四旋翼垂直起降机控制问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四旋翼垂直起降机相对于一般的单螺旋旋翼式直升机可以采用更小的螺旋桨,不至于使裸露在外面的螺旋桨刮到周围物体,从而使飞行变得更加安全。此外,四个螺旋桨产生的推力较单个螺旋桨产生的推力能更好的实现飞行器的静态盘旋,并且可以在悬空静止的状态瞬时改变其姿态,具有较高的机动性和有效承载力。它的价值已经逐渐被控制领域和商业领域的人们所重视。本文建立了四旋翼垂直起降机进行动力学模型,针对建模模型设计H_∞回路成形控制器,同时搭建物理平台,并在RTW环境下进行了半实物仿真。
     首先,确定了四旋翼垂直起降机的设计方案。四旋翼垂直起降机具有四个输入力,同时却有六个输出,所以它是一种欠驱动系统,而且四旋翼垂直起降机是通过改变螺旋桨速度实现升力变化的,这样就会导致其动力的不稳定,所以就需要有稳定的控制率,用来保证它的稳定飞行。而H_∞回路成形法能够将经典频域设计理论的鲁棒性优点和现代控制理论的状态空间方法相结合,为此我们选用H_∞回路成形方法设计飞行控制器。为设计控制器,首先我们建立它的非线性模型并对模型进行线性化,然后通过Matlab仿真,验证所设计的H_∞回路成形控制器的控制效果。
     其次,为了测定实际模型的参数,我们对垂直起降机的四个旋翼进行驱动,分析设计旋翼电机驱动电路,搭建整个物理平台。
     最后,构建系统的仿真环境,完成实时仿真环境的建立,并通过实时仿真测定电机参数和系统转动惯量,整定得到实际对象模型,并对系统的横滚通道进行实时仿真,验证控制器的效果。
Compared with single-rotor helicopter, the four-rotor VTOL(vertical take-off and landing)helicopter has smaller propellers, which can reduce the risk of crashing into the surrounding objects. o it can make the flight safer. In addition, the thrust produced by four propellers can realize flight vehicle's circling in static state better comparing with that of single propeller, and can change its posture in the hovering condition instantly.It also has good mobility and the effective supporting capacity. Gradually it was highly valued by the people in controlling and commercial domain. The article establishes the dynamic model of the four- rotor VTOL helicopter. Specific to the built model, we design H_∞loop shaping controller, simultaneously set up the physical platform, and carry on semi-physical simulation on the RTW environment.
     Firstly we determine the design proposal of the four-rotor VTOL helicopter in the article. The four-rotor VTOL helicopter has four inputs and six outputs, therefore it is a underactuated control system. Moreover the four-rotor VTOL helicopter makes the lifting force changed by changing the propeller speed, which causes the instability of its power.Therefore we need to have the stable inverse amplification factor to guarantee its stabilized flight.
     The H_∞loop shaping can combine the robustness merits of the classical frequency domain and the state space methods of the modern control theory, so we select H_∞loop shaping method to design flight controller. In order to design the controller,firstly we establish its non-linear model and carry on the linearization to the model, then through the Matlab simulation, confirm the control effect of the H_∞loop shaping controller we designed.
     Next, to determine the actual model parameter, we design the drive circuit for-four propellers, and then set up the entire physics platform.
     Finally, we construct the real-time emulation environment, and determine the electrical motor parameter and the system moment of inertia, obtain the model of the actual object and carry on the real-time simulation to system roll channel, confirm the controller's effect.
引文
1 S. Boubdallah, A.Noth and R.Siegwart. PID vs LQ Control Techniques Applied to an Indoor Micro Quadrotor. IROS 2004, Sendai(Japan), October 2004: 1~4.
    2 E. Altug, J. P. Ostrowski, and C. J. Taylor. Quadrotor Control Using Dual Camera Visual Feedback. IEEE Trans. on Robotics and Automation. 2003: 4294–4299
    3 C. A. Clifton. Hybrid System Based design for the Coordination and Control of Multiple Autonomous Vehicles. Phd Thesis, University of Vanderbilt. 2005: 10-44
    4 Pounds & R.Mahony, P. Hynes & J.Roberts. Design of a Four-Rotor Aerial Robot. Proc. 2002 Australasian Conference on Robotics and Automation Auckland, 27-29 November 2002: 145~150.
