便携式相位光栅轮廓全貌测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展以及人民生活水平的不断提高,传统的测量方式和测量信息已经不能满足实际的需求,因此针对复杂自由曲面的快速、高精度、多信息的全貌测量技术己成为一个重要的研究方向。特别是基于相位光栅的视觉测量技术因为其非接触、速度快、精度高、全视角等优点得到了更广泛地应用。
     本文对相位光栅测量技术进行了深入地分析,并自主设计和研发了一套便携式相位光栅轮廓全貌测量系统,并以该测量系统为实验平台,对涉及的关键技术进行了深入的研究。本文主要的研究内容和贡献如下:
     1.针对图像的特征识别、边缘提取和中心定位等关键技术进行了深入的研究,并提出了相应的解决方案。主要提出了一种利用多项式拟合的亚像素边缘精确定位算法;基于几何特性实现了圆形特征对象的稳健识别;根据调和共轭和配极对应等原理,又提出了一种新的高精度圆心定位算法;最后将本文算法和张正友的标定方法相结合实现全自动、高精度地摄像机标定,并通过实验验证了各算法的有效性和精度。
     2.立体匹配是三维重构的重要条件,本文提出了一种针对相位光栅的亚像素定位算法,实现高精度的立体匹配;在保证测量精度的前提下,尽可能地减少投射光栅的数目具有一定的意义,本文对影响相位计算精度的因素进行了分析,提出了将三步相移法和四步相移法结合的解决方案,充分地发挥了两者各自的优点。
     3.详细分析现有多视拼接技术的优缺点,最终选择适合本文测量系统的基于粘性标记点的拼接方法。针对标记点的匹配问题,本文基于三维重构深度差,提出了一种适应性更强的立体匹配算法。在此基础上,又根据距离不变性实现多视同名标记点的搜索,最终实现数据的初始拼接。通过实验发现仅利用粘性标记点的拼接精度不能满足高精度测量系统的要求,因此本文在初始拼接结果的基础上提出了一种多层次ICP精确配准算法,该方法利用初始拼接误差动态调整距离阈值,从而不断减小受非对应点的影响,最终完成优化拼接。实验结果表明,经优化处理后数据拼接精度约提高3倍。
     4.针对相位光栅测量数据的特点,本文实现了一种简单实用的点云法矢估算方法,通过实验证明了算法的正确性,且具有较高的执行效率,为用户的可视操作和后续算法的运算提供了可靠的辅助信息。
     5.数据融合是测量系统中必不可少的一个关键技术,考虑数据噪声和配准误差的影响,本文在已有算法的基础上提出了一种自适应邻域均值聚类融合算法,该算法主要包括检测重叠区域、计算初始中心点和聚类迭代等三个步骤。通过实验验证了算法的有效性和精度,实验结果表明该算法不仅能够从多视冗余数据中正确地获取单一型面数据,而且融合结果在细节保留方面更加突出。
     6.在相关理论和关键算法研究的基础上,本文搭建了相位光栅轮廓全貌测量系统的原型机,并给出了软件系统的整体架构方案。通过多组实验给出了原型系统在测量精度和测量速度等方面的性能指标,实验结论良好。
With the development of modern industry and the improvement of people's living standards, the traditional methods and information are unable to meet people's requirements anymore; therefore, high-precision and multi-information measurement technologies for complex freeform object have become hot issues. Among the existing3D measurement techniques, the visual measurement integrated with phase shifting profilometry has been widely applied, thanks to its characteristics of non-contact, high-speed, high-precision and wide-viewing.
     In this background, a portable fringe projection3D measuring system is independ-ently designed and established based on the in-depth study of phase shifting profilome-try. In this dissertation, the measuring system is used as an experimental platform, then, related key techniques are fully studied. The main works and contributions are summ-arizeed as follows:
     1. Aiming at camera calibration, some in-depth researches in feature recognition, edge detection and center location are carried out, such as, a new subpixel edge extraction method based on polynomial fitting is proposed; A robust curcular object recognition method is implemented besed on their geometric characteristics; A new method based on concentric circle pattern is proposed to locate the projection of center precisely using the principles of harmonic conjugate and pole-polar. Then, the camera could be calibarated automatically and precisely by the combination of our algorithms with Zhang's method. The correctness and accuracy of these algorithms are demonstrat-ed by some experiments.
