考虑水分和养分胁迫的SPAC水热动态与作物生长模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物产量与水分、养分的定量关系是合理制定灌溉施肥方案的重要依据,对于提高水分、养分利用效率、改善农田生态环境,具有重要的指导意义。 
    作物产量与水分、养分的定量关系,国内外都进行了广泛的研究,积累了大量的宝贵资料,得出了许多有价值的成果。然而,这些作物水分(或养分)生产函数的模型参数都是以统计方法求得,属于经验性模型,缺乏生理学和生物学的解释,其普适性较差。具有四十余年历史的作物生长模拟模型,在很大程度上克服了这些缺点。 
    但是,目前的作物生长模拟模型多是农学家研究的结果,其模拟研究的重点多在作物种植期、种植密度和植株形态等方面,对于水分、土壤温度,以及水热耦合模拟方面的研究较少,或做了过多的简化。因此,这些模型难以满足灌溉用水管理决策的需要,也难于对水分胁迫对作物生长影响问题做出机理性的解释。本文研究的目标是对现有的作物生长模拟模型进行选择和概化,构建出一套系统的适用于灌溉施肥管理的作物生长模拟模型,并利用现代计算机的图形化技术,将作物生长过程及其相关的水肥、光热时空变化过程,以图形的形式展现出来,以便于认识和研究环境因子变化对作物生长过程的影响。 
    研究过程中,依据可获得的试验资料,采用了三种方法分析确定模型参数。一种是从文献中查取,直接引用;一种是利用文献提供的试验观测结果和本项目研究中的部分试验资料,加以分析计算确定;第三种是以2004 年度冬小麦实测产量为依据,以模拟产量与实测产量误差平方和最小为目标函数,通过模型运行调试分析。最后,从土壤水分随时间的变化过程、不同深度的地温随时间的变化过程、作物产量和茎、叶、籽粒干物重几个方面对本文构建的作物生长模拟模型进行了检验。检验结果表明,模型构建是合理的,选取和确定的模型参数的是可靠的,整体模型模拟结果具有足够的精度。 
    本论文的主要结论和创新点有如下几个方面: 
    1、利用土壤—植物—大气连续体物质传输理论,把光合产物生产过程、呼吸消耗过程和积累过程、作物蒸发蒸腾过程、根系吸水过程、降雨灌溉入渗过程,以及土壤水分、土壤温度、土壤养分的时空变化等过程有机结合,形成了一个系统的、完整的作物生长模拟模型。该模型重点考虑了水、肥、光、热(温度)对作物生长的影响,以及对光合产物在根、茎、叶和籽实间分配和转移的影响。简化、忽略了冬小麦分蘖和茎节生长、叶片分布形状等的植物形态模拟。因此该模型可方便地用于农业用水和施肥管理,而且具有足够的精度。 
    2、采用联合国粮农组织(FAO)灌溉排水报告(第56 号)作物蒸发蒸腾量计算中推荐的方法,以小时为时段分析计算了试区(山西榆次)2003 和2004 年度小麦生长期的理论太阳辐射,依据作物系数与叶面积指数的关系,分析计算了冬小麦潜在蒸
The quantitative relationship among crop yield, water and nutrient is the base for rational irrigation and fertilization scheduling, which is important for the increase of water and nutrient use efficiency and the improvement of farmland environment.
    The relationship among crop yield, water and nutrient has been studied extensively both in China and abroad. From these studies, a large amount of valuable data and results were obtained. However, most of the models are empirical model based on statistics of experiment data with less consideration to the physiological and biological mechanism. Therefore, the applicability of these models is usually limited. Crop growth simulation model, which has a history of over 40 years, can overcome these disadvantages.
    However, most of the crop simulation models are developed by agronomist. Main emphasis of these models are crop growing period, plant density and plant configuration, while soil water and temperature are often neglected or over-simplified. As a result, these models can not meet the requirement of irrigation water management, and are difficult to explain the impact of water stress on crop growth. The objective of this thesis is to develop a crop simulation model suitable for irrigation and fertilization management based on available models, and to present the crop growth process and relevant processes of water, fertilizer, light and heat in graphics, so as to study the crop growth process and the impact of environmental factors to crop growth.
    In the study, three methods were used to determine parameters of the model. Some parameters were cited directly from literatures, some were estimated from the analysis of experiment results from literatures and experiment of this project. The rest parameters were optimized with the objective of minimum square errors between simulated and measured crop yield of experiment in 2004. Then, the crop growth simulation model developed in this thesis was validated with experiment results of soil water variations, the process of soil temperature at different depth, crop yield and dry weight of stem, leaf and grain. It shows that the model is appropriate, parameters are reliable and the simulation precision is acceptable.
    Main conclusions and innovations of this thesis include:
    1. In this thesis a systematic crop growth simulation model was developed based on the
    theory of mass transfer in soil-plant-atmosphere continuum (SPAC). The model integrated the processes of photosynthesis, respiration and biomass cumulation, field evapotranspiration, root uptake, infiltration of precipitation and irrigation, as well as the spatial and temporal variations of soil water, temperature and nutrient. The model mainly concerned with the impact of water, fertilize, light and heat on crop growth, and the distribution and transfer of photosynthetic product in crop root, stem, leaf and seed, while the tillering of winter wheat, growth of stem node and leaf distribution were simplified or neglected. Therefore, the model can be used conveniently in irrigation and fertilization management with sufficient accuracy. 2. Using the method recommended in FAO Irrigation and Drainage Paper No. 56 to calculate crop evapotranspiration, hourly solar radiation in the growing period of winter wheat in 2003 and 2004 at the experiment site of Yuci was estimated. Daily variation of potential evapotranspiration of winter wheat were calculated and analyzed from the relationship between crop coefficient and leaf area index. Then, daily variation of photosynthetic product was calculated, and it was integrated with respect to canopy depth and time with trapezoidal integration method to obtain the daily potential photosynthetic product. 3. Coefficients of growth balance between root and canopy, stem and leaf, seed and stem were proposed. Based on these coefficients of growth balance, distribution coefficient and transfer coefficient of photosynthetic product were deduced. Crop growth simulation results of different water and fertilizer treatment showed that the distribution and transfer coefficients of photosynthetic product is effective in modeling the distribution of photosynthetic product among root, stem, leaf and seed and the impact of the amount and time of irrigation and fertilization on crop economic coefficient. 4. Soil particle distribution was used to determine unsaturated soil hydraulic conductivity and diffusivity, soil water content and hydraulic conductivity at saturation. From the comparison of simulated and measured soil water, the method above is acceptable. 5. In the modeling, partial difference equations for soil moisture and soil temperature were used to describe the transfer of soil moisture and variation of temperature. Partial difference equations for ammoniacal nitrogen and nitrate nitrogen were used to describe the transfer and transformation of soil nitrogen. Therefore, it avoided some simplifications and hypothesizes in a lot of crop simulation models. 6. Coefficients for water and nutrient stress take the power function of relative daily evapotranspiration and relative plant nitrogen content, respectively. Two parameters were optimized with the objective of minimum square errors between simulated and measured crop
    yield of 30 experiment plots with 20 treatments in 2004, then they were validated with the experiment results of 22 treatments in 2003. The results show that the maximum and average relative errors in 2004 are 20% and 7.05%, and the relative errors in 2003 are 34% and 13.2%, respectively. These indicate that the model and parameters are reliable and the simulation precision is acceptable. 7. The simulation results, including crop growth process, the variation of soil water, nutrition, temperature and some parameters, can be displayed in graphics with Matlab software. The visualization of crop growth simulation is convenient for relevant studies. 8. Crop growth simulation model can simulate crop yield of different irrigation and fertilization with enough accuracy, and provide the base for beneficial evaluation of irrigation and fertilization. The simulation model of water and nitrogen can estimate vertical water and nitrogen flux at different soil depth, which is helpful in the evaluation of water and nitrogen use efficiency and the impact to environment. Therefore, the crop growth simulation model in this thesis considered agricultural benefit and the impact of agricultural activity on environment together, and can evaluate the agricultural benefit and environment impact as a whole. The mechanism model of photosynthetic product distribution and transfer needs further validation with field experiment data of root, stem, leaf and seed. The assumption that the biomass of root, stem and leaf changed suddenly from accumulation to decreasing needs further improvement.
