非饱和土的理论探讨及膨润土加砂混合物的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为土力学理论的重要组成部分,饱和土力学理论已经基本趋于成熟,而非饱和土在实际工程中分布更为广泛,其工程特性更为复杂,理论尚不十分完善,强度理论和本构关系等需要进一步完善。由于非饱和土含有固相、液相和气相,使得非饱和土的力学性质相对于饱和土要复杂得多,在试验中试样的孔隙水压和气压的控制和测量较为复杂,非饱和土试验资料仍然十分缺乏。随着核能的利用,核技术的发展,所产生的高水平放射性核废料的处置越来越受到全世界范围内的关注,也成为亟待解决的世界性难题。许多国家都开展了对高水平放射性核废料深地质处置的研究工作。相比之下,我国起步较晚,在很多方面尚处于初级阶段,特别是对于作为核废料处置中缓冲、回填材料的膨润土加砂混合物的研究试验才刚刚开始,试验资料非常宝贵。因此,本文针对非饱和土理论中的本构关系、抗剪强度的非线性和非饱和膨胀土裂隙开展深度存在的一些问题进行了探讨研究,并以膨润土加砂混合物为试验研究对象,通过GDS非饱和土三轴试验系统和压力板仪等仪器进行了抗剪强度、膨胀特性和土水特征曲线的试验研究与详细分析。本文的主要研究工作包括下列方面:
     1.针对修正膨胀土弹塑性模型中的微-宏观结构的变形耦合参数的具体计算式和非饱和土屈服吸力的确定进行了一定的探讨和研究。研究表明,干湿循环产生的微观结构层次的变形具有累积性,在干湿循环过程中不断产生变形累积,最终趋于稳定。由此可以认为微观结构层次的变形分为n个阶段,每个阶段对应着不同的微观参量,而当土结构在经历若干次干湿循环后,微-宏观结构的耦合胀缩变形趋于稳定,可以采用稳定时的干湿循环次数,作为微观结构层次变形所经历的阶段数,由此提出微-宏观结构变形耦合参数t具体计算式,加强了微-宏观参数之间的联系。从孔隙水的不同状态和不同排出方式出发,将LC和SI屈服曲线与两坐标轴所包围的区域重新划分为弹性和弹塑性两个区域,从而将非饱和土的吸力增加屈服过程划分为:弹性、弹塑性和塑性三个阶段,提出以分界吸力s_b作为弹性和弹塑性两个区域的分界线,并给出了分界吸力的计算公式,根据分界吸力进一步得到了屈服吸力s_y的确定方法和计算公式。
     2.对非饱和膨胀土的裂隙开展深度进行了研究,将膨胀土的有效粘聚力c'的影响引入到裂隙开展深度的线弹性理论解中,采用有效粘聚力折减系数来反映有效粘聚力在裂隙开展中的衰减变化程度,对非饱和膨胀土裂隙开展深度的线弹性理论解进行了推导,得出更能反映实际情况的非饱和膨胀土裂隙开展深度的理论关系式。进一步得到了地表基质吸力开裂值的表达式和膨胀土层不受地下水位深度影响时的裂隙开展深度表达式,并对关系式中泊松比、地下水位深度、有效内摩擦角、地表基质吸力等影响参数进行了比较和分析。在此基础上,分别就非饱和膨胀土层中的基质吸力的三种分布曲线形式,即基质吸力沿深度均匀分布、沿深度线性减小和沿深度呈抛物线减小,比较分析了干燥裂隙对非饱和膨胀土层中张拉区深度的影响。
     3.随着非饱和土试验技术的不断发展,近年来大量的试验资料表明,单纯采用线性强度理论描述非饱和土的强度特性与试验结果不相符。许多非饱和土试验表明非饱和土的抗剪强度与基质吸力之间存在着非线性的关系,即可以反映出抗剪强度随基质吸力增加而增加的情况的角φ~b,并不如当初所假设的为一常数,而是随基质吸力(u_a-u_w)的变化而发生变化,即角φ~b为基质吸力(u_a-u_w)的函数。针对总粘聚力c与基质吸力(u_a-u_w)之间关系的非线性特征,提出了含有非线性系数m的总粘聚力c与基质吸力(u_a-u_w)的非线性关系式,并进一步得到了含有非线性系数的非饱和土的抗剪强度公式。采用四种不同类型的非饱和土的试验结果进行了验证与分析,发现非线性系数是与土的性质有关的参数,对特定的土体,与角φ~b不同的是,非线性系数与有效粘聚力和有效内摩角一样,不随基质吸力的变化而变化,可以取为常数,因而具有了更强的适用性;当非线性系数等于1时,含有非线性系数的非饱和土抗剪强度公式可以转变成与由Fredlund等人提出的线性非饱和土抗剪强度公式相同的形式,说明线性抗剪强度公式只是本文提出的非线性抗剪强度公式的一种特殊形式,含有非线性系数的抗剪强度公式将线性形式与非线性形式进行了较好的统一。采用GDS非饱和土三轴试验系统对作为核废料处置中的缓冲、回填材料的膨润土加砂混合物进行控制基质吸力的抗剪强度试验研究,并进一步验证了所提出的含有非线性系数的非饱和土抗剪强度公式的适用性。
     4.土水特征曲线SWCC(Soil-water characteristic curve)是表示土体持水能力的重要曲线,反映了土体中基质吸力与体积含水率、质量含水率或饱和度之间的关系,是非饱和土力学研究中的一项重要内容。采用高进气值的压力板仪对不同初始干密度、不同干湿循环次数和不同配合比的膨润土加砂混合物进行了土水特征曲线的试验研究。测定了三种不同情况下的基质吸力与饱和度构成的膨润土加砂混合物的土水特征益线。试验结果表明对于不同初始干密度的混合物,随着初始干密度的增大,膨润土加砂混合物的进气值是增大的,这说明初始干密度大的混合物,连通性小,使饱和度降低所需要的气水压力差值更大,并且混合物进气值的对数与初始干密度之间存在着线性关系。对于经历不同干湿循环次数的混合物,土水特征曲线形状相似,随着干湿循环次数的增加,相同吸力下的饱和度是增大的,土水特征曲线也向上移动,并且与不同干湿循环次数相对应的混合物的进气值是不断增大的,进气值与干湿循环次数之间具有较好的线性关系,不同干湿循环次数下混合物的土水特征曲线的直线段的斜率是相近的。对于不同配合比的膨润土加砂混合物,进气值受相对孔隙填充率的影响,膨润土吸水膨胀后,将混合物中的孔隙填充,填充的密实度越高,混合物的进气值也相应提高。
     5.采用GDS非饱和土三轴试验系统等试验仪器对膨润土加砂混合物的膨胀特性进行了一系列的一维膨胀试验和三轴膨胀试验研究。试验结果表明,膨润土加砂混合物的膨胀应变与试验历时之间的关系可以用双曲线形式进行表示,膨胀应变与吸水量之间呈线性关系,膨胀应变与应力的对数之间呈线性关系,吸水量与应力的对数呈线性关系。膨胀应力越大,试样的吸水量越小,膨胀应变也越小,而当膨胀应力减小时,试样就能越充分地吸水,膨胀性能表现的就越明显。所以在建立膨胀应变、应力和吸水量单个变量之间的关系式后,通过综合考虑应力与吸水量对膨胀应变的影响,建立了三者之间统一的膨胀本构关系式,由于考虑了混合物膨胀过程中吸水量的变化,此膨胀本构关系式可以反映出膨润土加砂混合物吸水膨胀的实际情况。膨润土加砂混合物的膨胀变形与上覆轴向压力和本身的干密度有着密切的关系,轴向应力大于混合物的最大的膨胀应力时,混合物吸水则发生相反的反应,即湿陷。这就要求在进行核废料深地处置系统的缓冲、回填材料—膨润土加砂混合物的施工时,要注意缓冲、回填材料的初始密实度,以及在压实过程中与围岩之间产生的应力反应,以避免膨润土加砂混合物遇水而发生湿陷现象,失去强自封闭和自愈合能力,从而达不到封堵人工屏障和天然屏障裂隙的作用。这些是以往的研究中没有指出的。并且在缓冲、回填材料的施工中控制合适的密实度,可以防止膨润土加砂混合物吸水膨胀产生过大的膨胀应力,对深地处置系统本身产生破坏作用,以保证系统各部分之间的协调性。进一步提出混合物状态参数的概念,根据标准砂颗粒最松散、最紧密接触状态线以及初始状态参数可以为选择混合物的配合比例和初始干密度提供参考依据。状态参数变化曲线反映出了在一定应力下混合物吸水变化的情况,并且反映出了状态参数与干密度之间的变化关系。
