多酸基荧光检测微球的制备及布鲁氏菌检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,全球范围内新发公共传染病不断发生,其病原体75%源自动物或动物源性食品。新发公共传染病已越来越多的呈现出“人禽共患”或“人畜共患”的特点。其中由布鲁氏菌引起的传染病在我国尤其是在牧区发病率较高,且传染性较强。布鲁氏菌病的高发和流行不仅造成巨大的经济损失,而且严重威胁人群的健康。对布鲁氏菌病的预防、监督检查现已引起世界各国的广泛重视,加强对布鲁氏菌的预防和监控现已纳入世界卫生组织和我国卫生部传染病检测的主要工作内容之一。因此,开发快速、高效、特异的布鲁氏菌病检测技术现已成为公共卫生检测领域研究的重点课题之一。本课题研究主要是设计合成了多酸基荧光免疫探针,利用双抗体夹心荧光免疫原理,借助液相芯片检测技术平台,建立一种安全、准确、特异的布鲁氏菌检测方法。本课题研究分为四个部分:
     第一部分布鲁氏菌多克隆抗体与单克隆抗体的制备及鉴定。①多克隆抗体的制备及鉴定:利用羊种布鲁氏菌M5疫苗皮下多点注射免疫新西兰白兔,每次免疫前耳缘静脉取血,测定其血清效价,达到所需标准,兔心脏采血并分离血清,用硫酸铵沉淀法结合Protein G亲和层析法进行抗体纯化,Bradford法测定抗体蛋白含量,间接ELISA、SDS-PAGE凝胶电泳试验测定效价和纯度,并利用生物素进行标记。结果显示纯化后布鲁氏菌多抗纯度较高,蛋白含量为8.22mg·L~(-1),效价可达到1:64000,每摩尔多克隆抗体蛋白可标记生物素摩尔数为2.61。②单克隆抗体的制备及鉴定:采用杂交瘤细胞技术,以羊种布鲁氏菌M5为抗原免疫BALB/c小鼠,在细胞融合前4d加强免疫。取免疫小鼠脾细胞和SP2/0细胞进行融合。用已建立的间接ELISA进行杂交瘤细胞阳性筛选,采用有限稀释法进行亚克隆,筛选出能稳定分泌M5抗体的阳性杂交瘤细胞。阳性杂交瘤细胞经扩大培养后,小鼠体内诱生法制备单抗腹水,并对腹水中的单抗用硫酸铵沉淀法结合Protein G亲和层析法进行纯化, Bradford法测定蛋白含量,间接ELISA、SDS-PAGE凝胶电泳试验测定效价和纯度。结果显示经过亚克隆筛选出1株能稳定分泌M5单克隆抗体的杂交瘤细胞株,抗体亚型为IgG_3型,纯化浓缩后的抗体蛋白含量为4.39mg·L~(-1),效价可达到1:6400,纯度较高,特异性较好。
     第二部分多酸基荧光发光材料的合成与表征。①采用有机无机杂化法,设计合成新型多酸荧光N(C_4H_9)_4]_2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2化合物。利用X-射线单晶衍射、氢核磁、碳核磁、红外光谱、紫外光谱和荧光光谱对其结构和性质进行表征。结果显示该化合物呈负电性,红外光谱特征峰为2958、2929、2870、1482、1378、811、795、718cm~(-1),紫外特征吸收峰为244、270、283、389、345nm,激发峰为262、275、329、345nm,在345nm激发下的发射波谱范围较宽,最高发射峰在400nm处。②采用常规的多酸化学合成方法,合成Na_9EuW_(10)O_(36),利用红外光谱、紫外光谱和荧光光谱对所合成的化合物结构和性质进行表征。结果显示,该化合物红外光谱特征峰为543、705、785、843、945nm,紫外特征吸收峰为208和258nm,在278nm激发下的发射峰位于579、592、619、651、692、700nm。
     第三部分功能化多酸基荧光检测微球的制备与表征。①功能化多酸荧光染料[N(C_4H_9)_4]_2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2]标记聚苯乙烯微球的制备与表征:采用分散聚合法合成聚苯乙烯微球,微球粒径约为2.8μm,选用聚电解质PDADMAC、PAA、PAH对微球进行活化,采用层接层静电自组装法将所制备的多酸荧光染料[N(C_4H_9)_4]_2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2]包覆在微球表面,通过聚电解质进一步修饰,使微球表面带有羧基官能团。利用Zeta电位、荧光光谱和激光共聚焦显微镜对所制备的微球进行表征,结果显示多酸荧光染料和聚苯乙烯微球可以较好的偶联,且具有良好的荧光发光特性。