platform (SSTF); furthermore, the fire effluent toxicity of the PLA/hypophosphite salt composites in different conditions were investigated by this platform.
     1. Aluminum hypophosphite (AHP) was firstly used as a novel flame retardant and composed with PLA, a series of PLA/AHP composites were prepared. TGA test indicated that the addition of AHP could significantly increase the char residue and reduce mass loss rate. LOI and UL-94test indicated that the flame retardancy of the composites was significantly improved. FR-PLA composites with20wt%AHP loading could pass UL-94V-0rating without dripping, and the LOI value was27.5vol%. MCC and Cone test indicated that the peak of heat release rate (PHRR) was significantly reduced. The char residue of PLA/AHP composites after LOI test was tested by SEM, indicating condensed char structure was formed. Furthermore, DSC and DMA test indicate that the addition of AHP could significantly improve crystallization property and storage modulus of PLA/AHP composites.
     2. Inspired by the high performance of AHP, another calcium hypophosphite was used as a potential flame retardant for PLA, and a series of PLA/CaHP composites were prepared. The addition of CaHP could significantly improve the flame retardancy of PLA/CaHP composites. PLA/CaHP could pass UL-94V-0rating without dripping, and the LOI value was26.5vol%. MCC test indicated that the PHRR value was significantly reduced. TGA test indicated that the addition of CaHP could significantly increase the char residue and reduce the mass loss rate. The char after LOI test was investigated by SEM, revealing that the char residue of PLA/CaHP was condensed, which could improve the fire safety of the composites.
     3. Expanded graphite was used as flame retardant synergist and combined with AHP, a series of PLA/AHP/EG composites were prepared. The composite containing20wt%could pass UL-94VO rating with a high LOI value of34vol%(AHP:EG=3:1). MCC and Cone testing revealed that, the combination of AHP with EG could significantly reduce the PHRR and the total heart release (THR) of the composites. TGA test indicated that AHP could inhibit the degradation of the composites in high temperature. TG-IR revealed that the combination of AHP and EG resulted in significant decrease of gas products. SEM test showed that EG expanded and lamellar structure covered on the porous char residue which benefited to the formation of condensed char layer. Based on the experimental datum, the possible mechanism of PLA/AHP/EG composites was put forward:The EG particle rapidly expands and form vermicular structure which combined with decomposition products of AHP to form condensed char layer, which could further prohibit the transportation of mass and fuel. Further-more, the space of vermicular structure could act as a "micro-reactor", which is approximately seemed as a closed room in which toxicity gas can adequately react with the decomposition products of PLA. The sufficient reaction significantly inhibits the combustible and toxic gas, result in the improvement of char residue, and also, the flame reatrdancy of the composites was significantly improved.
     4. Two kinds of rare earth metal hypophosphite (REHP), lanthanum (Ⅲ) hypophosphite and cerium (Ⅲ) hypophosphite, were successfully synthesized and characterized. SEM analysis illustrated both of these two REHP presented rod-like structure with micron sizes. TGA test illustrated that REHP showed different degradation process in nitrogen and air atmosphere. A series of PLA/REHP composites were prepared by addition of LaHP and CeHP. TGA test showed that both the incorporation of LaHP and CeHP could significantly improve the thermal stability of PLA/REHP composites. For the composites containing30wt%LaHP and CeHP, it could reach UL-94V-0rating with a LOI value of28.5vol%. TG-IR test illustrated that the all the volatilized products were reduced by the addition of REHP. MCC and Cone testing showed that the addition of REHP could significantly reduce the PHRR value of PLA/PRHP composites. Char residue after Cone testing were investigated by SEM, illustrating that the morphology of the char residue were significantly effect by PEHP loading. Furthermore, the char was investigated by XPS, which showed that the main component was the degradation products of REHP and carbon-containing materials.
     5. First static state tube furnace toxicity test platform (SSTF) in China were constructed according to ISO19700. The fire effluents of PLA, PLA/AHP, PLA/CaHP, PLA/LaHP and PLA/CeHP composites in different conditions were investigated by SSTF. The research illustrated that, the oxygen consumption and CO2concentration presented high correlation, the oxygen mostly consumed by the formation of CO2. The composition of fire effluent was highly effected by oxygen supply condition; in equivalence ratio condition, the oxygen was transformed into CO2to the maximum content, the CO concentration was lowest, the fire effluent presented lowest toxicity. The kinds of cation in hypoposphite salts shows high effect on the fire effluent, in which, the composites containing rare earth hypophosphite shows the lowest fire toxicity.
引文
[1]Garlotta, D. A literature review of poly(lactic acid). Journal of Polymers and the Environment.2001,9:63-84.
    [2]Auras, R, Harte, B, Selke, S. An overview of polylactides as packaging materials. Macromolecular Bioscience.2004,4:835-864.
    [3]Conn, R. E., Kolstad, J. J., Borzelleca, J. F., Dixler, D. S., Filer, L. J. Jr., LaDu, B.N. Jr., Pariza M.W. Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food and Chemical Toxicology.1995,33:273-283.
    [4]何翊,董希琳.烟气毒性评价预测技术在性能化设计中的应用.国际安全科学与技术学术研讨会.2010,434-438.
    [5]刘军军,李风,兰彬,张智强.火灾烟气毒性研究的进展.消防科学与技术.2005,24:674-678.
    [6]Gann, R. G., Averill, J. D., Johnsson, E. L., Nyden, M. R., Peacock. R. D. Fire effluent component yields from room-scale fire tests. Fire and Materials,2010; 34 (6): 285-314.