As the essential part of soil mechanics, saturated soil mechanics is applied in geotechnical engineering practice. However, unsaturated soils are widely existed in nature, with more complex behaviour. Nowadays, unsaturated soil mechanics is developing, in which shear strength theory and constitutive equations are far from perfect. Because unsaturated soil is composed of solid phase, fluid phase and gas phase, mechanical property is more complicated than that of saturated soil. The control and measurement of pore air pressure and pore water pressure in tests are very difficult. Testing data of unsaturated soils are also very shortage. Furthermore, with the use of nuclear energy and development of nuclear engineering, high-level radioactive nuclear waste disposal issues have gained increasing attention all over the world and become universal difficult problems. Research on the deep geological disposal of high-level radioactive nuclear waste is underway in all nuclear energy generation countries. In comparison, the research is at the initial stage in China, especially on bentonite-sand mixtures, which are used as the back-filling materials for high-level radioactive nuclear waste repositories. Testing data of bentonite-sand mixtures are very valuable. Thus, in this dissertation, studies are emphasized on constitutive equations, nonlinearity of shear strength and crack propagation depth of unsaturated expansive soils in unsaturated soil mechanics. Then, utilizing GDS unsaturated triaxial apparatus and pressure plate extractor, the shear strength, swelling properties and soil-water characteristic of bentonite-sand mixtures are studied carefully. The main investigations are as follows:
     1. The coupling parameter between micro- and macro-structural deformation of the elasto-plastic model for unsaturated expansive soils, and yield suction of unsaturated soils are studied. Research results indicate that the amount of micro-structural strain accumulates and tends to a stationary value during wetting-drying cycles. So the micro-structural volumetric strain can be divided into n stages with different micro-structural parameters. The times of wetting-drying cycles can be used to difine the value of n. Equation of the coupling parameter between micro- and macro-structural deformation is put forward, which uses test results of wetting-drying cycles well and enhances the relationship of micro- and macro-parameters. Considerting different states of pore water and different discharge ways during isotropic compression test and triaxial shrinkage test of unsaturated soils, the definition and equation of boundary suction is established. The zone, which is enclosed by the yield curves (SI and LC) and the coordinate axes, is divided into two zones: elastic and elasto-plastic, by boundary suction. And there are three stages in the suction increasing process of unsaturated soils, that is, elastic, elasto-plastic and plastic stages. An estimating formula of yield suction of unsaturated soils is suggested.