     2. A new subpixel positioning method of the absolute phase value is presented in this dissertation for accurate stereo matching. In addition, the factors that influencing the phase value are analyzed carefully, further, a method combining3-step and4-step phase shifting techniques is given to reduce the number of the projection grating, while maintaining the measurement accuracy.
     3. After the advantages and disadvantages of the existing registration algorithms are analyzed detailed, the method based on circular targets is adopted in our system to transform the points from different views into global coordinate system. Firstly, a more robust stereo matching algorithm for feature object is presented; then,3D registration for two views is performed based on distance invariance under rigid transformation. It is found that the accuracy obtainded only using circular targets can not meet the requirements of our measuring system, so a multi-level enhanced ICP algorithm is proposed to improve the registration accuracy by taking the result of circular targets as initializtion. Experimental result shows that the accuracy is improved by almost three times.
     4. A simple and efficient method for the estimation of point normals is introduced by considering the characteristics of the data points acquired by our system. The correctness and efficiency of the algorithm is demonstrated by experiments, it gives a favor to user's visualization and subsequent algorithms run.
     5. Data fusion is one of the essential key technologies for a measurement system. Taking the noise data and registration errors into account, an adaptive neighborhood clustering fusion method based on the existing algorithm is given. The experimental results show the validity and efficienty of the algorithm. It is concluded that the algorithm can not only obtain the surface data from multi-view redundant points, but also performs fairly well in detail preservation for the sake of iterative optimization.
     6. A prototype phase shifting surface measuring system is established based on the related theories and key techniques. The overall architecture of the system software is also figured to list the function modules. The accuracy, efficiency and other performance indicators of the prototype system are also given by several experiments which illustrate that the prototype system runs pretty well overall.
引文
[1]邾继贵,王浩,任同群,等.便携式激光扫描三维形貌测量系统.机械工程学报,2005,41(2):166-169.
    [2]何声霞.基于机器视觉的矿井温度监控系统.黑龙江科技信息,2010,27:11-12.
    [3]赖小波.机器人双目立体视觉若干关键理论问题及其技术实现研究:(博士学位论文).杭州:浙江大学,2010.
    [4]马颂德,张正友.计算机视觉—计算理论与算法基础.北京:科学出版社,2003.
    [5]T. Varady, R. Martin, J. Cox. Reverse engineering of geometric models-an introduction. Computer-Aided Design,1997,29(4):255-268.
    [6]周军.光学扫描测量技术在汽车产品质量控制中的应用.机械工人冷加工,2006,3:63-79.
    [7]http:^aike.baidu.com/view/3938867.htm
    [8]http:/baike.baidu.com/view/8272679.htm
    [9]胡军强,谈国新,郭士礼,等.三峡文物考古数字化展示技术及应用研究.系统仿真学报,2008,9(20):441-443.
    [10]王晶,张秀山,王峰.虚拟现实技术在军校教育中的应用研究.计算机与数字工程,2006,34(12):97-100.
    [11]D. M. Gavrila, L. S. Davis.3D model-based tracking of humans in action:a multi-view approach. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Franciso, USA, 1996:255-268.
    [12]熊文平,李锦涛,张勇东,等.一种有效的体育视频目标跟踪算法.计算机工程与应用,2006,26:201-203.
    [13]柯映林.逆向工程CAD建模关键技术与系统.北京:机械工业出版社,2004.
    [14]胡曙光,陈静,华艳秋,等.基于激光三角法的传感器设计.测控技术,2006,25(6):7-9.
    [15]杨再华,李玉和,李庆祥,等.一种基于光学三角法的形貌测量系统.光学技术,2005,31(4):622-623.
    [16]陈新禹,马孜,陈天飞.线结构光传感器模型的简易标定.光学精密工程,2012,20(11):2345-2352.
    [17]Sun C K, You Q and Qiu Y, et al.. Online machine vision method for measuring the diameter and straightness of seamless steel pipes. Optical Engineering,2011,40(11):2565-2571.
    [18]刘常杰,邾继贵,杨学友,等.汽车白车身在线激光视觉检测站.仪器仪表学报,2004,24(4):671-672.