引文
[1] 康绍忠,刘晓明,熊运章著,土壤-植物-大气连续体水分传输理论及其应用,北京:水利电力出版社,1994
    [2] 雷志栋,杨诗秀,谢森传.土壤水动力学,北京:清华大学出版社,1988
    [3 ] 李久生,张建君,薛克宗,滴灌施肥灌溉原理与应用,北京:中国农业科学技术出版社,2003.
    [4] 李韵珠,李保国,土壤溶质运移,北京:科学出版社,1998
    [5] 张富仓,康绍忠,潘英华,黄土区土壤-水环境中溶质(养分)运移机制及其数值模拟,见康绍忠,粱银丽,蔡焕杰等著,旱区水-土-作物关系及其最优调控原理,北京:中国农业出版社,1998,228-268
    [6] 陈玉民,郭国双,王广兴等,中国主要作物需水量与灌溉. 北京:水利水电出版社1995
    [7] 陈亚新,康绍忠. 非充分灌溉原理. 北京:水利水电出版社1994
    [8] [荷]P.M. Driessen N.T. Konijn 著,宇振荣,王建武,邱建军等译,土地利用系统分析,北京:中国农业科技出版社,1997
    [9] 康绍忠,蔡焕杰主编,农业水管理学,北京:中国农业出版社,1996
    [10] 王仰仁,孙小平,山西农业节水理论与作物高效用水模式,北京:中国科学技术出版社,2003.
    [11] 陈伦寿,李仁岗,农田施肥原理与实践,北京:农业出版社,1984
    [12] 周鸣铮,土壤肥力测定与测土施肥,北京:农业出版社,1988
    [13] 罗远培,李韵珠等,根土系统与作物水氮资源利用效率,北京:中国农业科技出版社,1996
    [14] 王红旗,鞠建华,城市环境氮污染模拟与防治,北京:北京师范大学出版社,1998
    [15] 王康,节水条件下SPAC 系统氮素迁移与作物增产和环境效应研究,武汉大学2002 届博士学位论文,2002.4
    [16] 康绍忠,蔡焕杰主编,作物根系分区交替灌溉和调亏灌溉的理论与实践,北京:中国农业出版社,2002
    [17] 李建民,周殿玺,王璞等,冬小麦水肥高效利用栽培技术原理,北京:中国农业大学出版社,2000
    [18] 娄成厚,王学臣主编,作物产量形成的生理学基础,北京:中国农业出版社,2001
    [19] 曹卫星,罗卫红,作物系统模拟及智能管理,北京:高等教育出版社,2003
    [20] 潘学标,作物模型原理,北京:气象出版社,2003
    [21] [英]J.L.蒙特思主编,卢其尧,江广恒和高亮之等译,植被与大气—原理,北京:农业出版社,1985
    [22] 张喜英编著,作物根系与土壤水利用,北京:气象出版社,1999
    [23] [美]R.J.汉克斯, G.L.阿希克洛夫特编著,杨诗秀,刘亶仁,陆锦文等译,应用土壤物理—土壤水和温度的应用,北京:水利电力出版社,1984
    [24] 冯绍元,张瑜芳,沈荣开,非饱和土壤中氮素运移与转化试验及其数值模拟,水利学报,1996,(8),8-15
    [25] [英]J.B.登特,M.J.勃拉基著,粟文辉,裘之和马大安译,农业系统仿真,北京:农业出版社,1984
    [26] 王世春,程延年编著,作物产量与天气气候,北京:科学出版社,1991
    [27] 王馥棠,李郁竹,王石立,农业产量气象模拟与模型引论,北京:科学出版社,1990
    [28] 王石立,冬小麦生长模式及其在干旱影响评估中的应用,王馥棠等主编,华北农业干旱研究进展,北京:农业出版社,1997,110-117
    [29] 朱兆良,文启孝主编,中国土壤氮素,南京:江苏科技出版社,1992
    [30] 刘耀宏,张经元主编,山西土壤,北京:科学出版社,1992
    [31] 冷石林,韩仁峰等主编,中国北方旱地作物节水增产理论与技术,北京:中国农业科技出版社,1996
    [32] 马元喜等编著,小麦的根,北京:中国农业出版社,1999
    [33] 刘铁梅,曹卫星,罗卫红等,小麦器官间干物质分配动态的定量模拟,麦类作物学报,2001,21(1):25-31
    [34] 施建忠,王天铎,植物营养生长期同化物分配的机理模型,植物学报,1994,36(3):181-189
    [35] 张富仓,张一平,张君常,土壤导水参数的温度效应及其数学模式,水利学报,1996,(12):8-14
    [36] 王月福,于振文,潘庆民等,水分处理与耐旱性不同的小麦光合特性及物质运转,麦类作物学报,1998,18(3):44-47
    [37] 刘建栋,傅抱璞,卢其尧等,冬小麦生长发育统一阶段模式的研究,气象科学,1996,16(4):322-327
    [38] 阎素红,蔡忠民,杨兆生等,不同肥力对晚播小麦开花后地上器官干物质积累运转及产量的影响,麦类作物学报,2000,20(3):46-49
    [39] 乔玉辉,宇振荣,P.M.Driessen,冬小麦干物质在各器官中的累积和分配规律研究,应用生态学报,2002,13(5):543-546