②功能化多酸荧光染料[N(C_4H_9)_4]_2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2]标记二氧化硅微球的制备与表征:采用种子聚合法合成二氧化硅微球,微球粒径约为1μm,选用聚电解质PEI和PAA对微球进行活化,采用层接层静电自组装法将所制备的多酸荧光染料[N(C_4H_9)_4]_2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2]包覆在微球表面,通过聚电解质进一步修饰,使微球表面带有羧基官能团。利用Zeta电位、荧光光谱和流式细胞仪对所制备的微球进行表征。结果显示多酸荧光染料和二氧化硅微球可以较好的偶联,且具有良好的荧光发光特性。③功能化多酸荧光染料Na_9EuW_(10)O_(36)标记聚苯乙烯微球的制备与表征:采用细乳液聚合法将Na_9EuW_(10)O_(36)杂化引入聚苯乙烯微球中,通过聚电解质进一步修饰,使微球表面带有羧基官能团。利用紫外光谱、荧光光谱、Zeta电位和透射电镜对所制备的微球进行表征。结果显示Na_9EuW_(10)O_(36)与聚苯乙烯微球可以较好的杂化,且具有良好的荧光发光特性。
     第四部分布鲁氏菌液相芯片检测方法的建立及评价。①布鲁氏菌液相芯片检测方法的建立:利用双抗体夹心荧光免疫分析原理,采用液相芯片检测技术平台,通过对反应条件的优化,建立一种布鲁氏菌液相芯片检测方法,并对该方法的检测效果进行验证。结果显示,本课题所建立的检测方法最佳反应条件为:单抗最佳偶联浓度8.3125μg·mL~(-1),生物素标记的多克隆抗体工作浓度为432μg·mL~(-1),SA-PE的工作浓度为8μg·mL~(-1)。该方法检测的特异性和重复性较好,利用该方法检测羊布鲁氏菌M5最低检出限为1.0×10~6CFU·mL~(-1)。②布鲁氏菌液相芯片检测方法的评价:制备40份实验室模拟样本,经过72h增菌培养后,分别按照所建立的液相芯片方法和分离培养鉴定法进行检测,并对两种检测方法的结果进行比较。结果显示,所建立的液相芯片法与分离培养鉴定法相比,准确性和检测限相近,但液相芯片法可大大缩短检测时间,且检测工作无需带菌操作,安全可靠。
In recent years, newly emerging public communicable diseases occurredfrequently, and75%of the pathogens are derived from animals or animal derived food.The pathogens for the newly emerging communicable diseases manifest distinctivecharacteristics of infecting birds or livestocks and humans. Among the communicablediseases, Brucellosis by Brucella is proved to be highly contagious and with highprevalence in China, especially in the pastoral areas. The high prevalence andincidence of Brucellosis cause a huge economic loss and pose a great threat topeople’s health. Thus the prevention and surveillance of Brucellosis has attracted wideattention in the world, and the improvement on the prevention and monitoring on thispathogen has become one of the major tasks of WHO and the Ministry of Health ofChina. Therefore, quick, efficient and specific technology for detection of Brucellahas become one of important issues in public health. The objective of the presentstudy is to synthesize POMs-based fluorescent probes to detect Brucella based on thedouble antibodies sandwich fluorescent immunological principles.