     2. The tensile crack propagation depth of unsaturated expansive soils is studid. A linear elastic solution of the tensile crack propagation depth is presented, which considers the contributions of effective cohesion and effective internal friction angle at the same time. Reduced coefficient of effective cohesion is definited, which considers the reduction of effective cohesion when cracks exit. Expressions for critical matrix suction at the ground surface, and the crack propagation depth with no influence of the depth of the groundwater level are derived from the equation of crack propagation depth. Relationships with influencing factors are compared, such as effective cohesion, reduced coefficient of effective cohesion, effective internal friction angle, Poisson's ratio, matrix suction at the ground surface and the depth of the groundwater level. Based on above, the influences of tensile cracks on tension zone depth are analyzed, considering three typical matrix suction profiles along the depth, that is, constant, linear and parabolic distributions.
     3. Shear test results on unsaturated soils indicate that there exists nonlinearity in the shear strength versus matrix suction failure envelope. The angleφ~b is variable and a function of the applied matrix suction. The nonlinear relationship of total cohesion versus matrix suction is analyzed, and an equation with nonlinear coefficient is presented. Then a new shear strength equation for unsaturated soils is derived from it. The reliability and practicability of the shear strength equations with nonlinear coefficient are verified, using four kinds of shear test data on different unsaturated soils. Results show that nonlinear coefficient is a significant parameter for unsaturated soils, just like effective cohesion and effective internal friction angle, and do not vary with matrix suction. Different values can be taken to indicate nonlinear characteristics of different unsaturated soils. When the value of nonlinear coefficient is equal to 1, the new shear strength equation has a smooth transition towards the shear strength equation presented by Fredlund et al., one special form of the new shear strength equation in this study. Utilizing GDS unsaturated triaxial apparatus, the shear strength of bentonite-sand mixtures is studied, under the condition of controlling matrix suction. Mixtures of Heishan calcium-type bentonite and Fujian standard sand in a proportion of 50:50 are used. The relationship between the shear strength and matrix suction of unsaturated bentonite-sand mixtures is analyzed. Results indicate that the shear strength equation with nonlinear coefficient can express the shear strength of bentonite-sand mixtures well.
     4. The soil-water characteristic curve (SWCC) represents the ability of a soil to retain water. SWCC reflects the relationship between water content or volumetric water content or degree of saturation versus suction. Utilizing the pressure plate apparatus with high air entry ceramic plate, the SWCCs of bentonite-sand mixtures between degree of saturation versus matrix suction are determined and analyzed. Three states of bentonite-sand mixtures are investigated, which are different dry density, different times of wetting-drying cycle and different proportions of mixture. Results show that for the bentonite-sand mixtures with different dry density, the logarithm of air-entry value increases linearly as dry density increases. It suggested that greater values of matrix suction are needed to reduce the values of degree of saturation, for the sake of greater values of dry density corresponding to smaller pores. For the bentonite-sand mixtures with different times of wetting-drying cycle, the SWCCs have the same shape. The air-entry values increase linearly as the times of wetting-drying cycle increase. The slope coefficients of straight-line section of the SWCCs are similar. For the bentonite-sand mixtures in different proportions of mixture, the air-entry value is influenced by relative packing ratio of pore. When bentonite absorbs water and swells, pores are packed. Greater packed density result in the greater air-entry values.
     5. Utilizing GDS unsaturated triaxial apparatus and consolidation apparatus, a series of one dimension and triaxial swelling tests are conducted on bentonite-sand mixtures with different dry density and different initial water content in order to investigate the swelling properties. Based on the experimental data obtained, relationships between swelling strain and time, swelling strain and axial stress, swelling strain and water-absorbing volume, axial stress and water-absorbing volume are analyzed. The results show that the curves of swelling strain versus time can be expressed by the hyperbola well. Swelling strain increases linearly as water-absorbing volume increases. Swelling strain versus logarithm of stress has a relationship of linearity, the same as the relationship of water-absorbing volume versus logarithm of stress. Swelling strain increases as water-absorbing volume increases, but decreases as stress increases. Water-absorbing volume decreases as stress increases. For a given value of stress, water-absorbing volume has a maximum value at the end of swelling process. Then, a swelling constitutive equation of the bentonite-sand mixtures is established by the mothed of multiple linear regression analysis, which reflects the influences of axial stress and water-absorbing volume on swelling strain at the same time. It can reflect the swelling properties of bentonite-sand mixtures actually.
引文
[1] Fredlund D.G,Rahardjo H.非饱和土土力学[M].北京:中国建筑工业出版社,1997.
    [2] 钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [3] 陈正汉.重塑非饱和黄土的变形、强度、屈服和水量变化特性[J].岩土工程学报,1999,21(1):82-90.
    [4] 陈正汉,周海清,D G Fredlund.非饱和土的非线性模型及应用[J].岩土工程学报,1999,21(5):603-608.
    [5] 卢再华,陈正汉,孙树国.南阳膨胀土变形与强度特性的三轴试验研究[J].岩石力学与工程学报,2002,21(5):717-723.