    [7]Gann, R. G., Babrauskas. V., Grayson, S. J., Marsh, N. D. Hazards of combustion products:toxicity, opacity, corrosivity, and heat release:the experts'views on capability and issues. Fire and Materials,2011; 35 (2):115-127.
    [8]夏俊,王良芥,罗和安.阻燃剂的发展现状和开发动向.应用化学.2005;34(1):1-4.
    [9]欧育湘.阻燃剂—制造、性能及应用[M].北京:兵器工业出版社.1997.
    [10]张栋艳,孙佳,周作艳,柳旭,牛瑞婷,杨凤凰.阻燃剂分类及常用阻燃性能测试方法.第九届全国皮革化学品学术交流会.2012;220-224.
    [11]覃月宁.环保型氢氧化铝阻燃剂的制备及其阻燃PVC的研究.桂林工学院硕士学位论文2006.
    [12]黄俊山.阻燃EPDM电缆料的制备和力学性能.火火剂与阻燃材料.2011;30(11):1047-1048.
    [13]安璐,高庆,徐祖顺,易昌凤.氢氧化铝及其复合体系在聚合物中的阻燃应用.绝缘材料.2004;41(1):30-36.
    [14]潘杰.氢氧化镁的制备及阻燃性能研究.青岛科技大学博士学位论文2010.
    [15]王春来.阻燃级氢氧化镁的中试制备和表面改性研究.浙江工业大学硕士学位论文.2009.
    [16]李俊,万军喜,宋国林,唐国翌.纳米氢氧化镁阻燃聚丙烯体系的性能研究.材料导报.2009;12:11-13.
    [17]生瑜,朱德钦,兰荣,章文贡.氢氧化铝复合阻燃剂阻燃PVC电缆料的性能.中国塑料.2001;11:53-55.
    [18]李云峰.超细氢氧化铝粉体的表面改性及其阻燃研究.中南大学硕士学位论文.2012.
    [19]苏战排,韦平,汪根林,江平开,周围.接枝甲基丙烯酸对氢氧化铝阻燃聚乙烯电缆料电气性能的改善.电线电缆.2003;6:19-25.
    [20]宋旭鹏.三元乙丙橡胶/无机填料共混物的紫外光交联及其阻燃材料的研究.中国科学技术大学硕士学位论文.2009.
    [21]Wang, Z. Z., Qun, B. J., Fan, W. C., Huang, P. Combustion Characteristics of Halogen-Free Flame-Retarded Polyethylene Containing Magnesium Hydroxide and Some Synergists. Journal of Applied Polymer Science,2001; 81:206-214.
    [22]Li, Z. Z., Qu, B. J., Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends. Polymer Degradation and Stability.2003; 81(3):401-408.
    [23]Lu, H. D., Yang, W., Zhou S., Xing, W. Y., Song, L., Hu, Y. Preparation and flammability of EPDM/PP/Mg(OH)2 dynamic vulcanizates, Polymers for Advanced Technologies.2010;21:113-117.
    [24]Gui, H., Zhang, X. H., Liu, Y.Q.. Dong, W.F., Wang, Q.G, Gao J. M., Song, Z. H., Lai, J. M., Qiao, J. L., Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites. Composites Science and Technology.2007;67(6):974-980.
    [25]刘立华,薛瑞.硬脂酸锌对氢氧化铝阻燃剂的湿法表面改性研究.化工科技市场2010;33(6):29-33.
    [26]Herr, U., Gleiter, H., Ceramic forum, International Jahrgang 1990; 67:70
    [27]柳学义,刘亚青,卫芝贤.超细氢氧化铝粉末的制备及其阻燃性能.化工进展.2006;25(2):218-222.
    [28]王志强,吕秉玲,刘建平,蔡英骥,李凤锦,于洪波.沉淀法合成高纯超细氢氧化镁的研究.无机盐工业.2001;33(4):3-5.
    [29]Carpentier, F., Bourbigot, S., Delobel, R., Foulon, M. Charring of Fire retarded ethylene vinyl acetate copolymer-magnesium hydroxide/zinc borate formulations. Polymer Degradation and Stability.2000; 69:83-92.
    [30]Miyata, S., Koresawa, M., Kitano, Y., et al. US 5891945,1999.
    [31]周逸潇,杨丽,毕成良,韩新宇,张宝贵.磷系阻燃剂的现状与展望.天津化工.2009;23(1):1-4.
    [32]Troitzsch, J.H. Overview of Flame Retardants. Chimica Oggi Chemistry Today, Volume 16,1998.
    [33]Saviders, C., Granzow, A., Cannelongo, J.F. Journal of applied polymer science. Phosphine-based flame retardants for polypropylene.1979; 23(9):2639-2652.
    [34]薛恩钰,曾敏修.阻燃科学及应用.国防工业出版社1988;112-142.
    [35]王海军,陈立新,缪桦.氮系阻燃剂的研究及应用概况.热固性树脂.2005;20(4):36-41.
    [36]Wu, Q., Lu, J. P., Qu, B.J. Preparation and characterization of micro-capsulated red phosphorus and its flame retardant mechanism in halogen-free flame retardant polyolefins. Polymer International.2003;52 (8):1326-1331.
    [37]Tang, Y., Hu, Y., Wang, S. F, Gui, Z., Chen, Z. Y., Fan.W.C. Intumescent flame retardant-montmorillonite synergism in polypropylene-layered silicate nanocomposites,2003;52 (8):1396-1400.
    [38]祝大同.无卤化FR-4覆铜板开发进展.绝缘材料.2002;35(4):30-36.