    [19]Michael Demeyere, Deo Rurimunzu, and Christian Eugene. Diameter Measurement of Spherical Objects by Laser Triangulation in an Ambulatory Context. IEEE Transactions on Instrumentation and Measurement,2007,56(3):867-872.
    [20]MI Chao, LIU Haiwei and ZHAO Ning, et al.. A Ship Cargo Hold Inspection Approach Using Laser Vision Systems. Journal of Electrical and Electronics Engineering,2013,11(1):330-337.
    [21]孙军华,魏振忠,张广军.一种高密度光栅结构光编码方法.光电工程,2006,33(7):78-82.
    [22]J.Pages, J.Salvi, C. Matabosch. Implementation of a robust coded structured light technique for dynamic 3D measurements. IEEE International Conference on Image Processing,2003,1073-1076.
    [23]Hall-Holt O, Rusinkiewicz S. Stripe boundary codes for real-time structured-light range scanning of moving objects. Proceedings of Eighth IEEE International Conference on Computer Vision. Vancouver: Institute of Electrical and Electronics Engineers Inc,2011:359-366.
    [24]Rusinkiewicz S, Hall-Holt O and Levoy M. Real-Time 3D Model Acquisition. ACM Transactions on Graphics,2002,21(3):438-446.
    [25]J. H. Sun, G. J. Zhang, Z. Z. Wei, et al.. Large 3D free surface measurement using a mobile coded light-based stereo vision system. Sensors and Actuators A:Physical,2006,132(2):460-471.
    [26]D. H. Zou, S. H. Ye, C. H. Wang, et al.. Structured-lighting surface sensor and its calibration. Optical Engineering,1995,34(10):3040-3043.
    [27]伏燕军,杨坤涛.三维形貌测量的莫尔条纹的理论分析.光电工程,2006,33(7):63-67.
    [28]C. Reich, R. Ritter, J. Thesing. White light heterodyne principle for 3D-measurement. Proc, SPIE 3100, Sensors, Sensor Systems, and Sensor Data Processing,1997:236-244.
    [29]E. Lilienblum, B. Michaelis. Optical 3D Surface Reconstruction by a Multi-Period Phase Shift Method. Journal of Computers,2007,2(2):73-83.
    [30]肖炎山,曹益平,武迎春.条纹投影轮廓术中新的相位高度映射算法.中国激光,2011,38(12):1 208004.
    [31]M. Takeda, K. Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied optics,1983,22(24):3977-3982.
    [32]R. Zhang, P. S. Tsai and J. E. Cryer, et al.. Shape from shading:a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(8):690-706.
    [33]J. Aloimonos. Shape from Texture. Biological Cybernetics,1988,58(5):345-360.
    [34]R. Szeliski, S. B. Kang. Recovering 3D Recovering 3D Shape and Motion from Image Streams using Non-Linear Least Squares. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA,1993:752-753.
    [35]A. Pettersen. Metrology Norway System-an on-line industrial photogrammetric system. International archives of photogrammetry and remote sensing,1992,29(B5):43-49.
    [36]T. A. Clarke. An analysis of the prospects for digital close-range photogrammetry. ISPRS Journal of photogrammetry and remote sensing,1995,50(3):4-7.
    [37]C. S. Fraser. Design and implementation of a computational processing system for off-line digital close-range photogrammetry. ISPRS Journal of photogrammetry and remote sensing,2000,55(2):94-104.
    [38]S. D. Cochran, G. Medioni.3-D Surface Description from Binocular Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(10):981-994.
    [39]J. Mulligan, V. Isler, K. Daniilidis. Trinocular stereo:a real-time algorithm and its evaluation. International Journal of Computer Vision,2002,47(1/2/3):51-61.
    [40]马扬飚,钟约先,戴小林.大面积形体的三维无接触精确测量的研究.机械设计与制造,2006,10:24-26.
    [41]韦争亮,钟约先,袁朝龙.基于彩色栅线的结构光动态三维测量技术研究.光学技术,2009,35(4):569-574.
    [42]王德勇,葛修润,罗先启,等.基于改进DLT算法的数字近景摄影测量.上海交通大学学报,2011,45(8):16-20.