     PartⅠ P reparation and identification ofpolyclonal antibody and monoclonalantibody of Brucella
     1. Preparation and identification of polyclonal antibody: New Zealand white rabbitswere immunized with B. melitensis M5vaccine at multisites by subcutaneousinjection.Blood was collected through ear vein and serum antibody titer of anti-M5was determined. When the serum titer of anti-M5antibody reached the required levels,the rabbits were narcotized and blood was collected from heart by syringe. Theanti-M5antibodies were sedimented by ammonia sulfate and purified by Protein Gaffinity chromotography. The content, titer and purity of anti-M5antibody wasdetermined by Bradford, indirect ELISA and SDS-PAGE respectively. The purifiedantibody was labelled with biotin. The results showed that the content of the antibody was8.22mg·L~(-1), the titer was1:64000and the labelling efficiency was2.62of biotinto antibody.
     2. Preparation and identificaion of monoclonal antibody: The B. melitensis M5vaccine was injected into BALB/c mice. The mice were given an intensivevaccination before the4thday of cell fusion. The hybridoma cell producing anti-M5monoclonal antibody was prepared by applying hybridoma technology, expandedculture and inoculated into mice introperitoneal to produce ascites. The anti-M5monoclonal antibodies in ascites were sedimented by ammonia sulfate and purified byProtein G affinity chromotography. The content, titer and purity of anti-M5monoclonal antibody were determined by Bradford, indirect ELISA and SDS-PAGErespectively. The results demonstated that the subtype of anti-M5monoclonalantibody, derived from hybridoma cell, was IgG3.The concentration of the purifiedand concentrated antibody was4.39mg·L~(-1)and the titer was1:6400.
     Part Ⅱ Synthesis and characteristics of POMs-based fluorescent compounds
     1. The compound N(C_4H_9)_4]_2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2was designed andsynthesized by organic-inorganic hybridization. Constituents and characterisitics ofthis compound were determined through X-ray diffraction, H-NMR, C-NMR, IR, UVspectrophotometer and fluorospectro photometer. The results demonstrated that thecompound had negative charges. The characteristic peaks of IR were2958,2929,2870,1482,1378,811,795and718cm-1, UV absorption peaks were244,270,283,389and345nm. Excitation peaks were262,275,329and345nm,The range ofemission spectrum was wide under the excitation of345nm and the maximumemission peak was400nm.
     2. Na_9EuW_(10)O_(36)was synthetized by conventional POMs synthesis method. Structuresand characterisitics were determined through IR, UV spectrophotometer andfluorospectro photometer.The IR characteristic peaks of this compound were543,705,785,843and945nm, The UV characteristic absorption peaks were208nm and258nm, The emission peaks under the excitation of278nm were579,592,619,651,692and700nm.
     Part Ⅲ Preparation and characteristics of functional POMs-based fluorescentdetecting polytyrene microspheres
     1. Preparation and characteristics of styrene microspheres labelled by[N(C_4H_9)_4]_2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2] compound: polystyrene micro-spheres were synthesized by dispersion polymerization, with the diameter of the beads2.8μm. The beads were activated by polyelectrolytes including PDADMAC, PAAand PAH. The activated beads were labelled by POMs-based fluorescent compound[N(C_4H_9)_4]_2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2]. The beads were further modified by–COOH and characterized by Zeta potential, fluorospectro photometer and flowcytometer. The results showed that POMs-based fluorescence dye could be wellcoupled with polystyrene microspheres and had satisfactory fluorescencecharacteristics.
     2. Preparation and characteristics of functional POMs-based fluorescent [N(C4H9)4]2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2] labeled SiO2microspheres. The microsphereswere synthesized by seeding polymerization method with the diameter of the beads1μm. The beads were activated by polyelectrolytes including PEI, PAA and PEI. Theactivated beads were labelled with POMs-based fluorescent compounds [N(C4H9)4]2[V_6O_(13){(OCH_2)_3CNH-CH_2-C_(16)H_9}_2] by layer-by-layer electrostatic self-assemblymethod. The beads were further modified by-COOH and characterized by Zetapotential, fluorospectro photometer and flow cytometer. The results showed thatPOMs-based fluorescence dye could be well coupled with SiO2microspheres andpossessed good fluorescent-emission characteristics.