    [39]高福业,欧育湘.新型磷-氮阻燃剂三(5,5-二甲基-1.3-二氧-2-磷杂环己烷-2-氧甲基)胺的合成及应用.精细化工.1998;15(2):35-38.
    [40]Balabanovich. A. I., Balabanovich, A. M., Engelmann.J. Intumescence in poly (butylene terephthalate):the effect of 2-methyl-1,2-oxaphospholan-5-one 2-oxide and ammonium polyphosphate. Polymer International,2003,52(8):1309-1314.
    [41]Yang, W., Song, L., Hu Y., Lu, H.D., Yuen, R. K. K. Enhancement of fire retardancy performance of glass-fibre reinforced poly(ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate. Composites Part B:Engineering.2011;42:1057-1065.
    [42]Yang, W., Yuen, R. K. K., Hu, Y., Lu, H.D., Song, Lei. Development and Characterization of Fire Retarded Glass-Fiber Reinforced Poly (1,4-butylene terephthalate) Composites Based on a Novel Flame Retardant System. Industrial & Engineering Chemistry Research.2011,50,11975-11981.
    [43]Lu, X.S., Qiao, X.Y., Yang, T., Sun, K., Chen, X.D. Preparation and Properties of Environmental Friendly Non halogen Flame Retardant Melamine Cyanurate/Nylon 66 Composites. Journal of Applied Polymer Science,2011;122:1688-1697.
    [44]彭治汉,邓向阳.氮系阻燃剂MCA阻燃尼龙6的机理研究.高分子材料科学与工程1998;14(4):107-109.
    [45]叶龙健,钱立军,王澜,许国志.硅系阻燃剂研究进展.中国塑料.2009;23(11):8-12.
    [46]Chiang C. L., Ma, C. C., Wu, D. L., Kuan, H.C. Preparation, Characterization and Properties of Novolac Type Phenolic/SiO2 Hybrid Organic/Inorganic Nano-composite Materials by Sol-Gel Method. Journal of Polymer Science, Part A: Polymer Chemistry.2003; 41 (7):905-913.
    [47]Leroy, E., Ferry, L., Laoutid, E., Lopez Cuesta, J.M. Intumescent Mineral Fire Retardant Systems in Ethylene-vinyl Acetate Copolymer:Effect of Silica Particles on Char Cohesion. Polymer Degradation and Stability,2006; 91(9):2140-2145.
    [48]贾修伟,刘治国.硅系阻燃剂研究进展.化工进展.2003;22:818.
    [49]Wang, M. Q. Technical Progress of Flame Retardant Rubber. China Rubber Industry.2004; 51(5):309-312.
    [50]Jia, S. J., Zhang, Z. C., Du, Z. W. A Study of the Dynamic Flammability of Radiation Crosslinked Flame retardant HDPE/EPDM/Silicon elastomer Compound. Radiation Physics and Chemistry,2003; 66 (5):349-355.
    [51]Wu, K., Song, L., Hu, Y., Lu, H. D., Kandola, B. K., Kandare, E. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Progress in Organic Coatings.2009; 65(4):490-497.
    [52]Bourbigot, S., Le Bras M., Flambard X., et al. Fire Retardancy of Polymers:New Applications of Mineral Fillers [M]. Cambridge:Royal Society of Chemistry, 2005; 189-201.
    [53]Fujiwara, S., Sakamoto, T.1976. Japanese patent. JP51109998.
    [54]Gao, F. G., Beyer, G., Yuan, Q.C. A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polymer Degradation and Stability,2005; 89:559-564.
    [55]Gilman, J. W. Flammability and thermal stability studies of polymer layered-silicate clay nanocomposites. Applied Clay Science.1999; 15:31-49.
    [56]Gilman, J. W., Jackson, C. L., Morgan, A. B.,Richard, H. Chemistry of Materials.Flammability properties of Polymer-Layered-silicate manocomposites. Polypropylene and polystyrene nanocomposites.2000; 12:1866-1873.
    [57]Jiao, C, M., Wang, Z. Z., Ye. Z., Hu,Y., Fan, W. C. Flame Retardation of Ethylene-VinylAcetate Copolymer Using Nano Magnesium Hydroxide and Nano Hydrotalcite Journal of Fire Sciences.2006; 24:47-64.
    [58]Kashiwagi, T., Grulke, E., Hilding, J. Harris, R., Awad, W., Douglas, J. Thermal Degradation and Flammability Properties of Poly(propylene)/Carbon Nanotube Composites.Macromol. Rapid Commun.2002; 23:761-765.
    [59]Kashiwagi, T., Du, F. M., Douglas, J. F., Winey,K. I., Harris, R. H., Shields, J. R., Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials.2005; 4:928-933.
    [60]Cipiriano, B. H., Kashiwagi, T., Raghavan, S. R., Yang, Y., Grulke, E. A., Yamamoto,K., Shields, J. R., Douglas, J, F. Effects of aspect ratio of MWNT on the flammabilityproperties of polymer nanocomposites. Polymer.2007; 48:6086-6096.
    [61]Gilman, J. W., Jackson, C. L., Morgan, A. B., Harris, R. Flammability properties of polymer-layered-silicate nanocomposites:polypropylene and polystyrene nanocomposites. Chemistry of Materials.2000; 12:1866-1873.
    [62]Kashiwagi, T., Harris, R. H., Zhang, X., Briber, R. M., Cipriano, B. H., Raghavan, S. R., Awad, W. H., Shields, J. R. Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer.2004,45:881-891.