    [43]许平,陈文静,苏显渝.高精度的数字光投影傅里叶变换轮廓术.光电工程,2004,32(11):59-62.
    [44]李思坤,苏显渝,陈文静.二维实小波变换在空间载频条纹相位分析中的应用.光学学报,2010,30(6):1673-1679.
    [45]赵勇,苏显渝,张启灿.绝对编码光栅的相位细分及其在位移测量中的应用.光学学报,2011,31(8):135-139.
    [46]邾继贵,郭磊,叶声华.现场条件下大空间三维精密定位原理与方法.光学学报,2009,29(7):1872-1876.
    [47]劳达宝,杨学友,邾继贵,等.扫描平面激光坐标测量系统校准方法的优化.光学精密工程,2011,19(4):870-877.
    [48]J. Weng, P. Cohen, Herniou. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(10):965-980.
    [49]G. Q. Wei, S. D. Ma. Implicit and explicit camera calibration:theory and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(5):469-480.
    [50]张建伟,张启衡.基于块遍历的直线边缘特征提取.光学精密工程,2009,17(3):662-668.
    [51]沈晶晶,金文标,张智丰.基于三次Bezier曲线模型的空间矩亚像素边缘定位算法.中国图像图形学学报,2009,14(10):1986-1991.
    [52]A. Rosenfeld. Computer vision:a source of models for biological visual processes. IEEE Transactions on Biomedical Engineering,1989,36(1):93-96.
    [53]I. Sobel. Neighborhood coding of binary images for fast contour following and general binary array processing. Computer Graphics and Image Processing,1978,8(1):127-135.
    [54]D. Marr, E. Hildreth. Theory of edge detection. Proceedings of the Royal Society,1980:187-217.
    [55]J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
    [56]P. J. M. Whelan, T. O. Binford. Line finding with subpixel precision. Proceedings of the SPIE-The International Society for Optical Engineering, Washington, DC, United States,1981:211-216.
    [57]J. Kris, A. Dimitris. Subpixel edge localization and the interpolation of still images. IEEE Transactions on Image Processing,1995,4(3):285-295.
    [58]E. P. Lyvers, O. R. Mitchell, M. L. Akey, et al.. Subpixel measurements using a moment-based edge operator. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(12):1293-1308.
    [59]S. Ghosal, R. Mehrotra. Detection of composite edges. IEEE Transactions on Image Processing.1994, 3(1):14-25.
    [60]李金泉,王建伟,陈善本,等.一种改进的Zernike正交矩亚像素边缘检测算法.光学技术,2003,29(4):500-503.
    [61]高世一,赵明扬,张雷,等.基于Zernike正交矩的图像亚像素边缘检测算法改进.自动化学报,2008,34(9):1163-1168.
    [62]张虎,达飞鹏,刑德奎.光学测量中椭圆圆心定位算法研究.应用光学,2008,29(6):905-911.
    [63]贺忠海,王宝光,廖怡白.理想边缘产生方法的研究.光学精密工程,2002,10(1):89-93.
    [64]Y. S. Li, T. Y. Young, J. A. Magerl. Subpixel edge detection and estimation with a microprocessor-controlled line scan camera. IEEE Transactions on Industrial Electronics,1988,35(1):105-112.
    [65]赵爱明.基于二次曲线拟合的图像亚像素边缘定位算法.哈尔滨理工大学学报,2006,11(3):68-70.
    [66]魏本征,赵志敏,华晋.基于改进形态学梯度和Zernike矩的亚像素边缘检测方法.仪器仪表学报,2010,31(4):838-844.
    [67]谭海曙,周富强,张伟,等.摄像机标定中特征点的一种自动对应方法.光电子·激光,2011,22(5):736-739.
    [68]Heikkila J. Geometric Camera Calibration using Circular Control Points [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1066-1077.
    [69]Kim J S, Gurdjos P and Kweon I S. Geometric and Algebraic Constraints of Projected Concentric Circles and Their Applications to Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(4):637-642.
    [70]张滋黎,邾继贵,周虎,等.一种基于视觉引导的激光经纬仪自动测量系统.光电子·激光,2011,22(1):115-119.