    [40] 冯广龙,罗远培,杨培岭,节水灌溉对冬小麦干物质分配、灌浆及水分利用率的影响,华北农学报,1998,13(2):11-17
    [41] 冯广龙,罗远培,刘建利等,不同水分条件下冬小麦根与冠生长及功能间的动态消长关系,干旱地区农业研究,1997,15(2):73-79
    [42] 乔玉辉,宇振荣,P.M.Driessen,冬小麦叶面积动态变化规律及其定量化研究,中国生态农业学报,2002,10(2):83-85
    [43] 陈晓远,高志红,罗远培,植物根、冠关系研究进展,韶关学院学报(自然科学版),2002,23(12):64-71
    [44] 魏其克,李红霞,肥力对冬小麦开花后营养体内光合产物积累运转及产量的影响,干旱地区农业研究,1996,14(4):12-16
    [45] 周竹青,不同类型小麦品种(系)干物质积累和运转动态比较,作物杂志,2002,(1):16-19
    [46] 陈晓远,罗远培,李韵珠,拔节期复水对苗期受旱冬小麦的激发效应,干旱地区农业研究,2003,21(3):23--28
    [47] 陈晓远,罗远培,水分胁迫及复水对冬小麦粒叶比影响,干旱地区农业研究,2001,19(1):66-71
    [48] 杨贵羽,罗远培,李保国等,不同土壤水分处理对冬小麦根冠生长的影响,干旱地区农业研究,2003,21(3):104--109
    [49] 陈晓远,罗远培,土壤水分变动对冬小麦干物质分配及产量的影响,中国农业大学学报,2001,6(1):96-103
    [50] 张立言,张建平,李雁鸣等,高产冬小麦氮、磷、钾的积累和分配动态的研究,见卢良恕主编,中国小麦栽培研究新进展,北京:农业出版社,1993:237-245
    [51] 邵孝侯,俞双恩,姜翠玲等,土壤水势对冬小麦干物质累积、矿质营养和产量的影响,河海大学学报,1996,24(4):44-48
    [52]〔联邦德国〕O.L.朗格等著,樊梦康等译,水分与植物生活-问题与研究现状,北京:科学出版社,1985
    [53] 刘建立,徐绍辉,根据颗粒大小分布估计土壤水分特征曲线:分形模型的应用,土壤学报,2003,40:46-57
    [54] 夏卫生,雷廷武,刘贤赵等,土壤水分特征曲线的推算,土壤学报,2003,40(2):311-315
    [55] 刘培斌,丁跃元,张瑜芳,田间一维饱和—非饱和土壤中氮素运移与转化的动力学模式研究,土壤学报,2000,37(4):490-498
    [56] 马军花,任理,龚元石等,冬小麦生长条件下土壤氮素运移动态的数值模拟,水利学报,2004,(3):103-110
    [57] 王月福,于振文,李尚霞等,土壤肥力和施氮量对小麦根系氮同化及籽粒蛋白质含量的影响,植物营养与肥料学报,2003,9(1):39-44
    [58] 黄元仿,李韵珠,陆锦文,田间条件下土壤氮素运称铁模拟模型(Ⅰ),水利学报,1996,(6):9-14
    [59] 张瑜芳,张蔚榛,沈荣开,排水农田氮素运移、转化及流失规律的研究,水动力学研究与进展,1996,(11):251-260
    [60] 张瑜芳,张蔚榛,农作物对氮肥吸收速率的研究现状,灌溉排水,1996,15(3):35-39
    [61] 郑德明,姜益娟和吕双庆等,干旱地区有机肥料腐解及腐殖化系数的研究,土壤肥料,2004,(2):15-19
    [62] 杨路华,沈荣开,覃奇志,土壤氮素矿化研究进展,土壤通报,2003,34(3):569-571
    [63] 穆兴民,樊小林,土壤氮素矿化的生态模型研究,应用生态学报,1999,10(2):114-118
    [64] 庄恒扬,曹卫星,蒋思霞等,作物氮素吸收与分配的动态模拟,农业系统科学与综合研究,2004,20(4):5-11
    [65] 庄恒扬,曹卫星,任正龙等,土壤有机氮矿化与有机氮素释放的动态模拟,扬州大学学报(农业与生命科学版),2002,23(3):63-66
    [66] 尚松浩,雷志栋,杨诗秀,冬灌对越冬期土壤水分状况影响的数值模拟,农业工程学报,1997,9(1):65-70
    [67] 王月福,于振文,李尚霞等,土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响,应用生态学报,2003,14(4):1868-1872
    [68] 韩燕来,介晓磊,谭金芳等,超高产冬小麦氮磷钾吸收、分配与运转规律的研究,作物学报,1998,24(6):908-915
    [69] 范仲学,王璞,梁振兴等,两种水氮管理系统对冬小麦根系的影响,华北农学报,2000,15(4):55-59
    [70] 贺东祥,王天铎,作物生长PGROWTH 微气象模块的实验验证,作物学报,1995,21(7):419-423
    [71]J.法朗士,J.H.M. 索思利著,金之庆,高亮之主译,农业中的数学模型-农业及与之有关科学若干问题的数量研究,北京:农业出版社,1991.