    [63]Manzi-Nshuti, C., Wilkie, C. A. Ferrocene and ferrocenium modified clays and their styrene and EVA composites. Polymer Degradation and Stability.2007,92: 1803-1812.
    [64]Kong, Q. H., Lv, R. B., Zhang, S. J. Flame retardant and the degradation mechanism of high impact polystyrene/Fe-montmorillonite nanocomposites. Journal of Polymer Research.2008; 15:453-458.
    [65]陈晓平,张胜,杨伟强,崔正,陈小随.膨胀阻燃体系概述.中国塑料2010;24(10);1-8.
    [66]李玉芳,伍小明.无卤阻燃剂的研究开发进展.塑料制造.2006;4:78-83.
    [67]杨云峰,张现军,胡国胜.无卤阻燃剂的研究现状.山西化工.2010;30:50-53.
    [68]李傲,梁基照.无卤阻燃剂的研究进展.上海塑料.2007;1:1-5.[69]梅锦岗,杨建军,吴庆云,张建安,吴明元.膨胀阻燃剂的研究与应用.绿色建筑.2011:4:60-62.
    [70]王军,蔡绪福.无卤肉膨胀型阻燃剂的研究进展.中国塑料.2011;25:7-13.
    [71]马雅琳,王标兵,胡国胜.阻燃剂及其阻燃机理的研究现状.材料导报.2006;20:392-395
    [72]欧育湘.阻燃剂制造、性能及应用[M].北京:兵器工业出版社,1997;169.
    [73]Camino, G., Costa. L. Performance and Mechanisms of Fire Retardants in Polymers:A Review. Polymer Degradation and Stability.1988,20(3/4):271-279.
    [74]Zhang, S, Horrocks, A. R. Substantive Intumescences from Phosphorylated 1, 3-Propanediol Derivatives Substituted on to Cellulose. Journal of Applied Polymer Science.2003,90(12),3165-3172.
    [75]Reti, C., Casetta, M., Duquesne, S., Bourbigot, S., Delobel, R. Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies.2008; 19:628-635.
    [76]Ke, C.H., Li, J., Fang, K. Y., Zhu, Q. L., Zhu, J., Yan, Q., Wang,Y. Z. Synergistic effects between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polymer Degradation and Stability.2010; 95:763-770.
    [77]Li, S.M., Ren, J., Yuan, H., Yu, T., Yuan,W. Z. Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polymer International.2010; 59: 242-248.
    [78]Feng, J.X., Su, S.P., Zhu, J. An intumescent flame retardant system using b-cyclodextrin as a carbon source in polylactic acid (PLA). Polymers for Advanced Technologies.2011; 22:1115-1122.
    [79]Li, S.M., Ren, J., Yuan, H., Yu, T., Yuan, W. Z. Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polymer International.2010; 59: 242-248.
    [80]Wang, X., Hu, Y., Song, L., Xuan, S.Y., Xing, W. Y., Bai, Z. Man., Lu, H.D. Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Poly(lactic acid)/Starch Biocomposites. Industrial & Engineering Chemistry Research. 2011; 50:713-720.
    [81]Zhan, J., Song, L., Nie, S. B.,Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability.2009; 94:291-296.
    [82]Wang, D.Y., Leuteritz, A., Wang, Y. Z., Wagenknecht, U., Heinrich, G. Preparation and burning behaviors of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polymer Degradation and Stability 2010; 95:2474-2480.
    [83]Liu, X. Q., Wang, D.Y., Wang, X. L., Chen, Li., Wang, Y. Z. Synthesis of organo-modified-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems. Polymer Degradation and Stability.2011; 96:771-777.
    [84]Zhu, H.F., Zhu, Q. L., Li, J., Tao, K., Xue, L. X., Yan, Q. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polymer Degradation and Stability.2011;96:183-189.
    [85]Yuan, X. Y., Wang, D. Y., Chen, L., Wang, X. L., Wang, Y.Z. Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability 2011; 96:1669-1675.
    [86]Wang, D. Y., Song, Y.P., Lin, L., Wang, X. L., Wang, Y. Z. A novel phosphorus-containing poly(lactic acid) toward its flame retardation. A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer.2011; 52:233-238.
    [87]Yamashita, T., Takeda, K., Tani, Y., Hisazumi, T. Flame-retardant resin composition, production method of the same and molding method of the same. PCT Patent Application. WO2005028558.
    [88]Murariu, M., Dechief, A. L., Bonnaud. L., Paint, Y., Gallos, A., Fontaine, G., Bourbigot, S., Dubois, P. The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability 2010; 95:889-900.
    [89]Murariu.M., Bonnaud, L., Yoann, P., Fontaine.G., Bourbigot, S., Dubois, P. New trends in polylactide (PLA)-based materials:"Green" PLA-Calcium sulfate (nano) composites tailored with flame retardant properties. Polymer Degradation and Stability.2010; 95:374-381.
    [90]Yang, W., Song, L., Hu Y., Lu, H.D. Yuen. R. K. K. Enhancement of fire retardancy performance of glass-fibre reinforced poly(ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate. Composites Part B:Engineering.2011;42:1057-1065.
    [91]Wei Yang, Yongchun Kan, Lei Song, Yuan Hu, Hongdian Lu, Richard K. K. Yuen. Effect of organo-modified montmorillonite on flame retardant poly(1,4-butylene terephthalate) composites. Polymers for Advanced Technologies. 2011,22:2564-2570.
    [92]Yang, W.,Hu, Y., Tai, Q. L., Lu, H. D., Song, L., Yuen, R. K. K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Composites Part A:Applied Science and Manufacturing.2011; 42:794-800.