    [71]张辉.基于随机光照的双目立体测量关键技术及其系统研究:(博士学位论文).南京:南京航空航天大学,2008.
    [72]J. A. Sung, R. Wolfgang. Circular coded target for automation of optical 3D-measurement and camera calibration. International Journal of Pattern Recognition and Artificial Intelligence,2001,15(6):905-919.
    [73]J. Heikkila, O. Silven. A Four-Step Camera Calibration Procedure with Implicit Image Correction. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico:IEEE,1997.1106-1112.
    [74]I. Frosio, N. A. Borghese. Real-time Accurate Circle Fitting with Occlusions. Pattern Recognition, 2008,41(3):1041-1055.
    [75]K. Ogawa, K. Nakano. Fast Ellipse Detection Algorithm Using Hough Transform on the GPU. In:2nd International Conference on Networking and Computing, Osaka, Japan,2011:313-319.
    [76]M. Stojmenovic, A. Nayak. Direct Ellipse Fitting and Measuring based on Shape Boundaries. In: Proceedings of the 2nd Pacific Rim Conference on Advances in Image and Video Technology, Santiago, Chile,2007:221-235.
    [77]A. Ray, D. C Srivastava. Non-linear Least Squares Ellipse Fitting using the Genetic Algorithm with applications to Strain Analysis. Journal of Structural Geology,2008,30(12):1593-1602.
    [78]J. S. Kim, I. S. Kwen. A New Camera Calibration Method for Robotic Applications. In:Proceedings of the 2001 IEEE/RSJ Conference on Intelligent Robots and Systems, Maui, USA,2001:778-783.
    [79]J. S. Kim, H. W. Kim and I. S. Kwen. A Camera Calibration Method using Concentric Circles for Vision Applications. In:Proceedings of the 5th Asian Conference on Computer Vision, Melbourne, Australia,2002:515-520.
    [80]F. Abad, E. Camahort and R. Vivo. Camera Calibration Using Two Concentric Circles. Image Analysis and Recognition,2004,32(11):688-696.
    [81]G. Jiang, L. Quan. Detection of Concentric Circles for Camera Calibration. In:Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China,2005:333-340.
    [82]X. H. Ying, H. B. Zhang. An Efficient Method for the Detection of Projected Concentric Circles. In: Proceedings of IEEE International Conference on Image Processing, San Antonio, USA,2007:560-563.
    [83]刑德奎,达飞鹏,张虎.圆形目标精确定位方法的研究与应用.仪器仪表学报,2009,30(12):2593-2598.
    [84]C. Conomic. Conies-Based Homography Estimation from Invariant Points and Pole-Polar Relationships.3rd International Symposium on 3D Data Processing, Visualization and Tranamission, Chapel Hill, USA,2006:908-915.
    [85]Z. Y. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [86]张效栋,房丰洲.结构光视觉传感器标定靶标的自动处理算法.传感技术学报,2009,22(10):1426-1431.
    [87]Tsai R Y. An efficient and accurate camera calibration technique for 3D machine vision. Proc. of IEEE Conference of Computer Vision and Pattern Recognition,1986,364-374.
    [88]陈晓荣,蔡萍,施文康.光学非接触三维形貌测量技术新进展.光学精密工程,2002,10(5):528-532.
    [89]Peng Wang, Xu Xiao, Zimiao Zhang, et al.. Study on the position and orientation measurement method with monocular vision system. Chin. Opt. Lett,2010,8(1):55-58.
    [90]Z. Y. Wang, A. N. Dung and C. B. John. Some Practical Considerations in Fringe Projection Profilometry. Opt. & Laser in Eng.,2010,48(2):218-225.
    [91]Limei Song, Xiaoxiao Dong, Jiangtao Xi, et al.. A New Phase Unwrapping Algorithm based on Three Wavelength Phase Shift Profilometry Method. Opt. & Laser Tech.,2013,45(2):319-329.
    [92]C.E. Towers, D.P. Towers, and J.D.C. Jones. Absolute Fringe Order Calculation using Optimised Multi-frequency Selection in full-field Profilometry. Opt. & Laser in Eng.,2005,43(7):788-800.
    [93]王涛,孙长库,杨国威.三维人脸表情动态采集系统的设计.光学精密工程,2011,19(4):900-907.