    [6] 徐永福,史春乐.宁夏膨胀土膨胀变形规律[J].岩土工程学报,1997,19(3):95-98.
    [7] 徐永福,傅德明.非饱和土结构强度的研究[J].工程力学,1999,16(4):73-77.
    [8] XU Y E Fractal approach to unsaturated shear strength[J]. Journal of Geotech and Geoenviron Eng, ASCE, 2004, 3:264-274.
    [9] 缪林昌,殷宗泽,刘松玉.非饱和膨胀土强度特性的常规三轴实验研究[J].东南大学学报,2000,30(1):121-125.
    [10] 缪林昌,刘宋玉.南阳膨胀土的水分特征和强度特性研究[J].水利学报,2002,7:87-92.
    [11] 詹良通,吴宏伟.非饱和膨胀土变形和强度特性的三轴试验研究[J].岩土工程学报,2006,28(2):196-201.
    [12] Fredlund D. G, Rahardjo H. Soil mechnics for unsaturated soils[M]. New York: John Wiley and Sons, 1993.
    [13] 杨代泉.非饱和土二维广义固结非线性数值模型[J].岩土工程学报,1992,14,Supplement:2-12.
    [14] Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils[J]. Geotechnique, 1990, 40(3):405-430.
    [15] C F Chiu, Ng C W W. A state-dependent elasto-plastic model for saturated and unsaturated soils[J]. Geotechnique, 2003, 53(9):809-829.
    [16] 黄海,陈正汉,李刚.非饱和土在p-s平面上屈服轨迹及土-水特征曲线的探讨[J].岩土力学,2000,21(4):316-321.
    [17] Wheeler S J, Sivakumar V. An elasto-plastic critical state framework for unsaturated soil[J]. Geotechnique, 1995, 45(1):35-53.
    [18] Gens A, Alonso E E. A framework for the behaviour of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 1992, 29:1013-1032.
    [19] Alonso E E, Vaunat J, Gens A. modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54:173-183.
    [20] Alonso E E. Modelling expansive soil behaviour[A]. Proceedings of the 2th International Conference on Unsaturated soils[C], Beijing, China, 1998, 2:37-70.
    [21] 卢再华,陈正汉,曹继东.原状膨胀土的强度变形特性及其本构模型研究[J].岩土力学,2001,22(3):339-342.
    [22] Lloret A, Villar M V, Sánchez M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Geotechnique, 2003, 53(1):27-40.
    [23] 沈珠江.土体变形特征的损伤力学模拟[A].5届全国土力学数值分析与解析方法讨论会议论文集[C].重庆,1994,1-8.
    [24] 沈珠江.广义吸力和非饱和土的统一变形理论[J].岩土工程学报,1996,18(2):1-9.
    [25] Bishop A W, Alpan I, Blight G E, et al. Factors controlling the shear strength of partly saturated cohesive soils[A]. In ASCE Research Conference on the Shear Strength of Cohesive Soils[C], University of Colorado, Boulder, 1960, 503-532.
    [26] Bishop A W, Alpan I, Blight G E. Some aspect of effective stress in saturated and partly saturated soils[J]. Geotechnique, 1963, 13 (3): 177-197.
    [27] Fredlund D G, Morgenstern N R, Widger R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15:313-321.
    [28] Gan J K M, Fredlund D G, Rahadjo H. Determination of the shear strength parameters of an unsaturated soil using the direct shear test[J]. Canadian Geotechnical Journal, 1988, 25:500-510.
    [29] 卢肇钧,张慧明.非饱和土的抗剪强度与膨胀压力[J].岩土工程学报,1992,14(3):1-8.
    [30] 卢肇钧.非饱和土抗剪强度的探索研究[J].中国铁道科学,1999,20(2):10-16.
    [31] 卢肇钧,吴肖茗.膨胀力在非饱和土强度理论中的作用[J].岩土工程学报,1997,19(5):20-27.
    [32] 沈珠江.当前非饱和土力学研究的若干问题[A].见:区域性土的岩土工程问题学术讨论会论文集[C].南京:原子能出版社,1996,1-9.
    [33] 缪林昌,殷宗泽.非饱和土的剪切强度[J].岩土力学,1999,20(3):1-6.
    [34] 汤连生.从粒间吸力特性再认识非饱和土抗剪强度理论[J].岩土工程学报,2001,23(4):412-417.
    [35] Fredlund D G, Vanapalli S K, Xing A, et al. Predicting the shear strength for unsaturated soils using the soil-water characteristic curve[A]. Proceedings of the 1st International Conference on Unsaturated soils[C], Paris, 1995, 63-69.
    [36] Oberg A L, Sallfors G. A ration approach to the determination of the shear strength parameter of unsaturated soils[A]. Proceedings of the 1st International Conference on Unsaturated soils[C], Paris, 1995.
    [37] 王志玲,丰土根.非饱和土的抗剪强度理论研究[J].水利水电科技进展,2002,22(4):26-29.
    [38] Khalili N, Khabbaz M H. Unique relationship for χ for the determination of the shear strength of unsaturated soils[J]. Geotechnique, 1998, 48(5):681-687.
    [39] Tarantino A. Mongiovi L. Design and construction of a tensionmeter for direct measurement of matric suction[A]. Proceedings of the 3rd International Conference on Unsaturated soils[C], Recife, Brazil, 2002, 1:319-324.