    5 Gordon Leishman. The Breguet-Richet Quad-Rotor Helicopter of 1907. AHS International Directory. 2001: 1-4
    6 T. Hamel, R. Mahony, and A. Chriette. Visual Servo Trajectory Tracking for a Four Rotor VTOL Aerial Vehicle. IEEE Trans. on Robotics and Automation. 2002: 2781-278
    7 N. Guenard, T. Hamel, and V. Moreau. Dynamic Modelling and Intuitive Control Strategy for an X4-Flyer. ICCA 05 Budapest Hongrie. 2005: 1-6
    8 E. B. Nice. Design of a Four Rotor Hovering Vehicle. Phd Thesis, University of Cornell. 2004: 46-57
    9 T. Hamel, R. Mahony, and A. Chriette. Visual Servo Trajectory Tracking for a Four Rotor VTOL Aerial Vehicle. IEEE Trans. on Robotics and Automation. 2002: 2781-2786
    10 P. Castillo, A. Dzul, and R. Lozano. Real-Time Stabilization and Tracking of a Four-Rotor Mini Rotorcraf. IEEE Trans. on Control Systems Technology. 2004, 12(4): 510-516
    11穆向阳. H∞控制系统理论与运用研究.西北工业大学硕士. 2001:63-68
    12申铁龙. H∞控制理论及应用.北京:清华大学出版社, 1996: 4-12
    13 B. A. Francis. A Course in H∞Control Theory. Lecture Notes in Control andInformation Sciences. Springer Verlag, 1987: 88-98
    14 J. C. Doyle. Advances in Multivariable Control. Presented at ONR/ Honeywell Workshop, Minneapolis, 1984:5-15
    15 K. Glover, J. C. Doyle. State-Space Formulate for All Stabilizing Controllers That Satisfy on H∞Norm Bound and Relations to Risk Sensitivity. Syst. Contr. Lett. 1988, 11: 167-172
    16钟舜聪,李升平,孙智娟.基于回路成形法的鲁棒控制器设计.汕头大学学报. 2000, 15(2): 19-26
    17张显库,贾欣乐,王兴成,杨承恩. H∞鲁棒控制理论发展的十年回顾.控制与决策.1999,14(4):290-297.
    18 Zames. Feedback and Optimal Sensitivity: Model Reference Transformation: Multiplicative Seminorms and Approximate Inverses. IEEE Trans. on Automat. Contr. 1981, 26: 301-320
    19 D. C.McFarlane, K.Glover. A Loop Shaping Design Procedure Using H∞Synthesis. IEEE Trans. AC. 1992, 37(6): 759~769.
    20 D. Walker and I. Postlethwaite. Advanced helicopterflight control using two-degree-of-freedom H∞optimization.Journal of Guidance, Control and Dyanmics,1996: 461~468.
    21 C.A.Clifton.Hybrid System design for the Coordination and Control of Multiple Vehicles.Phd Thesis,University of Vanderbilt.2005:10-15
    22 M. L. Civita, G. Papageorgiou. W. C. Messner. T. Kanade. Design and Flight Testing of a Gain-scheduled Loop Shaping Controller for Wide-envelope Flight of a Robotic Helicopter. Proceedings of the American Control Conference. 2003: 4195-4200
    23 W. Rugh, J. S. Shamma. Research on Gain Scheduling. Automatica. 2000, 36: 1401-1425
    24 J. S. Shamma, J. R. Cloutier. Gain-scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations. Journal of Guidance Control and Dynamics,1993, 16(2): 256-263
    25 G. Papageorgiou, K. Glover. Taking Robust LPV Control into Flight on the VACC Harrier. Proceedings of the 39th IEEE conference. on Decision and Control. 2000: 4558-4564
    26 D. Walker and I. Postlethwaite. Advanced helicopterflight control using two-degree-of-freedom H∞optimization.Journal of Guidance, Control and Dyanmics,1996:461-468
    27张力军,肖颖越,程鹏. H∞中的规范化LCF法在综合控制系统设计中的应用.航空学报. 2000, 21(3): 267-269
    28 K. M. Zhou, J. C. Doyle, K. Glover. Robust and Optimal Control. Prentice Hall, Upper Saddle River, New Jersey. 1996: 45-56
    29 S. Skogestad, I. Postlethwaite. Multivariable Feedback Control. John Wiley & Sons, England, 1996: 5-11
    30周克敏, Doyle J.C.著,毛剑琴,钟宜生等译.鲁棒与最优控制.北京:国防工业出版社,2002
    31 McFarlane, and K. Glover. A loop shaping design procedure using H∞synthesis. IEEE Trans. on Automatic Control. 1988, 37(6): 759~769
    32 B. A. Francis, J. C. Doyle. Linear Control Theory with an H∞Optimality Criterion. SIAM J. Contr. and Optim. 1987, 25: 815-844
    33 K. M. Zhou, J. C. Doyle, K. Glover. Robust and Optimal Control. Prentice Hall, Upper Saddle River, New Jersey. 1996: 45-56
    34 Paul Blue, Levent Guvenc and Dirk Odenthal. Large nvelope flight control satisfying H∞robustness and erformance specifications. Proceedings of the American control Conference, Arlington,VA, 2001:25~27.
    35 Martin F.Weilenmann, Urs Christen, and Hans P.Geering.Robust helicopter postion control at hover.Proceedings of the American Control Conference, Baltimore, Maryland, 1994:1-3
    36傅彩芬,谭文,刘吉臻.基于回路成形的鲁棒增益调度控制器设计.信息与控制. 2005, 34(2): 152-156
    37 H∞控制理论及应用.清华大学出版社. 1996: 67~216
    38王德进. H2和H∞优化控制理论.哈尔滨工业大学出版社. 2001: 86~151.
    39吴旭东,解学书. H∞鲁棒控制中的加权阵选择.清华大学学报.1997,37(1): 27-30
    40薛定宇.反馈控制系统设计与分析——MATLAB语言应用.清华大学出版社.2000: 134-160
    41王正林,王胜开,陈国顺. MATLAB/Simulink与控制系统仿真. 2006: 44~99
    42王永.反电动势无刷直流电机控制系统研究.东南大学硕士. 2004:9-10
    43刘胜利,刘宁宁.无传感器的无刷直流电机控制器ML4425及其应用.电源技术应用. 2002 (8): 381-386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700