    [94]C. Ai, J. Wyant. Effect of piezoelectric transducer nonlinearity on phase shift interferometry. Opt.& Laser in Eng.,2005,43(7):788-800.
    [95]侯立周,强锡富,孙晓明.几种任意步距步进相移算法的误差分析与对比.光学技术,1999,(5):7-10.
    [96]Q. Kemao, S. Fangjun, W. Xiaoping. Determination of the best phase step of the Carre algorithm in phase shifting interferometry. Measurement Science and Technology,2000,11(8):1220-1230.
    [97]R. Goldstein, H. Zebker, C. Werner. Satellite radar interferometry:two-dimensional phase unwrapping. Radio Science,1988,23(4):713-720.
    [98]D. Bone. Fourier fringe analysis:the two-dimensional phase unwrapping problem. Applied optics, 1991.30(25):3627-3632.
    [99]D. Ghiglia, L. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A,1994,11(1):107-117.
    [100]T. Flynn. Consistent 2-D phase unwrapping guided by a quality map. Proceedings of 1996 International Geoscience and Remote Sensing Symposium, Lincoln, NE,1996.
    [101]张吴明,钟约先,由志福,等.基于结构光编码的相展开方法.光学技术,2002,28(5):404-406.
    [102]F. Da, X. Wang and H. Huang. Phase unwrapping using interlaced fringes for phase-shifting techniques. IEEE Transactions on Instrumentation and Measurement,2011,60(9):3185-3193.
    [103]J. Huntley. Three-dimensional noise-immune phase unwrapping algorithm. Applied Optics,2001, 40(23):3901-3908.
    [104]P. Ruiz, J. Huntley, G. Kaufmann. Adaptive phase-shifting algorithm for temporal phase evaluation. Journal of the Optical Society of America A,2003,20(2):325-332.
    [105]C. Towers, D. T. Reid and W. N. Macpherson, et al.. Fibre interferometer for multi-wavelength interferometry with a femtosecond laser. Journal of Optics-A-Pure and Applied Optics,2005,7(6):415-419.
    [106]C. Reich, R. Ritter, and J. Thesing.3-D Shape Measurement of Complex Objects by Combining Photogrammetry and Fringe Projection. Opt. Eng.,2000,39(1):224-231.
    [107]G. H. Notni, G. Notni. Digital fringe projection in 3D shape measurement:an error analysis. Proc. SPIE,2003,5144:372.
    [108]Y. Xu, L. Ekstrand, and J. Dai. Phase error compensation for three-dimensional shape measurement with projector defocusing. Appl. Opt.,2011,50(17):2572-2581.
    [109]H. Guo, H. He, and M. Chen. Gamma correction for digital fringe projection profilometry. Appl. Opt., 2004,43(14):2906-2914.
    [110]S. Zhang, S. T. Yau. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Appl. Opt.,2007,46(1):36-43.
    [111]X. B. Chen, J. T. Xi, and Y. Jin. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase shift light projection. Opt. Eng.,2008,47(11):113601.
    [112]许伟,陈晓波,习俊通.结构光测量相位波动误差补偿方法研究.光学学报,2011,31(3):0312008.
    [113]李中伟.基于数字光栅投影的结构光三维测量技术与系统研究:(博士学位论文).武汉:华中科技大学,2009.
    [114]Z. Zhang. Determining the epipolar geometry and its uncertainty:a review. The International Journal of Computer Vision,1997,27(2):161-195.
    [115]雷志辉,李建兵.基于双频投影条纹的全自动相位解包裹方法.光学学报,2006,26(1):39-42.
    [116]P. S. Huang, Q. J. Hu, and F. P. Double three-step phase-shifting algorithm. Applied Optics,2002, 41(22):4503-4509.
    [117]陈新禹,马孜,陈天飞,等.线结构光视觉测量系统运动轴线的简易标定方法.中国激光,2012,39(11):1108014.
    [118]龙玺,钟约先,李任举.结构光三维扫描测量的三维拼接技术.清华大学学报,2002,42(2):477-480.
    [119]P. J. Besl, N. D. McKay. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-255.
    [120]K.L. Low. Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration. Department of Computer Science, University of North Carolina at Chapel Hill,2009.