    [93]Braun, U., Schartel, B., Fichera, M. A., Jager, C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fiber reinforced polyamide 6,6. Polymer Degradation and Stability. 2007; 92:1528-1545.
    [94]刘军军,李风,兰彬,张智强.火灾烟气毒性研究的进展.消防科学与技术.2005;24(6):674-678.
    [95]Gann, R. G., Averill, J. D., Johnsson, E. L., Nyden, M. R., Peacock, R. D. Fire effluent component yields from room-scale fire tests. Fire and Materials,2010; 34 (6): 285-314.
    [96]Gann, R. G., Babrauskas, V., Grayson, S. J., Marsh, N. D. Hazards of combustion products:toxicity, opacity, corrosivity, and heat release:the experts' views on capability and issues. Fire and Materials,2011; 35 (2):115-127.
    [97]Stec, A. A., Hull, T. R. Torero, J. L., Carvel, R., Rein, G., Bourbigot, S. Effects of fire.retardants and nanofillers on the fire toxicity. Fire and Polymers V:Materials and Concepts for fire retardancy. ACS Symposium Series.2009; 1023:342-366.
    [98]Singh, H., Jain, A. K. Ignition, combustion, toxicity, and fire retardancy of polyurethane foams:a comprehensive review. Journal of Applied Polymer Science. 2009; 111 (2):1115-1143.
    [99]Polka, M. Studies on the smoke formation and heat release rates of unmodified and flame retardant-modified epoxy materials. Polymer,2011; 56 (10):734-742.
    [100]Lu, H. D., Wilkie, C. A. Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene. Polymer Degradation and Stability.2010; 95:564-571.
    [101]童朝阳,阴忆烽,黄启斌,林福生.火灾烟气毒性的定量评价方法评述.安全与环境学报.2005;5(4):101-105.
    [102]ISO. Estimation of the lethal toxic potency of fire effluents. ISO 13344,2004.
    [103]Stec, A. A., Hull, T. R., Lebek, K. Charcterisation of the steady state tube furnace (ISO 19700) for fire toxicity assessment.
    [104]Technical specification:Controlled equivalence ratio method for the determination of hazardous components of fire effluents. ISO/TS 19700,2006.
    [1]Bourbigot, S.; Fontaine, G. Flame retardancy of polylactide:an overview. Polymer Chemistry.2010;1:1413-1422.
    [2]Zhan, J., Song, L., Nie, S. B.,Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability.2009; 94:291-296.
    [3]Dorgan, J. R., Lehermeier, H. J., Palade, L. I., Cicero, J. Polylactides:properties and prospects of an environmentally benign plastic from renewable resources. Macromolecular Symposia 2001; 175:55-66.
    [4]Nagata, F., Miyajima, T., Yokogawa, Y. A method to fabricate hydroxyapatite/poly (lactic acid) microspheres intended for bio-medical application. Journal of the European Ceramic Society 2006; 26:533-535.
    [5]Tokiwa, Y.; Calabia, B. P. Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology.2006;72:244-251.
    [6]Sinclair, R. G. The Case for Polylactic Acid as a Commodity Packaging Plastic. Journal of Macromolecular Science:Pure and Applied Chemistry.1996; 33:585-597.
    [7]Meinander, K., Niemi, M., Hakola. J. S., Selin, J. F. Polylactides-degradable polymers for fibres and films. Macromolecular Symposia.1997; 123:147-153.
    [8]Horacek, H., Pieh, S. The importance of intumescent systems for fire protection of plastic materials. Polymmer International.2000; 49:1106-1114.
    [9]胡源,宋磊,尤飞,钟茂华.火灾化学导论.北京:化学工业出版社.2007.
    [10]梅锦岗,杨建军,吴庆云,张建安.吴明元.膨胀阻燃剂的研究与应用.绿色建筑.2011:4:60-62.
    [11]王军,蔡绪福.无卤膨胀型阻燃剂的研究进展.中国塑料.201;25:7-13.
    [12]马雅琳,王标兵,胡国胜.阻燃剂及其阻燃机理的研究现状.材料导报.2006;20:392-395.
    [13]Reti, C.,Casetta, M., Duquesne. S., Bourbigot, S., Delobel, R. Flammability properties of intumescent PLA including starch and lignin. Polymer for Advanced. Technologies.2008; 19:628-635.
    [14]Nishida, H., Fan, Y., Mori, T., Oyagi, N., Shirai, Y., Endo, T. Feedstock Recycling of Flame-Resisting Poly(lactic acid)/Aluminum Hydroxide Composite to L,L-lactide. Industrial & Engineering Chemistry Research.2005;44:1433-1437.
    [15]Murariu, M., Dechief, A. L., Bonnaud, L., Paint, Y., Gallos, A., Fontaine, G., Bourbigot, S., Dubois, P. The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability 2010; 95:889-900.
    [16]Yamashita, T., Takeda, K., Tani, Y., Hisazumi, T. Flame-retardant resin composition, production method of the same and molding method of the same. PCT Patent Application. WO2005028558.
    [17]Feng, J.X., Su, S.P., Zhu, J. An intumescent flame retardant system using b-cyclodextrin as a carbon source in polylactic acid (PLA). Polymers for Advanced Technologies.2011; 22:1115-1122.
    [18]Yang, W., Song, L., Hu, Y., Lu, H. D., Yuen, R. K. K. Enhancement of fire retardancy performance of glass-fibre reinforced poly (ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate. Composites Part B:Engineering.2011; 42:1057-1065.