    [72] 刘布春,王石立,马玉平,国外作物模型区域应用研究进展,气象科技,2002,30(4):193-203
    [73] 高晓飞,谢云,用ALMANAC 作物生长模型模拟冬小麦生长,自然资源学报,2003,18(4):505-510
    [74] 谢云,James R. Kiniry,国外作物生长模型发展综述,作物学报,2002,28(2):190-195
    [75] 谢云,James R. Kiniry 和刘宝元,不同空间尺度下的ALMANAC 模型验证,应用生态学报,2003,14(8):1291-1295
    [76] 林忠辉,莫兴国,项月琴,作物生长模型研究综述,作物学报,2003,29(9):750-758
    [77] 杨京平,王兆骞,作物生长模拟模型及其应用,应用生态学报,1999,10(4):501-505
    [78] 杨宁,廖桂平,作物生长模拟研究进展,作物研究,2002,(5):255-257
    [79] 邬定荣,欧阳竹,赵小敏等,作物生长模型WOFOST 在华北平原的适用性研究,植物生态学报,2003,27(5):594-602
    [80] 孙忠富,陈人杰,温室番茄生长发育动态模型与计算机模拟系统初探,中国生态农业学报,2003,(2):23-26
    [81] 刘光栋吴文良,高产农田土壤硝态氮淋失与地下水污染动态研究,中国农业生态学报,2003,(1):28-31
    [82] 展志岗,王一鸣,Philippe de Reffye 等,冬小麦植株生长的形态构造模型研究,农业工程学报,2001,17(5):6-8
    [83] 金明现,王天铎,根源ABA 参与气孔调节的数学模拟,植物学报,1997,39(4):335-340
    [84] 金明现,王天铎,玉米根系生长及向水性的模拟,植物学报,1996,38(5):384-390
    [85] 高亮之,金之庆,郑国清等,小麦栽培模拟优化决策系统(WCSODS),江苏农业学报,2000,16(2):65-72
    [86] 候彦林,陈守伦,施肥模型研究综述,土壤通报,2004,35(4):493-501
    [87] 郭焱,,李保国,虚拟植物的研究进展,科学通报,2001,46(4):273-280
    [88] F.J.史蒂文森等著,闵九康等译,农业土壤中的氮,北京:科学出版社,1989
    [89] 武晓峰,谢森传,冬小麦田间根层中氮素迁移转化规律研究,灌溉排水,1996,15(4):10-15
    [90] 周永华,光合有效辐射(PAR)研究进展,见中国科学院主编,农田作物环境实验研究,北京,气象出版社,1990,40-49
    [91] 邵明安,黄明斌,土-根系统水动力学,西安:陕西科学技术出版社,2000
    [92] 宇振荣,农田土壤水分限制下的作物生长模拟模型,李保国,龚元石,左强等,农田土壤水的动态模型及应用,北京:科学出版社,2000,148-167
    [93] 黄元仿,PTFS 应用实例,见李保国,龚元石,左强等著,农田土壤水的动态模型及应用,北京:科学出版社,2000,111-114
    [95]〔苏〕O.Д.西罗坚科著,裘碧梧译,农业生态系统的水-热状况和产量的数学模拟,北京:气象出版社,1985
    [96] 丛振涛,冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究,清华大学2003 届博士学位论文,2003.4
    [97] 於利,不同生态型小麦品种光合作用特性及其对水分胁迫的反应,硕士论文,安徽农业大学2001届硕士学位论文,2001.7
    [98] 孙克刚,姚健,朱洪勋,长期不同施肥对潮土中NO3 ? ?N累积及作物产量的影响,干旱地区农业研究,1999,17(1):36-41
    [99] 刘晓宏,郝明德,樊军,黄土高原旱区长期不同轮作施肥对土壤供氮能力的影响,干旱地区农业研究,2000,18(3):25-31
    [100] 王康,沈荣开,覃奇志,不同水分、氮素条件下夏玉米生长的动态模拟,灌溉排水学报,2003,(2),9-12
    [101] 王康,沈荣开,王富庆,冬小麦生长及根系吸氮动态模拟研究,灌溉排水,2002,(1),6-10
    [102] 刘建立,徐绍辉,刘慧等,确定田间土壤水力传导率的分形方法,水科学进展,2003,14(4),464-470
    [103] 林虎,黄冠华,冬小麦生长的土壤中硝态氮动态的集中参数模型模拟,灌溉排水学报,2004,23(5),20-24
    [104] 李生秀,王朝辉,土壤和植物中的铵、硝态氮,见林葆主编,化肥与无公害农业,北京:中国农业出版社,2003,101-140
    [105] 林葆,李家康,金继运,化肥与无公害食品,见林葆主编,化肥与无公害农业,北京:中国农业出版社,2003,13-23
    [106] 周苏玫,马元喜和王晨阳等,干旱胁迫对冬小麦根系生长及营养代谢的影响,华北农学报,2000, 15(2):57-62
    [107] 周晓东,王馥棠和朱启疆,二氧化碳浓度增加对冬小麦生长发育影响的数值模拟,气象学报,2002,60(1):53-59
    [108] 卢振民,熊勤学,土壤-植物-大气系统(SPAC)水流动态模拟与实验研究―冬小麦根系垂直分布,中国科学院,农田作物环境实验研究,北京,气象出版社,1990,256-267
    [109] 李韵珠等,土壤水分和养分的有效利用,北京:北京农业大学出版社,1994
    [110] 李卫东,李保国,石元春,区域农田土壤质地剖面的随机模拟模型,土壤学报,1999,36(3):289-301
    [111] 康绍忠,许迪. 我国现代农业节水高新技术发展战略的思考,中国农村水利水电,2001,(10):25-29
    [112] 冯广志,21 世纪初我国节水工作的思考,节水灌溉,2002,(1):1-4
    [113] 贾大林,21 世纪初期农业节水的目标和任务,节水灌溉,2002,(1):9-10
    [114] 赵竞成,吴玉芹. 论农业节水的战略地位,中国农村水利水电,2001,(10):21-24
    [115] 陈亚新,魏占民,史海滨等. 21 世纪灌溉原理与实践学科前沿关注的问题,灌溉排水学报,2004,23(4):1-5
    [116] 王红闪,黄明斌. 四种方法推求土壤导水参数的差别与准确性研究,干旱地区农业研究,2004,22(2):76-80
    [117] 张富仓,张一平.用一步出流法测定土壤的导水参数.西北农业大学学报,1993,21(增):129-133
    [118] 邵明安. 根据土壤水分的再分布过程确定土壤的导水参数.中国科学院水利部西北水土保持研究所集刊,1985,(2):47-53
    [119] 邵明安. 非饱和土壤导水参数的推求I理论.中国科学院水利部西北水土保护研究所集刊,1991a, (13):13-25
    [120] 邵明安,李开元,钟良平. 根据土壤水分特征曲线推求土壤的导水参数. 中国科学院西北水土保持研究所集刊,1991,(6):13-22
    [121] 刘江,许秀娟主编,气象学,北京:中国农业出版社,2002
    [122] 蔡贵信,农田生态系统中氮素循环,见:赵其国,土壤圈物质循环与农业和环境.南京:江苏科技出版社,1995
    [123] 冯绍元.排水条件下饱和——非饱和土壤中氮素运移与转化规律的研究,武汉:武汉水利电力大学,1993
    [124] 张瑜芳,张蔚榛,沈荣开,刘培斌,冯绍元,水建高,排水农田中氮素转化运移和流失.武汉:中国地质大学出版社,1997
    [125] 冯绍元.土壤—水—植物系统中氮素运移、转化与吸收模拟研究.北京:北京农业工程大学了,1995
    [126] 黄元仿.区域土壤N 素行为与土壤水、氮管理.北京:中国农业大学,1996
    [127] 巨晓棠.冬小麦/夏玉米轮作体系中土壤—肥料的转化及去向.北京:中国农业大学,2000
    [128] Pang X P,et al.Yield and nitrogen uptake prediction b CERES-Maize model under semiarid conditions. Soil Sci. Soc.Am.J.,1997,61:254-256
    [129] Lafolie F. Modelling water flow, nitrogen transport and root uptake including physical non-equilibrium and optimization of the root water potential. Fertilizer Research, 1991,27:215-231
    [130] Mirschel W, et al. Simulation of the effects of nitrogen supply on yield formation processes in winter wheat with the model TRITSIM. Fertilizer Research, 1991,27:293-304
    [131] Hamlyn G.Jones, Plants and Microclimate-A Quantitative Approach to Environmental plant Physiology, Cambrige University Press,1983
    [132] J.T.Ritchie, Soil water balance and plant water stress, Gordon Y. Tsuji, G. Hoogenboom, Philip K. Thornton (eds): Understanding Options for Agricultural Production, Kluwer Academic Publishers, Printed in Great Britain, 1998,41-54
    [133] D.C.Godwin, U.Singh, Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems, Gordon Y. Tsuji, G. Hoogenboom, Philip K. Thornton (eds): Understanding Options for Agricultural Production, Kluwer Academic Publishers, Printed in Great Britain, 1998,55-77
    [134] J.T.Ritchie, U.Singh, D.C.Godwin, W.T.Bowen, Cereal Growth, Development and yield, Gordon Y. Tsuji, G. Hoogenboom, Philip K. Thornton (eds): Understanding Options for Agricultural Production, Kluwer Academic Publishers, Printed in Great Britain, 1998,79-98
    [135] H.Van Keulen and N.G. Seligman, Simulation of water use, nitrogen nutrition and growth of a spring wheat crop, Pudoc Wageningen,1987
    [136] M. Vanclooster, P. Viaene,J. Diels, J. Feyen , A deterministic evaluation analysis applied to an integrated soil-crop model, Ecological Modeling , 1995,81,183-195
    [137] J.T.Ritchie, A user-orientated model of the soil water balance in wheat (eds), W. Day, R.K. Atkin, Wheat Growth and Modeling, Plenum Press, New York, 1985, 293-306
    [138] E.J. Van Henten,Validation of a dynamic lettuce growth model for greenhouse climate control, Agricultural Systems, 1994, 45, 55-72
    [139] T.R. Sinclair, Water and nitrogen limitations in soybean grain production (I)Model development, Field Crops Research, 1996 , 15: 125-141
    [140] R.C. Muchow T.R. Sinclair, Water and nitrogen limitations in soybean grain production (II)Field and model analyses, Field Crops Research, 1996, 15: 125-141