    [40] Guan Y, Fredlund D G. Use of the tensile strength of water for the direct measurement of high soil suction[J]. Canadian Geotechnical Journal, 1997, 34:604-614.
    [41] Ridley A M, Burland J B. A new instrument for the measurement of soil moisture suction[J]. Geotechnique, 1993, 43(2):321-324.
    [42] Bishop A W, Donald I B. The experimental study of partly saturated soil in the triaxial apparatus[A]. Proceedings of the 5th International Conference Soil Mech Found Eng.[C], Paris, 1961, 1:13-21.
    [43] Wheeler S J. The stress-strain behavior of soils containing gas bubbles[D]. Oxford University, 1986.
    [44] Cui Y J, Delage R Yielding and plastic behaviour of an unsaturated compacted silt[J]. Geotechnique, 1996, 46(2):291-311.
    [45] 陈正汉,卢再华,浦毅彬.非饱和土三轴仪的CT机配套及其应用[J].岩土工程学报,2001,23(4):387-392.
    [46] 卢再华,陈正汉,浦毅彬.原状膨胀土损伤演化的三轴CT试验研究[J].水利学报,2002,6:106-112.
    [47] Rampino C, Mancuso C. Vinale F. Laboratory testing on an unsaturated soil: equipment, procedures, and first experimental results [J]. Canadian G eotechnical Journal, 1999, 36(1): 1 - 12.
    [48] 殷宗泽.土体的沉降与固结[M].北京:中国电力出版社,1998.
    [49] 殷建华.新双室三轴仪用于非饱和土体积变化连续测量和三轴压缩试验[J].岩土工程学报,2002,24(5):552-555.
    [50] 詹良通,吴宏伟.新双室非饱和土体积变化测量系统[A].第九届土力学及岩土工程学术会议论文集[C].北京:清华大学出版社,2003,401-405.
    [51] Zhan Liang-tong. Field and laboratory study of an unsaturated expansive soil associated with rain-induced slope instability[D]. The Hong Kong University of Science and Technology, May, 2003.
    [52] Ng C W W, Zhan L T, Cui Y J. A new simple system for measuring volume changes in unsaturated soils[J]. Canadian Geotechnical Journal, 2002, 39(2):757-764.
    [53] Escario V. Suction controlled penetration and shear tests[A]. Proceedings of the 4th International Conference Expansive Soils[C], Denver, 1980, 2:781-797.
    [54] Escario V, Sàez J. The shear strength of partially saturated soils[J]. Géotechnique, 1986, 36(3):453-456.
    [55] Gan J K M. Direct shear strength testing of unsaturated soils[D]. University of Sakatchewan, 1986.
    [56] 陈正汉,扈胜霞,孙树国,等.非饱和土固结仪和直剪仪的研制及应用[J].岩土工程学报,2004,26(2):161-166.
    [57] 李雷.非饱和击实粘土压缩特性[硕士学位论文][D].南京水利科学研究院,1985.
    [58] Gens A, Alonso E E, Suriol J, et al. Effect of structure on the volumetric behaviour of a compacted soil[A]. Proceedings of the 1st International Conference on Unsaturated soils[C], Paris, 1995, 1:83-94.
    [59] Romero E, Lloret A, Gens A. Development of a new suction and temperature controlled oedometer cell[A]. Proceedings of the 1st International Conference on Unsaturated soils[C], Paris, 1995, 2:553-559.
    [60] Rahardjo H, Fredlund D G. Consolidation apparatus for testing unsaturated soils[J]. Geotechnical Testing Journal, 1996, 19(4):341-353.
    [61] Mariano A D, Vaunat J, Romero E. Insingt into the elastic behaviour of unsaturated soils[A]. Proceedings of the 3rd International Conference on Unsaturated soils[C], Recife, Brazil, 2002, 2:473-479.
    [62] Ng C W W, Pang Y W. Influence of stress states on soil-water characteristics and slope stability[J]. Journal of Geotechnical and Geoenvironmental Engineering, 126(2): 157-166.
    [63] Delage P, Vicol T, et al. Suction controlled testing of non-saturated soils with an osmotic consolidometer[A]. Proceedings of the 7th International Conference on Expansive soils[C], Dallas, 1992, 206-211.
    [64] Dineen K, Burland J B. A new approach to osmotically controlled oedometer testing[A]. Proceedings of the 1st International Conference on Unsaturated soils[C], Paris, 1995, 2:459-465.
    [65] Delage P, Howat M, Cui Y J. The relationship between suction and swelling properties in a heavily compacted unsaturated clay[J]. Engineering Geology, 1998, 50(1-2):34-48.
    [66] Zur B. Osmotic control of the matric soil-water potential: Ⅰ. Soil-water system[J]. Soil Science, 1966, 102(6):394-398.
    [67] 叶为民,唐益群,崔玉军.室内吸力测量与上海软土土水特征[J].岩土工程学报,2005,27(3):347-349.
    [68] Esteban-Moratilla F. Caracterization experimental de la expansiveidad de una roca evaporitica. Identification de os mecanismos de hinchamiento[D]. Universidad de Cantabira, Santander, 1990.
    [69] Komornik A, Livneh M, Smucha S. Shear strength and swelling of clays under suction[A]. Proceedings of the 4th International Conference on Expansive soils[C], Denver, Colorado, 1980, 206-226.