    [19]Yang, W., Hu, Y., Tai, Q. L., Lu, H. D., Song, L., Yuen, R. K. K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Composites Part A-Applied Science and Manufacturing.2011; 42:794-800.
    [20]Braun, U., Schartel, B., Fichera, M. A., Jager, C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fiber reinforced polyamide 6.6. Polymer Degradation and Stability. 2007; 92:1528-1545.
    [21]Fisher, E. W., Sterzel, H. J., Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid and Polymer Science.1973:251:980-990.
    [22]Tsai, C. C., Wu, R. J., Cheng, H. Y., Li, S. C., Siao, Y. Y., Kong, D. C., Jang, G. W. Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films. Polymer Degradation and Stability.2010; 95:1292-1298.
    [23]Katiyar, V., Gerds, N., Koch, C. B., Risbo, J. H., Hansen, C. B., Plackett., D. Melt Processing of Poly(L-Lactic Acid) in the Presence of Organomodified Anionic or Cationic Clays. Journal of Appllied Polymer Science.2011; 122:112-125.
    [24]Bourbigot, S., Le Bras, M., Duquesne, S., Rochery, M. Recent advances for intumescent polymers. Macromolecular Materials and Engineering.2004; 289:499-511.
    [25]Lyon, R. E., Walters, R. N., Stoliarov, S. I. Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering and Science. 2007; 47:1501-1510.
    [26]Cheng, K. C., Yu, C. B., Guo, W. J., Wang, S. F., Chuang, T. C., Lin, Y. H. Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organoclay. Carbohydrate Polymer 2012; 87:1119-1123.
    [27]Kang, S. K, Lee, S. I., Lee, T. J., Narayan, R., Shin, B. Y. Effect of biobased and biodegradable nucleating agent on the isothermal crystallization of poly(lactic acid). Korean Journal of Chemical Engineering.2008; 25:599-608.
    [29]Katiyar, V., Gerds, N., Koch, C. B., Risbo, J., Hansen, H. C. B., Plackett, D. Poly L-lactide-layered double hydroxide nanocomposites via in situ polymerization of L-lactide. Polymer Degradation and Stability.2010; 95:2563-2573.
    [1]Li, S.M., Yuan, H., Yu. T., Yuan, W.Z., Ren. J. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polymer for Advanced Technologies.2009; 20:1114-1120.
    [2]Sykacek, E., Hrabalova, M., Frech, H., Mundigler, N. Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance. Composites Part A: Applied Science and Manufacturing.2009; 40:1272-1282
    [3]Bourbigot, S.; Fontaine, G. Flame retardancy of polylactide:an overview. Polymer Chemistry.2010; 1:1413-1422.
    [4]Zhan, J., Song, L., Nie, S. B.,Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability.2009; 94:291-296.
    [5]Garlotta, D. A literature review of poly(lactic acid). Journal of Polymers and The Environment.2001; 9:63-84.
    [6]Auras, R, Harte, B, Selke, S. An overview of polylactides as packaging materials. Macromoiecular Bioscience.2004,4:835-864.
    [7]Conn, R. E., Kolstad, J. J., Borzelleca, J. F., Dixler, D. S., Filer, L. J. Jr., LaDu, B.N. Jr., Pariza M. W. Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food and Chemical Toxicology.1995,33:273-283.
    [8]Wang, X., Hu, Y., Song, L., Xuan. S.Y., Xing, W. Y., Bai, Z. Man., Lu, H.D. Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Poly(lactic acid)/Starch Biocomposites. Industrial & Engineering Chemistry Research. 2011; 50:713-720.
    [9]Xuan, S.Y., Wang, X. et al. Study on flame-retardancy and thermal degradation behaviors of intumescent flame-retardant polylactide systems. Polymer International. 2011; 60:1541-1547.
    [10]Ke, C.H., Li, J., Fang, K. Y., Zhu, Q. L., Zhu, J., Yan, Q., Wang,Y. Z. Synergistic effects between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polymer Degradation and Stability.2010; 95:763-770.
    [11]Nishida, H., Fan, Y.J., Mori, T., Oyagi, N., Shirai, Y. Feedstock Recycling of Flame-Resisting Poly(lactic acid)/AIuminum Hydroxide Composite to L,L-lactide. Industrial & Engineering Chemistry Research.2005; 44:1433-1437.
    [12]Murariu,M., Bonnaud, L., Yoann, P., Fontaine,G., Bourbigot, S., Dubois, P. New trends in polylactide (PLA)-based materials:"Green" PLA-Calcium sulfate (nano) composites tailored with flame retardant properties. Polymer Degradation and Stability.2010; 95:374-381.
    [13]Hapuarachchi, T. D., Peijs. T. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Composites Part A:Applied Science and Manufacturing.2010;41: 954-963.
    [14]Murariu, M., Dechief, A. L., Bonnaud, L., Paint, Y., Gallos, A., Fontaine, G., Bourbigot, S., Dubois, P. The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability 2010; 95:889-900.
    [15]Yuan, X. Y., Wang, D. Y., Chen, L., Wang, X. L., Wang, Y.Z. Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability 2011; 96:1669-1675.
    [16]Yang, W., Song, L., Hu Y., Lu, H.D. Yuen, R. K. K. Enhancement of fire retardancy performance of glass-fibre reinforced poly(ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate. Composites Part B:Engineering.2011;42:1057-1065.
    [17]Yang, W., Hu, Y., Tai. Q. L.. Lu, H. D., Song, L., Yuen, R. K. K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Composites Part A:Applied Science and Manufacturing.2011:42:794-800.