    [141] T.R. Sinclair and J. Amir, A model to assess nitrogen limitations on the growth and yield of spring wheat, Field Crops Research, 1992,30:63-78.
    [142] Enli Wang, Thomas Engel, Simulation of growth, water and nitrogen uptake of a wheat crop using the SPASS model, Environmental Modeling & Software , 2002, 17: 387-402
    [143] Garry J.O’Leary & David J. Connor, A simulation model of the wheat crop in response to water and nitrogen supply: Ⅰ. Model construction, Agricultural Systems, 1996, 52: 1-29
    [144] Thomas K?tterer, H. Eckersten, et al, Winter wheat biomass and nitrogen dynamics under different fertilization and water regimes: application of crop growth model, Ecological Modeling, 1997, 102: 301-314
    [145] J.R. Williams, C.A. Jones, et al, The EPIC crop growth model, Transactions of the ASAE, March-April,1989, 32: 1036-1042
    [146] T. R. Sinclair and J. Amir, A model to assess nitrogen limitations on the growth and yield of spring wheat, Field Crops Research, 1992, 30: 63-78
    [147] V. O. Sadras and D. J. Connor, Physiological basis of the response of harvest index to the fraction of water transpired after anthesis : a simple model to estimate harvest index for determinate species, Field Crops Research, 1991,26: 227-239
    [148] Claudio O, Stockle, Steve A, Artion and Gaylon S. Campbell, Crop syst, a cropping systems simulation model : water/nitrogen budgets and crop yield, Agricultural Systems, 1994,46(1):335-359
    [149] J. A. Vrugt , M. T.van Wijk and J. W. Wopmans, et al, One-, two-, and three-dimensional root water uptake functions, Water Resources Research, 2001, 37: 2457-2470
    [150] A. Singels, C. N. Bezuidenhout, A new method of simulation dry matter partitioning in the canegro sugarcace model, Field Crops Research, 2002, 78: 151-164.
    [151] Olga Wilderotter, An adaptive numerical method for the richards equation with root growth, Plant and Soil, 2003,251:255-267
    [152] Francesco N. Tubiello, Cynthia Rosenzwieng and Bruce A. Kimball, et al, Testing CERSE-Wheat with free-air carbon dioxide enrichment(face) experiment date:co2 and water interactions, Agronomy Journal. 1999, 91:247-255
    [153] J.W.Jones, B.A.Keating and C.H.Porter, Approaches to modular model development, Agricultural Systems, 2001,70: 421-443
    [154] Shaozhong Kang, Binjie Gu and Taisheng Du, et al, Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region, Agricultural Water Management, 2003,59: 239-254
    [155] P.D. Jamiesom, J.R. Porter and J. Goudriaan, et al, A comparison of the models AFRCWHEAT2, CERES-wheat, sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought, Field Crops Research, 1998,55:23-44
    [156] P.D. Jamieson, F. Ewert, The role of roots in controlling soil water extraction during drought: an analysis by simulation, Field Crops Research, 1999,60:267-280
    [157] V.K. Arora, P.R. Gajri, Evaluation of a crop growth-water balance model for analyzing wheat responses to climate-and water-limited environments, Field Crops Research, 1998, 59:213-224
    [158] G. Rana and N. Katerji, Measurement and estimation of actual evapotranspiration in the field under mediterranean climate: a review, European Journal of Agronomy, 2000,13: 125-153
    [159] D.J. Connor and E.Fereres, A dynamic model of crop growth and partitioning of biomass, Field Crops Research, 1999,63:139-157
    [160] V.K. Srora, S.S. Prihar and P.R. Gajri, Synthesis of a simplified water use simulation model for predicting wheat yields, Water Resources Research, 1987,23:903-910
    [161] B.S. Minhas, K.S. Parikh and T.N. Srinivasan, Toward the structure of a production function for wheat yields with dated inputs of irrigation water, Water Resources Research, 1974,10: 383-393
    [162] Masoud Meshkat, Richard C. Warner and Stephen R. Workman, Modeling of evaporation reduction in drip irrigation system, Journal of Irrigation and Drainage Engineering, 1999, 10-11,315-232
    [163] Shaozhong Kang, Xiaotao Hu tna Ian Googwin, et al, Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard, Sciential Horticulture,2002,92:277-291
    [164] Amor V.M. Ines , Ashim Das Gupta and Rainer Loof, Application of GIS and crop growth models in estimating water productivity,Agricultural Water Management,2002,54:205-225
    [165] J.W. Jones, B.A. Keating and C.H. Porter, Approaches to modular model development, Agricultural Systems, 2001,70:421-443
    [166]John M. Baker, Use and abuse of crop simulation models, Agronomy Journal,1996, 88 (5): 659-716
    [167] Shaozhong Kang, Fucang Zhang and Jianhua Zhang, A simulation model of water dynamics in winter wheat field and its application in a semiarid region, Agricultural Water Management, 2001, 49:115-129
    [168] Martin Wegehenkel, Test of a modeling system for simulating water balances and plant growth using various different complex approaches, Ecological Modeling, 2000, 129: 39-64
    [169] G.J.O' Leary , D.J. Connor and D.H. White, A simulation model of the development, growth and yield of the wheat crop,Agricultural Systems, 1985,17:1-26
    [170] A. Shepherd, S.M. Mcginn, G.C.L. Wyseure, Simulation of the effect of water shortage on the yields of winter wheat in north-east england, Ecological Modeling, 2002,147:41-52
    [171] Ronald W. Rickman, Sue E. Waldman and Betty Klepper, Modwht3: A development-driven wheat growth simulation, Agronomy Journal, 1996, 88: 176-185
    [172] Daniel Wallach, Bruno Goffinet and Jacques-Eric Bergez, et al, Parameter estimation for crop models: a new approach and application to a corn model, Agronomy Journal, 2001,93:757-766
    [173] A.N. Ziaei and A.R. Sepaskhah, Model for simulation of winter wheat yield under dryland and irrigated conditions, Agricultural Water Management, 2003,58:1-17
    [174] Francesca Ventrea, Ben A. Faber and Khaled M. Bali, et al, Model for estimating evaporation and transpiration from row crops, Journal of Irrigation and Drainage Engineering, 2001,10-11:339-345