    [70] Delage P, Suraj de Silva, G P R De Laure E. Un nouvel appareil triaxial pour Ies sols nonsatures[A]. Proceedings of the 9th European Conference on soil mechanics and foundation Engineering[C]. Dublin, 1987, 1:25-28.
    [71] McKeen R G. Field studies fo airport pavements on expansive soils[A]. Proceedings of the 4th International Conference on Expansive soils[C]. Denver, Colorado, 1980, 242-261.
    [72] Chandler R J, Gutieerez C I. The filter paper method of suciton measurement[J]. Geotechnique, 1986, 36:265-268.
    [73] Houston S L, Houston W N, Wagner A M. Laboratory filter paper suction measurements[J]. Geotechnical Testing Journal, 1994, 17(2): 185-194.
    [74] Fredlund D G, Gan J K, Galten P. Suction measurements on compacted tell specimens and indirect filter paper calibration technique[J]. Transportation Research Board, 1995, Record(1481):3-9.
    [75] Ridley A M. Discussion on "Laboratory filter paper suction measurements" by Houston et al[J]. Geotechnical Testing Journal, 1995, 18(3):391-396.
    [76] Leong E C, He L, Rahardjo H. Factors affecting the filter paper method for total and matric sucion measurements[J]. Geotechnical Testing Journal, 2002, 25(3):321-332.
    [77] 陈正汉.非饱和土与特殊土测试技术新进展[A].第二届全国非饱和土学术研讨会论文集[C].杭州,2005,77-136.
    [78] 詹良通.非饱和土测试技术的最新进展[A].第四届土工测试学术研讨会论文集[C].南京,2004.15-46.
    [79] Allègre M. The deep geological repository: an unavoidable and ethically correct solution[A]. Proceedings of the Uranium Institute 24th Symposium [C], London, 1999, 1-11.
    [80] Pusch R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products[J]. Nuclear Technology, 1979, 45(9):153-157.
    [81] 王志俭,刘泉声.密实砂-膨润土混合物膨胀特性的试验研究[J].岩土力学, 2000,21(4):331-334.
    [82] 徐永福,孙德安,董平.膨润土及其与砂混合物的膨胀试验[J].岩石力学与工程学报,2003, 22(3):451-455.
    [83] Radhokrishra H S, Chan H T. Thermal and physical properties of candidate buffer-backfill materials for a nuclear fuel waste disposal vault[J]. Canadian Geotechnical Journal, 1989, 26(6):629-639.
    [84] 罗嗣海,钱七虎,周文斌,等.高放废物深地质处理及其研究概况[J].岩石力学与工程学报,2004,23(5):831-838.
    [85] Dyer J R,Voegele M D.美国高放废物管理:背景与现状[A].世界放射性废物地质处置[C].北京:原子能出版社,1999,240-251.
    [86] Agus S S. An experimental study on hydro-mechanical characteristics of compacted bentonite-sand mixtures[D]. The Bauhaus University, 2005.
    [87] 温志坚.中国高放废物深地质处置的缓冲材料选择及其基本性能[J].岩石矿物学杂志,2005,24(6):583-586.
    [88] 徐国庆,王驹,华玲,等.中国高放废物深地质处置[A].世界放射性废物地质处置[C].北京:原子能出版社,1999,48-58.
    [89] 郁陈.非饱和高庙子膨润土的体变特征及其微观机理[硕士学位论文][D].上海:同济大学,2006.
    [90] 闵茂中.放射性废物处置原理[M].北京:原子能出版社,1998.
    [91] 王驹.甘肃北山地区区域地壳稳定性研究[M].北京:地质出版社,2000.
    [92] 徐国庆,李永利,等.膨润土矿床筛选,中国高放废物地质处置十年进展[M].北京:原子能出版社,2004.
    [93] 王驹,徐国庆.中国高放废物深地质处理研究[J].水文地质工程地质,1998,5:7-10.
    [94] 鞠建英,申东铉.膨润土在工程中的开发与应用[M].北京:中国建材工业出版社,2003.
    [95] 姜桂兰,张培萍.膨润土加工与应用[M].北京:化学工业出版社,2005.
    [96] 王鸿禧.膨润土[M].北京:地质出版社,1980.
    [97] Mitchell J K. Fundamentals of soil behavior[M]. New York: John Wiley and Sons, 1993.
    [98] Yong R N, Boonsinsuk P, Wong G. Formulation of backfill material for a nuclear fuel waste disposal fault[J]. Canadian Geotechnical Journal, 1986, 23:216-228.
    [99] Pusch R. Mineral-water interactions and their influence on the physical behaviour of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19:381-387.
    [100] Chapuis R R Sand-bentonite liners: predicting permeability from laboratory tests[J]. Canadian Geotechnical Journal, 1990, 27:47-57.
    [101] Komine H, Ogata N. Experimental study on swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal, 1994, 31:478-490.
    [102] Komine H, Ogata N. New equations for swelling characteristics of bentonite-based buffer materials[J]. Canadian Geotechnical Journal, 2003, 40:460-475.
    [103] Graham J, Saadat F, Gray M N, et al. Strength and volume change behaviour of sand-bentonite mixtures[J]. Canadian Geotechnical Journal, 1988, 26:292-305.
    [104] Graham J, Wiebe B, Tang X, et al. Strength and stiffness of unsaturated sand-bentonite 'buffer'[A]. Proceedings of the 1st International Conference on Unsaturated soils[C]. Paris, 1995, 89-94.