    [121]孙军华,张广军,魏振忠,等.大型自由曲面移动式三维视觉测量系统.仪器仪表学报,2006,27(12).1688-1691.
    [122]徐巧玉,王恒迪,车仁生.立体视觉测量系统中三维拼接技术的研究.光电子激光,2009,20(10):1332-1336.
    [123]吴斌.大型物体三维形貌数字化测量关键技术研究:(博士学位论文).天津:天津大学,2002.
    [124]梁云波,邓文怡,娄小平,等.基于标记点的多视三维数据自动拼接方法.北京信息科技大学学报,2010,25(1):30-33.
    [125]D. G. Lowe. Distinctive image features form scale invariant keypoints. International Journal of Computer Vision,2004,60(2):91-101.
    [126]Y. Ke, R. Sukthankar. PCA-SIFT:A more distinctive representation for local image descriptors. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, USA,2004,2:506-513.
    [127]Y. Pang, W. Li, and Y. Yuan, et al.. Fully affine invariant SURF for image matching. Neurocomputing,2012,85(15):6-10.
    [128]Z. Zhang, R Deriche, O. Faugeras, et al.. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence,1995,78(1-2):87-119.
    [129]M. Galo, C. L. Tozzi. Feature-point based matching:a sequential approach based on relaxation labeling and relative orientation. Proceedings of WSCG,2004,113-120.
    [130]S. Zheng, Z. Zhang, and J. Zhang. Image relaxation matching based on feature points for DSM Generation. Geo-Spatial Information Science (Quarterly),2004,7(4):243-248.
    [131]聂建辉.自定位实物数字化技术研究:(博士学位论文).大连:大连海事大学,2012.
    [132]S. W. Zucker, Y. G. Leclerc, and J. L. Mohammed. Continuous relaxation and local maxima selection:Conditions for equivalence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981,3(2):117-127.
    [133]S. Z. Li. Inexact matching of 3D surfaces. Vision Speech & Signal Processing, Department of Electronic and Electrical Engineering, University of Surrey, UK,1990.
    [134]K. S. Arun, T. S. Huang, and S. D. Blostein. Least squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(5):698-700.
    [135]Y. Chen, G. Medioni. Object modeling by registration of multiple range images. International Journal of Image and Vision Computing,1992,10(3):145-155.
    [136]H. Pottmann, S. Leopoldseder, and M. Hofer. Registration without ICP. Institute of Geometry, Vienna University of Technology,2002.
    [137]S. Rusinkiewicz, M. Levoy. Efficient variants of the ICP algorithm. Proceedings of the International Conference on 3-D Digital Imaging and Modeling,2011:145-152.
    [138]S. Umeyama. Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,13(4):376-380.
    [139]L. Kobbelt, M. Botsch. A survey of point-based techniques in computer graphics. Computers & Graphics.2004,28(6):801-814.
    [140]M. Gross, H. Pfister. Point-based graphics. San Francisco:Morgan Kaufmann Publishers Inc., 2007:1-93.
    [141]李宝.三维点云的鲁棒处理技术研究:(博士学位论文).长沙:国防科学技术大学,2011.
    [142]O. Schall, A. Belyaev, and H. P. Seidel. Adaptive feature-preserving non-local denoising of static and time-varying range data. Computer-Aided Design,2008,40:701-707.
    [143]C. Lange, K. Polthier. Anisotropic smoothing of point sets. Computer Aided Geometric Design,2005, 22(7):680-692.
    [144]C. Xiao, Y. Miao, and S. Liu, et al.. A dynamic balanced flow for filtering point sampled geometry. The Visual Computer,2006,22(3):210-219.
    [145]M. Pauly, M. Gross. Spectral processing of point-sampled geometry. The 28th Annual Conference on Computer Graphics and Interactive Techniques, New York:ACM Press,2001:379-386.
    [146]M. Pauly, L. Kobbelt, and M. Gross. Multiresolution modeling of point-sampled geometry. ETH Zurich:Computer Science Department,2002:3-4.
    [147]S. Fleishman, I. Drori, and D. Cohen. Bilateral mesh denoising. ACM Transactions on Graphics, 2003,22(3):950-953.