    [175] Krnnryh J. Boote, James,et al, Potential uses and limitations of crop models, Agronomy Journal, 1996,88:704-716
    [176] R.A. Feddes, E. Bresler and S.P. Neuman, Field test of a modified numerical model for water uptake by root systems, Water Resources Research, 1974,10:1199-1206
    [177] H.J.W. Mutsaers and Zao qian Wang, Are simulation models ready for agricultural research in developing countries, Agronomy Journal, 1999,91:1-4
    [178] J.B. Reid and M. G.Huck, Diurnal variation of crop hydraulic resistance: a new analysis, Agronomy Journal, 1990,82:827-834
    [179] Carver S. Simmons and Philip D. Meyer, A simplified model for the transient water budget of a shallow unsaturated zone, Water Resources Research, 2000,36:2835-2844
    [180] Luis S. Pereira, Alain Perrier and Richard G. Allen, et al, Evapotranspiration: concepts and future trends, Journal of Irrigation and Drainage Engineering, 1999,3-4:45-51
    [181] N.K. Tyagi, D.K. Sharma and S.K. Luthra, Evapotranspiration and crop coefficients of wheat and sorghum, Journal of Irrigation and Drainage Engineering, 2000, 7-8:215-222
    [182] R.L. Snyder, K. Bail and F. Ventura et al, Estimating evaporation from or nearly bare soil, Journal of Irrigation and Drainage Engineering, 2000, 10-11:399-403
    [183] V.K. Arora, S.S. Prihar and P.R. Gajri, Synthesis of a simplified water use simulation model for predicting wheat yields, Water Resources Research, 1987,23:903-910
    [184] D.N. Whitfield, Effects of irrigation on co2 assimilation and radiation use efficiency in wheat, Field Crops Research, 1993, 31: 211-231
    [185] H. Van Keulen et al. A Summary Model for Crop Growth, F.W.T. Penning de Vries and H.H. Van Laar (eds.), Simulation of plant growth and crop production, Center for Agricultural Publishing and Documentation (Pudoc), Wageningen, 1982.87-94
    [186] Nielsen D.R. And J.W. Biggar, Water flow and solute transport processes in the unsaturated zone ,Water Resource Research,1986,(22):89-98
    [187] J. Barragan et al. Optimal scheduling of a micro-irrigation system under deficit irrigation. J. Agric. Engn. Res. 2001.80(2), 201-208
    [188] B.K. Khosla, B.K. Gupta. Response of wheat to saline irrigation and drainage. Agricultural Water Management, 1997, 32:285-291
    [189] D.E. Smika, D. G. Watts, Residual nitrite-n in fine as influenced by fertilizer and water management practices, Soil Science Society America,1978,42:923-926
    [190] D.J,Greenwood. J. T. Wood, T. J. Cleaver, A dynamic for the effects of soil and weather conditions on nitrogen response. Journal of Agricultural Science, 1974, 82:455-467
    [191] D.J. Greenwood L. M. J. Verstracten, Ann Draycott, Response of winter wheat to n-fertiliser dynamic model. Fertilizer Research, 1987, 12:139-156
    [192]D.V Santos, P.L. Sousa, R. E. Smith, Model simulation of water and nitrate movement in a level basin under fertilization treatments, Agricultural Water Management,1997,32: 293-306
    [193] F. Lafolic, L. Bruckler, A.M. de Cockborne, C. Laboucarie, Modeling the water transport and nitrogen dynamics in irrigated salad crops. Irrig. Sci. , 1997, 17:95-104
    [194] H. Eckersten, p.E. Jansson, Modeling water flow nitrogen uptake and production for wheat, Fertilizer Research, 1991,27:313-319
    [195] Daniel Planet Gilles Lemaire, Relationships between dynamic of nitrogen uptake and dry matter accumulation in maize crops determination of critical n concentration, Plant and Soil 1999,216:65-82
    [196] F. Lafolie, Modeling Water Flow, Nitrogen transport and root uptake including physical non-equilibrium and optimization of the root water potential, Fertilizer Research, 1991,27: 215-231
    [197] P.E. Rijtema, J.G. Kroes, Some results of nitrogen simulation with model ANLMO, Fertilizer Research, 1991, 27:189-198
    [198] J.A. Vruge, J.W. Hopmanas, J. Simurck, Calibration of a two-dimensional root water uptake model, Soil Science Society American Journal, 2001, 56:1027-1037
    [199] Richard G Allen, Luis Perein, Dirk Raes Martin Smith, Guidelines for computing crop water requirements FAO Irrigation and Drainage 1998,56
    [200] Penning de Vries FWT, Jansen DM, Berge ten HFM and A BakeMa, Simulation of ecophisiological processes of growth in several annual crops.pudoc, Wageningen,1989
    [201] Howard M.Taylor Wayne R. Jordan Thomas R. Sinclair, Limitation to efficient water use in crop production, PUSA,1983
    [202] Van Keulen H&Wolf J. Modeling of agricultural production: weather, soil and crops. Simulation Monographs, PUDOC Wageningen, The Netherlands,1986
    [203] S.V. Nerpin & A.F. Chudnovskii, Heat and mass transfer in the plant-soil-air system, Printed in India,1985
    [204] Brower R. Functional equilibrium : sense or nonsense Neth J Agric Sci, 1963, 33: 335-348
    [205] Davidson R L. Effect of root/shoot temperature differentials on root/shoot ratios in some pasture grasses and clover. Annals of Botany,1969,33:561-569
    [206] Leij F.I. and Dane, Determination of exchange isotherms for modeling cation trasport in soils, Soil Sci.1990,150(5):816-826
    [207] Burdine N.T. Relative permeability calculation from size distribution data. Trans. Am. Inst.min. metall. Pet.Eng., 1953.198:71-78
    [208] Assouline S, Tessier D, A conceptual model of the soil water retention curve, Water Resour. Res., 1988,34(2):223-231
    [209] Panjit Kumar Ghost , Estimation of soil moisture characteristics from mechanical properties of soils, Soil Sci., 1979,130(2):223-231
    [210] Arya L M, Richter J C, Davidson S A. A comparison of soil moisture characteristics predicted by the arya-paris model with laboratory-measured data, National Aeronautics and Space Administration, Lyndon B, Johnson Space Center, Houston, TX, 1982