    [105] Lingnau B E, Graham J, Yarechewski D, et al. Effects of temperature on strength and compressibility of sand bentonite buffer[J]. Engineering Geology, 1996, 41:103-115.
    [106] Tang G X, Graham J, Wan A. On yiedlding behaviour of an unsaturated sand bentonite mixture[A]. Proceedings of the 2nd International Conference on Unsaturated soils[C]. Beijing, 1998, 149-154.
    [107] Tang G X, Graham J, Blatz J, et al. Suction, stresses and strengths in unsaturated sand-bentonite[J]. Engineering Geology, 2002, 64:147-156.
    [108] Wan A W, Graham J, Gray M N. Influence of soil structure on the stress-strain behaviour of sand-bentonite mixtures[J]. Geotechnical Testing Journal, 1990, 13(3): 179-187.
    [109] Wiebe B, Graham J, Tang G X. et al. Influence of pressure, saturation and temperature on the behaviour of unsaturated sand-bentonite[J]. Canadian Geotechnical Journal, 1998, 35:194-205.
    [110] Blatz J A, Graham J, Chandler N A. Influence of suction on the strength and stiffness of compacted sand-bentonite[J]. Canadian Geotechnical Journal, 2000, 39(5): 1005-1015.
    [111] Agus S S, Schanz T. Swelling pressure and total suction of compacted bentonite-sand mixtures[A]. Proceedings of International Conference on Problematic soils[C]. Cyqrus, 2005, 61-70.
    [112] Agus S S, Schanz T. Effect of shrinking and swelling on microstructures and fabric of a compacted bentonite-sand mixture[A]. Proceedings of International Conference on Problematic soils[C]. Cyqrus, 2005, 543-550.
    [113] Romero E, Alonso E E, Hoffmann C. Behaviour of bentonite-sand mixtures subjected to cyclic drying and wetting[A]. Proceedings of the 4th International Conference on Unsaturated soils[C]. Carefree, Arizona, 2006, 1005-1016.
    [114] Arifin Y F, Agus S S, Schanz T. Temperature effects on suction characteristic curve of bentonite-sand mixtures[A]. Proceedings of the 4th International Conference on Unsaturated soils[C]. Carefree, Arizona, 2006, 1314-1325.
    [115] Arifin Y F, Agus S S, Schanz T. Drying behaviour of compacted bentonite-sand mixtures[A]. Proceedings of the 3rd Asian Conference on Unsaturated soils[C]. Beijing, 2007, 155-162.
    [116] 刘月妙,陈璋如.内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性[J].矿物学报,2001,21(3):541-543.
    [117] 刘月妙,徐国庆,刘淑芬,等.我国高放废物处置库缓冲/回填材料压实膨胀特性研究[J].铀矿地质,2001,17(1):44-47.
    [118] 刘泉声,王志俭.砂.膨润土混合物膨胀力影响因素的研究[J].岩石力学与工程学报,2002,21(7):1054-1058.
    [119] 朱国平,刘晓东,罗太安.内蒙古高庙子膨润土热学性能研究[J].资源环境与工程,2005,19(3):220-222.
    [120] Chen Bao, Qian Li-xin, Ye Wei-min, et al. Soil-Water characteristic curves of GaoMiaoZi bentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 788-793.
    [121] 田永铭,吴柏林,郭明峰.碎石-膨润土混合物之压实行为[J].岩土工程学报,2006, 28(7):829-834.
    [122] Liu Q S, Zhang C Y, Liu X Y. Numerical modeling and simulation of coupled THM processes in TASK_D of DECOVALEX_Ⅳ[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 709-720.
    [123] Wen Z J. Physical property of China's buffer material for high-level radioactive waste repositories[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 794-800.
    [124] 王驹,陈伟明,苏锐,等.高放废物地质处置及其若干关键科学问题[J].岩石力学与工程学报,2006,25(4):801-812.
    [125] 崔玉军,陈宝.高放核废物地质处置中工程屏障研究进展[J].岩石力学与工程学报,2006, 25(4):842-847.
    [126] 曹雪山.非饱和膨胀土的弹塑性本构模型研究[J].岩土工程学报,2005,27(7):832-836.
    [127] 李培勇,杨庆,栾茂田.关于“非饱和膨胀土的弹塑性本构模型研究”的讨论[J].岩土工程学报,2006,28(6):805-806.
    [128] 龚壁卫,吴宏伟,王斌.应力状态对膨胀土SWCC的影响研究[J].岩土力学,2004,25(12):1915-1918.
    [129] 刘松玉,季鹏,方磊.击实膨胀土的循环膨胀特性研究[J].岩土工程学报,1999,21(1):9-13.
    [130] 李培勇,杨庆,栾茂田.非饱和土屈服吸力的探讨[A].第二届全国非饱和土学术研讨会论文集[C].杭州,2005,491-494.
    [131] 雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [132] #12
    [133] 李生林 等.中国膨胀土工程地质研究[M].南京:江苏科学技术出版社,1992.
    [134] 陈孚华.膨胀土上的基础[M].北京:中国建筑工业出版社,1979.
    [135] 孙长龙,殷宗泽,王福升,等.膨胀土性质研究综述[J].水利水电科技进展,1995,15(6):10-14.