    [18]Braun, U., Schartel. B., Fichera, M. A., Jager, C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fiber reinforced polyamide 6,6. Polymer Degradation and Stability. 2007; 92:1528-1545.
    [19]Fisher, E. W., Sterzel. H. J., Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid& Polymer Science.1973; 251:980-990.
    [20]Tsai, C. C., Wu, R. J., Cheng, H. Y., Li, S. C., Siao, Y. Y., Kong, D. C., Jang, G. W. Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films. Polymer Degradation and Stability.2010; 95:1292-1298.
    [21]Katiyar, V., Gerds, N., Koch, C. B., Risbo, J. H., Hansen, C. B., Plackett, D. Melt Processing of Poly(L-Lactic Acid) in the Presence of Organomodified Anionic or Cationic Clays. Journal of Appllied Polymer Science.2011; 122:112-125.
    [1]Bourbigot, S., Fontaine, G. Flame retardancy of polylactide:an overview. Polymer Chemistry.2010; 1:1413-1422.
    [2]Zhan, J., Song, L., Nie, S. B.,Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability.2009; 94:291-296.
    [3]Reti, C., Casetta, M., Duquesne, S., Bourbigot, S., Delobel, R. Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies.2008; 19:628-635.
    [4]Li, S.M., Ren, J., Yuan, H., Yu, T., Yuan,W. Z. Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polymer International.2010; 59: 242-248.
    [5]Wei, L. L., Wang, D. Y., Chen, H. B., Chen, Li., Wang, X. L., Wang, Y. Z. Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polymer Degradation and Stability 2011;96:1557-1561.
    [6]Yuan, X. Y., Wang, D. Y., Chen, L., Wang, X. L., Wang, Y.Z. Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability 2011; 96:1669-1675.
    [7]Wang, D. Y., Song, Y.P., Lin, L., Wang, X. L., Wang, Y. Z. A novel phosphorus-containing poly(lactic acid) toward its flame retardation. A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer.2011; 52:233-238.
    [8]Yang, W., Song, L., Hu Y., Lu, H.D. Yuen, R. K. K. Enhancement of fire retardancy performance of glass-fibre reinforced poly(ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate. Composites Part B:Engineering.2011;42:1057-1065.
    [9]Yang, W.,Hu, Y., Tai, Q. L., Lu, H. D., Song, L., Yuen, R. K. K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Composites Part A:Applied Science and Manufacturing.2011; 42:794-800.
    [10]Braun, U., Schartel, B., Fichera, M. A., Jager. C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fiber reinforced polyamide 6,6. Polymer Degradation and Stability. 2007; 92:1528-1545.
    [11]Tang, G., Wang, X., Xing, W.Y., Zhang, P., Wang, B.B., Hong, N.N., Yang, W., Hu, Y., Song, L. Thermal Degradation and Flame Retardance of Biobased Polylactide Composites Based on Aluminum Hypophosphite. Industrial & Engineering Chemistry Research.2012; 51:12009-12016.
    [12]Bian, X.C., Tang, J.H., Li, Z. M., Lu, Z.Y., Lu, A. Dependence of Flame-Retardant Properties on Density of Expandable Graphite Filled Rigid Polyurethane Foam. Journal of Applied Polymer Science.2007; 104:3347-3355.
    [13]Li, Y.C., Chen, G.H. HDPE/Expanded Graphite Nanocomposites Prepared Via Masterbatch Process. Polymer Engineering and Science.2007; 47(6):882-888.
    [14]Goyal, R. K., Jagadale, P. A., Mulik, U. P.Thermal, Mechanical, and Dielectric Properties of Polystyrene/Expanded Graphite Nanocomposites. Journal of Applied Polymer Science.2009; 111:2071-2077.
    [15]George, J. J., Bhowmick,A.K. Ethylene vinyl acetate/expanded graphite nanocomposites by solution intercalation:preparation, characterization and properties. Journal of Materials Science 2008; 43:702-708.
    [16]Murariu, M., Dechief. A. L., Bonnaud, L., Paint, Y., Gallos, A., Fontaine, G., Bourbigot, S., Dubois, P. The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability 2010; 95:889-900.
    [17]Zhu, H.F., Zhu, Q. L., Li. J., Tao, K., Xue, L. X., Yan, Q. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polymer Degradation and Stability.2011;96:183-189.
    [18]Lyon, R. E., Walters, R. N., Stoliarov, S. I. Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering and Science. 2007; 47:1501-1510.
    [19]Cheng, K. C., Yu, C. B.. Guo. W. J., Wang, S. F., Chuang, T. C., Lin, Y. H. Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organoclay. Carbohydrate Polymer.2012; 87:1119-1123.
    [20]Yoshida, Y., Inoue, K., Kyritsakas, N., Kurmoo, M. Syntheses, structures and magnetic properties of zig-zag chains of transition metals with O-P-O bridges. Inorganica Chimica Acta.2009; 362:1428-1434.
    [21]Krawczyk, P. Effect of ozone treatment on properties of expanded graphite. Chemical Engineering Journal.2011; 172:1096-1102.
    [1]Bourbigot, S., Fontaine, G. Flame retardancy of polylactide:an overview. Polymer Chemistry.2010; 1:1413-1422.
    [2]Zhan, J., Song, L., Nie, S. B.,Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability.2009; 94:291-296.
    [3]Dorgan, J. R., Lehermeier, H. J., Palade, L. I., Cicero, J. Polylactides:properties and prospects of an environmentally benign plastic from renewable resources. Macromolecular. Symposia.2001;175:55-66.