    [211] Borg H, Estimation soil hydraulic properties from textural data, Ph. D. Thesis, Washington State Univ., Pullman (Diss, Abstr. 83-03292), 1982
    [212] Bouyoucos C J, A recalibration of the hydrometer method for making mechanical analysis of soil, Agron. J., 1951,43(1): 434-438
    [213] Bloemen C W, Calculation of hydraulic conductivities of soils from texture and organic matter content, Z. Pflanzenernaehr, Bodenkd, 1980,143(3): 581-605
    [214] Brooks R H, Corey A T, Hydraulic properties of porous media, Hydrology Paper N0.3, Colorado State University, For Collins, 1964
    [215] Campbell C S, A simple method for determining unsaturated conductivity from moisture retention data, Soil Sci., 1974,117:311-314
    [216] Cosby B J, Hornberger G M, Clapp R B, et al, A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour., Res., 1984.20:682-690
    [217]Gardner W R, Hillel D, Nenyamini Y, Post irrigation movement of water: Ⅰ, redistribution, Water Resour, Res., 1970,6:851-861
    [218]Gardner W R, Hillel D, Benyamini Y, Post irrigation movement of water: Ⅱsimultaneous redistribution and evaporation, Water Resour, Res., 1970,6(4):1148-1153
    [219]Gupta S C, Larson W E, Estimating soil water retention characteristics from particle size distrbution, organic matter content, and bulk density, Water Resour, Res., 1979,15: 1633-1635
    [220] Rawls W J, Brakenseik D J. Saxton K E. Estimation of soil water properties, Trans. ASAE. 1982, 25: 1316-1320
    [221] Thornley J H M, Partitioning during vegetative growth. In : Thornley J H M, Johnoson R eds., Plant and Crop Modeling , Oxford: Clarendon Press, 1990,370-398
    [222] Stutzel H, Charles-Edwards D A, Beech D F. A model of the partitioning of new above ground dry matter, Ann Bot, 1988,61:481-487
    [223] Bierhuizen J F, Slatyer R O, Effects of atmospheric concentration of water vapour and co2 indeterming transpiration-photosynthesis relationships of cotton leaves, Agri. Meteorol, 1965,2: 259-270
    [224] B.D.Sharma,S.Kar,S.S.Cheema, Yield water use and nitrogen uptake for different water and n levels in winter wheat, Fertilizer Research,22,1990,119-127
    [225] B.D. Sharma, S.K. Jalota, S.Kar, C.B. Singh, Effect of nitrogen and water uptake on yield of wheat, fertilizer research, 1992, 31:5-8
    [226] Richard V.Liewelyn Allen M.Featherstone, A comparison of crop production functions using simulated data for irrigated corn in western kansas, Agricultural Systems, Vol.54, 1997, 521-538
    [227] W.D.Joshua,M.Blast and G.T.Oshorne,Simplified functional model for estimating nitrogen mineralisation and leaching in biosolids-amended soils, Australian Journal of Experimental Agriculture, 2001,41,1207-1216
    [228] Shao Mingan, Horton R. Soil water diffusivity determination by general similarity. Soil Sci, 1996,161(11):7227-7234
    [229] Haverkamp R, Parlange J Y. Predicting the water-retention curve from particle-size distribution:1. Sandy soils without organic matter . Soil Sci, 1986,142(6):325-339
    [230] Saxton K E, Rawls W J, Romberger J S, et al. Estimation generalized soil-water characteristics from texture. Soil Sci Soc Am J, 1986,50(4): 1031-1036
    [231] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res, 1976,12:593-622
    [232] Van Genuchten M TH. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J, 1980, 44:892-898
    [233] Broadbridge P, White I. Constant rate rainfall infiltration; a versatile nonlinear model 1. analytic solution. Water Resour. Res, 1988,24,(1):145 -154
    [234] Brooks R H, Corey A T. Hydraulic properties of porous media. Colorada: Colorada State Univ, Fort Colins, 1964
    [235] Kersebaum K C, J Richer, Modelling nitrogen dynamics in a plant-soil system with a simple model for advisory purposes. Fertilizer Research, 1991, 27: 273-281
    [236] Groot J J R, Pde Willigen. Simulation of the nitrogen balance in the soil and a winter wheat crop .Fertilizer Research,1991,27:261-272
    [237] Ramos C E, A Carbonell. Nitrate leaching and soil moisture prediction with the LEACHM mode .Fertilizer Research,1991,27:171-180
    [238] Vogel, et al. The HYDRUS code for simulating one-dimensional water flow, solute transport, and heat movement in variably-sturated media (version 5.0).Research Report No.140. U. S. Salinity Laboratory Agricultural Research Service, U.S.Department of Agriculture Riverside, Califomia, August 1996
    [239] Pang X P, J Letey, Development and evaluation of ENVIRO-GRO, an integrated water, salinity, and nitogen model. Soil Sci. Am.J.,1998,62:1418-1427
    [240] De Wit C T. Photosythesis of leaf canopies. Agricultural Research Report 663, PUDOC, Wageningen, The Netherlands. 1965. 1-57
    [241] Duncan W G, Loomis R S, Williams W A, et al. A model for simulating photosynthesis in plant communities. Hilgardia, 1967, 38:81-205
    [242] Bouman B A M, van Keulen H, van Laar H H, et al. The ‘school of de Wit’crop growth simmlation models: a pedigree and historical overview. Agricultural Systems, 1996, 52:171-198
    [243] Rabbinge R. The ecological background of food production. In: Chadwick D (ed.). Crop Protection and Sustainable Agriculture. (Ciba Foundation Symposium 177). John Wiley & Sons, Chichester. 1993, 2-29
    [244] Penning de Vries F W T. Simulation models of growth of crops, particularly under nutrient stress. In: Physiological aspects of crop productivity. Proceedings of the 15th Colloquium, International Potash Institute, Bern, 1980, 213-226
    [245] De Wit C T, et al. Simulation of assimilation, respiration and transpiration of crops. Simulation Monographs, PUDOC, Wageningen, The Netherlands. 1978
    [246] Penning de Vries F W T, van Laar H H. Simulation of growth processes and the model BACROS. In: Penning de Vries F W Tand van Laar H H(eds.), Simulation of plant growth and crop production. Simulation Monographs, PUDOC, Wageningen, The Netherlands, 1982. 114-135