    [136] 缪林昌,刘松玉.论膨胀土的工程特性及工程措施[J].水利水电科技进展,2001,21(2):37-48.
    [137] 杨果林,刘义虎.膨胀土路基含水量在不同气候条件下的变化规律模型试验研究[J].岩石力学与工程学报,2005,24(24):4524-4533.
    [138] 卫军,谢海洋,et al.膨胀土边坡的稳定性分析[J].岩石力学与工程学报,2004,23(17):2865-2869
    [139] Morris P H, Graham J, Williams D. Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29:263-277.
    [140] 姚海林,郑少河,葛修润,等.裂隙膨胀土边坡稳定性评价[J].岩石力学与工程学报,2002,21(增2):2331-2335.
    [141] 姚海林,程平,吴万平.基于收缩试验的膨胀土地基变形预测方法[J].岩土力学,2004,25(4):1688-1692.
    [142] Konrad J M, Ayad R. An idealized framework for the analysis of cohesive soils undergoing desiccation[J]. Canadian Geotechnical Journal, 1997, 34:477-488.
    [143] Skempton A W. Slope stability in cutting in Brown London clay[A]. Proceedings of the 9th ICSMFE[C]. Tokyo, 1977, 261-270.
    [144] 陈正汉,王永胜,谢定义.非饱和土的有效应力探讨[J].岩土工程学报,1994,16(3):62-69.
    [145] 陈正汉.非饱和土的应力状态与应力状态变量[A].第七届全国土力学及基础工程学术会议论文集[C].北京:中国建筑工业出版社,1994,186-191.
    [146] 李顺群.非饱和土的吸力与强度理论研究及其试验验证[博士学位论文][D].大连:大连理工大学,2006.
    [147] Yang D Q, Shen Z J. Laboratory investigation on the strength and stress-strain relationship of an unsaturated compacted clay[A]. Proceedings of the 7th International Conference on Expansive soils[C]. Texas, 1992.
    [148] Lamborn M J. A micromechanical approach to modeling partly saturated soils[D]. Texas A & M University, College Station, 1986.
    [149] 张惠珍.非饱和膨胀土抗剪强度的试验研究[硕士学位论文][D].大连理工大学,2002.
    [150] 杨庆,张惠珍,栾茂田.非饱和膨胀土抗剪强度的试验研究[J].岩石力学与工程学报,2004,21(3):420-425.
    [151] 徐永福,陈永战,刘松玉,等.非饱和膨胀土的三轴试验研究[J].岩土工程学报,1998,20(3):14-18.
    [152] 詹良通,吴宏伟.吸力对非饱和膨胀土抗剪强度及剪胀特性的影响[J].岩土工程学报,2007,29(1):82-87.
    [153] Rohm S A, Vilar O M. Shear strength of unsaturated sandy soil[A]. Proceedings of the 1st International Conference on Unsaturated soils[C], Paris, 1995:189-195.
    [154] 王钊,邹维列,李侠.非饱和土吸力测量及应用[J].四川大学学报,2004,36(2):1-6.
    [155] Fredlund D G, Xing A Q, et al. The relationship of the unsaturated soil shear strength to the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1996, 33:440-448.
    [156] Rassam D W, Williams D J. A relationship describing the shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1999, 36(2):363-368.
    [157] Toll D G. A framework for unsaturated soils behaviour[J]. Geotechnique, 1990, 40(1):31-44.
    [158] Vanapalli S K, Fredlund D G, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33:379-392.
    [159] 沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [160] 徐永福.非饱和膨胀土结构性强度的研究[J].河海大学学报,1999,27(2):86-89.
    [161] The GDS laboratory users handbook. GDS Instruments Ltd, 2003.
    [162] 侯梅芳,马北雁,万洪富,等.我国各地膨润土的矿物学性质[J].岩石测试,2002,21(3):190-194.
    [163] Ho D Y F, Fredlund D G. A multi-stage triaxial test for unsaturated soils[J]. Geotechnical Testing Journal, 1982, 5(1/2):18-25.
    [164] Sridharan A, Gurtug Y. Swelling behaviour of compacted fine-grained soils[J]. Engineering Geology, 2004, 72:9-18.
    [165] Hideo K, Nobuhide O. Experimental study on swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal, 1994, 31:478-490.
    [166] 杨庆.膨胀岩与巷道稳定[M].北京:冶金工业出版社,1995.
    [167] 周建.非饱和土土水特征曲线主要影响因素研究综述[A].第二届全国非饱和土学术研讨会论文集[C].杭州,2005,390-400.
    [168] Zhou J, Yu J L. Influences affecting the soil-water characteristics curve[J].Journal of Zhejiang University(Sciencs), 2005, 6A(8):797-804.
    [169] Pereira J H F, Fredlund D G. Volume change behavior of collapsible compacted gneiss soil[J]. Journal of Geotechnical and Geoenvironmental Engineering. ASCE, 2000,. 126(10): 907-916.
    [170] Miller C J. Impact of soil type and compaction Conditions on soil water characteristic[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(9):733-742.
    [171] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity for unsaturated soils[J] Soil Science Society of America Journal. 1980(44): 892-898.
    [172] Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31: 521-532.
    [173] 包承纲,龚壁卫,詹良通.非饱和土的特性和膨胀土边坡的稳定问题[A].南水北调膨胀土渠坡稳定和早期滑动预报研究论文集[C].武汉,1998,1-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700