    [4]Nagata, F., Miyajima, T., Yokogawa, Y. A method to fabricate hydroxyapatite/poly(lactic acid) microspheres intended for biomedical application. Journal of European Ceramic Society.2006; 26:533-535.
    [5]Tokiwa, Y., Calabia, B. P. Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology.2006; 72:244-251.
    [6]Sinclair, R. G. The case for polylactic acid as a commodity packaging plastic. Journal of Macromolecular Science:Pure and Applied Chemistry.1996; 33:585-597.
    [7]Meinander. K., Niemi, M., Hakola, J. S., Selin, J. F. Polylactides-degradable polymers for fibres and films. Macromolecular Symposia.1997; 123:147-153.
    [8]Reti, C., Casetta, M., Duquesne, S., Bourbigot, S., Delobel, R. Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies.2008; 19:628-635.
    [9]Li, S.M., Ren, J., Yuan, H., Yu, T., Yuan,W. Z. Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polymer International.2010; 59: 242-248.
    [10]Wei, L. L., Wang, D. Y., Chen, H. B., Chen, Li., Wang, X. L., Wang, Y. Z. Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polymer Degradation and Stability 2011;96: 1557-1561.
    [11]Yuan, X. Y., Wang, D. Y., Chen, L., Wang, X. L., Wang, Y.Z. Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability 2011; 96:1669-1675.
    [12]Wang, D. Y., Song, Y.P., Lin, L., Wang, X. L., Wang, Y. Z. A novel phosphorus-containing poly(lactic acid) toward its flame retardation. A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer.2011; 52:233-238.
    [13]Yang, W., Song, L., Hu Y., Lu, H.D. Yuen, R. K. K. Enhancement of fire retardancy performance of glass-fibre reinforced poly(ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate. Composites Part B:Engineering.2011;42:1057-1065.
    [14]Yang, W.,Hu, Y., Tai, Q. L., Lu, H. D., Song, L., Yuen, R. K. K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Composites Part A:Applied Science and Manufacturing.2011; 42:794-800.
    [15]Braun, U., Schartel, B., Fichera, M. A., Jager, C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fiber reinforced polyamide 6,6. Polymer Degradation and Stability. 2007;92:1528-1545.
    [16]Tang, G., Wang, X., Xing, W.Y., Zhang, P., Wang, B.B., Hong, N.N., Yang, W., Hu, Y., Song, L. Thermal Degradation and Flame Retardance of Biobased Polylactide Composites Based on Aluminum Hypophosphite. Industrial & Engineering Chemistry Research.2012; 51:12009-12016.
    [17]Feng, C. M., Zhang, Y., Liu, S. W., Chi, Z. G., Xu, J. R. Synergistic effect of La2O3 on the flame retardant properties and the degradation mechanism of a novel PP/IFR system. Polymer Degradation and Stability.2012; 97:707-714.
    [18]Jiao, C. M., Chen, X. L. Preparation and flame retardant properties of EVA/Mg(OH)2/La2O3 composites. Plastic Rubber and Composites.2010; 39:445-448.
    [19]Li, Y. T., Li, B., Dai, J. F., Jia, H., Gao, S. L. Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system. Degradation and Stability.2008; 93:9-16.
    [20]Noisong, P., Danvirutai, C., Srithanratana, T., Boonchom, B. Synthesis characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate, Solid State Science.2008; 10:1598-1604.
    [21]Yoshida, Y., Inoue, K., Kyritsakas, N., Kurmoo, M. Syntheses, structures and magnetic properties of zig-zag chains of transition metals with O-P-O bridges. Inorganica Chimica Acta.2009; 362:1428-1434.
    [1]Bourbigot, S., Fontaine, G. Flame retardancy of polylactide:an overview. Polymer Chemistry.2010; 1:1413-1422.
    [2]Zhan, J., Song, L., Nie, S. B.,Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability.2009; 94:291-296.
    [3]Dorgan, J. R., Lehermeier, H. J., Palade, L. I., Cicero, J. Polylactides:properties and prospects of an environmentally benign plastic from renewable resources. Macromolecular. Symposia.2001;175:55-66.
    [4]Gann, R. G., Babrauskas, V., Grayson, S. J., Marsh, N. D. Hazards of combustion products:toxicity, opacity, corrosivity, and heat release:the experts'views on capability and issues. Fire and Materials,2011; 35 (2):115-127.
    [5]Stec, A. A., Hull, T. R. Torero, J. L., Carvel, R., Rein, G., Bourbigot, S. Effects of fire retardants and nanofillers on the fire toxicity. Fire and Polymers V:Materials and Concepts for fire retardancy. ACS Symposium Series.2009; 1023:342-366.
    [6]Singh, H., Jain, A. K. Ignition, combustion, toxicity, and fire retardancy of polyurethane foams:a comprehensive review. Journal of Applied Polymer Science. 2009; 111 (2):1115-1143.
    [7]Polka, M. Studies on the smoke formation and heat release rates of unmodified and flame retardant-modified epoxy materials. Polymer,2011; 56 (10):734-742.
    [8]童朝阳,阴忆烽,黄启斌,林福生.火灾烟气毒性的定量评价方法评述.安全与环境学报.2005;5(4):101-105.
    [9]ISO. Estimation of the lethal toxic potency of fire effluents. ISO13344,2004.
    [10]Stec, A. A., Hull, T. R., Lebek, K. Charcterisation of the steady state tube furnace (ISO 19700) for fire toxicity assessment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700