    [247] Van Keulen H. Simulation of water use and herbage growth in arid regions. Simulation Monographs. PUDOC. Wageningen, The Netherlands, 1975, 1-176
    [248] Stroosnijder L. Simulation of the soil water balance. In: Penning de Vries F W T & van laar H H(eds.), Simulation of plant growth and crop production. Simulation Monographs, PUDOC, Wageningen, The Netherlands, 1982, 175-193
    [249] Van Keulen H, Penning de Vries F W T, Drees E M. A summary model for crop growth. In: Penning de Vries F W T, van Laar H H (eds.), Simulation of plant growth and crop production. Simulation Monographs, PUDOC, Wageningen, The Netherlands, 1982, 87-98
    [250] Spitters C J T, van Keulen H, van Kraalingen D W G. A simple and universal crop growth simulator: SUCROS87. In: Rabbinge R, Ward S A, van Laar H H(eds.), Simulation and systems management in crop protection. Simulation Monographs, PUDOC, Wageningen, The Netherlands, 1989
    [251] Van Laar H H, Goudriaan J, van Keulen H. Simulation of crop growth for potential and water-limited production situations(as applied to spmg wheat). Simulation Report CABO-TT, 27, CABO-DLO, Wageningen, The Netherlands, 1992.105-116
    [252] Goudriaan J, an Laar H H. Modelling potential crop growth processes. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994
    [253] Kropff M J, van Laar H H. (eds) Modelling crop-weed interactions. CAB International, Wallingford, UK. 1993
    [254] Bouman B A M. SBFLEVO and WWFLEVO, Growth models to simulate crop growth, optical reflectance and radar backscatter of sugar beet and winter wheat, calibrated for Flevoland. CAB-DLO Report 163, CAB-DLO, Wageningen, The Netherlands, 1992
    [255] Van Keulen H, Wolf J. Modeling of agricultural production: weather, soil and crops, Simulation Monographs, PUDOC. Wageningen, The Netherlands, 1986
    [256] Hijmans R J. Guiking Lens I M, van Diepen C A. User guide for the WOFOST 6.0 crop growth simulation model. Technical document 12, DLO Wiand Staing Centre, Wageningen, The Netherlands, 1994,145
    [257] Penning de Vries F W T, Jansen D M, ten Berge H F M, et al. Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs, PUDOC, Wageningen, The Netherlands, 1989. 271
    [258] Penning de Vries F W T, van Laar H H, Kropff. M J (eds.). Simulation and systems analysis for rice Production (SARP) . PUDOC, Wageningen, The Netherlands. 1991.369-381
    [259] Spitters C J T, Schapendonk A H C M. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation, Plant and Soil, 1990, 123:193-203
    [260] Uehara G, Tsuj G Y. Overview of IBSNAT. Ln:Tsuji G Y , Hoogenboom G, Thornton P K (eds). Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998. 1-7
    [261] Hoogenboom G, Wilkens P W, Tsuji G Y (eds). DSSAT Version 3, Volume 4. University of Hawaii, Honolulu, Hawaii, 1999
    [262] Kage.H, C.Alt, H.Stutzel, Aspects of nitrogen use efficience of cauliflower. Ⅰ. Asimulation modelling based analysis of nitrogen availability under field conditions. Journal of agricultural science, 2003,141,1-16
    [263] Kage.H, C.Alt, H.Stutzel, Aspects of nitrogen use efficience of cauliflower.Ⅱ. Productivity and nitrogen partitioning as influenced by N supply. Journal of agricultural science, 2003,141,17-29
    [264] Engel T, Hoogenboom G, Jones J W, et al. AEGIS/WIN:A computer program for the application of crop simulation models across geographic areas. Agronomy Journal, 1997. 89:919-928
    [265] Harkamp A D, White J W, Hoogenboom G. Interfacing geographic information systems with agronomic modeling: a review. Agronomy Journal, 1999, 91:620-772
    [266] Thornton P K, Booltink H W G, Stoorvogel J J. A computer program for Geostatistical and spatial analysis of crop model outputs. Agronomy Journal, 1997, 89:60-627
    [267] Ritchie J T. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 1972, 8:1204-1213
    [268] Arkin G G, Vanderlip R L, Ritchie J T. A dynamic grain sorghum growth model. Trans. ASAE, 1976, 19:622-626,630
    [269] Ritchie J T, Otter S. Description and performance of CERES-Wheat: A user-oriented wheat yield model, USDA-ARS, ARS-38, 1985. 159-175
    [270] Jones C A, Kiniry J R. CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A & M University Press, College Station, TX. 1986
    [271] Ritchie J T, Alocijia E C, Uehara G. IBSMAT/CERES Rice Model. Agrotechnology Transfer, 1986, 3:1-5
    [272] Otter-Nacke S J, Ritchie J T, Godwin D, Singh U. A User’s Guide to CERES Barley-V2. 10. International Fertilizer Development Centre, Muscle Shoals, Alabama, USA, 1991
    [273] Alagarswamy G, Ritchie J T, Godwin D C, Singh U.A user’s guide to CERES Sorghum. Michigan State Univeristy, ICRISAT, IFDC and IBSNAT Joint Publication, 1988
    [274] Wilkerson G G, Jones J W, Boote K J, et al. Modeling soybean growth for crop management. Trans. ASAE, 1983, 26:63-73
    [275] Boote K J, Jones J W, Hoogenboom G, et al. PNUTGRO V1.02, Peanut Crop Growth Simulation Model, User’s Guide. F1. Agric. Exp. Sta, Journal No. 8420. Univ. of Florida, Gainesville, 1989
    [276] Hoogenboom G, White J W, Jones J W, et al. BEANGRO, a process oriented dry bean model with a versatile user interface. Agronomy Journal, 1994. 86(1):182-190
    [277] Hoogenboom G. Jones J W, Boote K J. Modeling growth, development, and yield of grain legumes using SOYGRO.PNUTGRO, and BEANGRO:A review. Trans ASAE,1992,35(6):2043 –2056
    [278] MoCown R L,Hammer G L, Hargreaves J N G, et al. APSIM: a novel software system for model development, model testing, and simulation in agricultural systems research. Agricultural Systems, 1996,50:255-271
    [279] Gao L Z, Jing A Q, Huang Y, et al. Rice clock model-a computer model to simulate rice development. Agricultural and Forest Meteorology, 1992,60:1-16
    [280] Boote K J, Jones J W, Pickering N B. Potential uses and limitations of crop models. Agronomy Journal, 1996,88:704-716

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700