    [148]G. Hu, Q. Peng, A. R. Forrest. Mean shift denoising of point-sampled surfaces. The Visual Computer, 2006,22(3):147-157.
    [149]M. Alexa, J. Behr, and D. Cohen, et al.. Point set surfaces. The 11th IEEE Conference on Visualization. Washington DC:IEEE Computer Society Press,2001:21-28.
    [150]T. Weyrich, M. Pauly, and R. Keiser, et al.. Post-processing of scanned 3D surface data. Eurographics Symposium on Point-Based Graphics. Geneve:Eurographics Association,2004:85-94.
    [151]B. Curless, M. Levoy. A volumetric method for building complex models from range images. Proceedings of SIGGRAPH,1996:303-312.
    [152]A. Hilton, J. Illingworth. Geometric fusion for a hand-held 3D sensor. Machine Vision and Application,2000,12(1):44-51.
    [153]R. Sagawa, K. Nishino, and K. Ikeuchi. Adaptively merging large-scale range data with reflectance properties. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):392-405.
    [154]M. D. Wheeler, Y. Sato, and K. Ikeuchi. Consensus surfaces for modeling 3D objects from multiple range images. Proceedings of ICCV,1998:917-924.
    [155]G. Turk, M. Levoy. Zippered polygon meshes from range images. Proceedings of SIGGRAPH, 1994:311-318.
    [156]A. D. Sappa, M. A. Garcia. Incremental multiview integration of range images. Proceedings of ICPR, 2000:546-549.
    [157]X. Li, W. G. Wee. Range image fusion for object reconstruction and modeling. Proceedings of First Canadian Conference on Computer and Robot Vision,2004:306-314.
    [158]H. Zhou, Y. Liu. Incremental point-based integration of registered multiple range images. Proceedings of IECON,2005:468-473.
    [159]H. Zhou, Y. Liu. Accurate integration of multi-view range images using k-means clustering. Pattern Recognition,2008,41(1):152-175.
    [160]H. Hoppe, T. DeRose, T. Duchamp, et al.. Surface reconstruction from unorganized points. Computer Graphics,1992,26(2):71-78.
    [161]M. Pauly, R. Keiser, L. P. Kobbelt, et al.. Shape modeling with point-sampled geometry. ACM Transactions on Graphics,2003,22(3):641-650.
    [162]D. F. Watson. Computing the n-dimensional Delaunay tessellation with application to voronoi polytopes. The Computer Journal,1981,24(2):167-172.
    [163]H. Edelsbrunner, E. P. Mucke. Three-dimensioanl alpha shape. ACM Transactions on Graphics,1994, 13(1):43-72.
    [164]R. Chaine. A geometric convection approach of 3-D reconstruction. Eurographics Symposium on Geometry Processing,2003:218-229.
    [165]C. S. David, D. Frank. A greedy Delaunay based surface reconstruction algorithm. International Journal of Computer Graphics,2002,20(1):4-16.
    [166]C. C. Kuo, H. T. Yau. A Delaunay-based region-growing approach to surface reconstruction from unorganized points. Computer-Aided Design,2005,37(8):825-835.
    [167]M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. Eurographics Symposium on Geometry Processing,2006:61-70.
    [168]F. Bernardini, J. Mittleman, and H. Rushmeier, et al.. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics,1999,5(4):349-359.
    [169]J. Huang, C. H. Mena. Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology. Computer-Aided Design,2002,34(2):149-165.
    [170]G. Yang, S. Ji, and S. Chen. An improved normal-free BPA algorithm for 3D surface reconstruction. 7th WSEAS Int. Conference on Applied Computer & Applied Computational Science, Hangzhou, China, 2008:477-481.
    [171]聂建辉,胡英,马孜.散乱点云离群点的分类识别算法.计算机辅助设计与图形学学报,2011,23(9):1526-1532.
    [172]H. Zhou, Y. Liu and L. Li. Incremental mesh-based integration of registered range images:robust to registration error and scanning noise. Proceedings of ACCV, Lecture Notes in Computer Science,2006, 3851:958-968.
    [172]C. Loop. Smooth subdivision surfaces based on triangles:[dissertation]. Utah, USA:University of Utah,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700