     3. Preparation and characteristics of functional POMs-based fluorescent dye labeledpolystyrene microspheres: Na_9EuW_(10)O_(36)were incorporated into styrene microspheresby fine emulsion polymerization. The beads were further modified by-COOH andcharacterized by UV spectrophotometer, fluorospectro photometer, Zeta potential andTEM. The results showed that Na_9EuW_(10)O_(36)could be well hybridized withpolystyrene microspheres, and the beads existed fine fluorescence characteristics.
     Part ⅣEstablishment and evaluation of Liquid chip detection method for thedetection of Brucella
     1. Establishment of Liquid chip detection method for the detection of Brucella: thedetection method was established based on the principles of double-antibodysandwich fluorescent immunology by optimized monoclonal antibody couplingconcentration, biotin labeled polyclonal antibody and SA-PE working concentration.And the detection effect of this method was confirmed.The results showed thatoptimal reaction conditions were as followed, optimal monoclonal antibody couplingconcentration8.3125μg·mL~(-1), biotin labeled polyclonal antibody workingconcentration432μg·mL~(-1), SA-PE working concentration8μg·mL~(-1). Specificity andrepeatability of the method was satisfying and the mimimum detection limit for M5Brucella was1.0×10~6CFU·mL~(-1).
     2. Evaluation on Liquid chip method for the detection of Brucella: forty mimicSamples were multiplied and detected by Liquid chip detection method and separationculture assay method, respectively. The detection results were compared. The resultsindicated that both methods manifested similar accuracy and detection limit, butLiquid chip detection method could reduce the detection duration and made thedetection much safer because of no live bacteria available.
引文
[1] http://www.ccn.com.cn/news/jiankang/2006/0327/34491.html
    [2] http://www.who.int/zoonoses/en.
    [3]邢进,王金锋,赵宝华,等.布鲁菌病及其诊断方法研究进展[J].动物医学进展,2009,30(3):69-73.
    [4]任洪林,卢士英,周玉,等.布鲁氏菌病的研究与防控进展[J].中国畜牧兽医,2009,36(9):139-143.
    [5]赵凤菊.布鲁氏菌病的流行情况及危害[J].中国畜牧兽医文摘,2011,27(2):62-63.
    [6]刘应麟.传染病学[M].北京:人民卫生出版社(第二版),2001.
    [7]韩果方,罗治华.应高度重视布鲁氏菌病对人畜的危害[J].贵州畜牧兽医2008,32(6):16-17.
    [8] Pei J, Turse J E, Ficht T A. Evidence of Brucella abortus OPS dictating uptake andrestricting NF-KB activation in murine macrophages[J]. Microbes Infect,2008,10:582-590.
    [9] Gorvel J P. Brucella: a Mr "Hide" converted into Dr Jekyll[J]. Microbes Infect,2008,10(9):1010-1013.
    [10] Guihot A, Bossi P, Bricaire F. Bioterrorism with brucellosis[J]. Presse Med,2004,33(2):119-122.
    [11]世界动物卫生组织著.哺乳动物、禽、蜜蜂A和B类疾病诊断试验和疫苗标准手册[M].农业部畜牧兽医局译.北京:中国农业科学技术出版社,2002,308-325.
    [12]童光志,于力,于康震,等.动物传染病学[M].北京:中国农业出版社,2008.
    [13]吴清民.动物布鲁氏菌病新型防控技术及研究进展[J].兽医导刊,2011,9:46-47
    [14] Seleem M N, Boyle S M, Sriranganathan N. Brucellosis: a re-emergingzoonosis[J]. Vet Microbiol,2010,140(3-4):392-398.
    [15]高明华,张志琰,李跃,等.布鲁氏菌病实验室诊断研究进展[J].中国人兽共患病学报,2010,26(1):81-87.
    [16]齐景文.布鲁氏菌病常用诊断方法应用现状及评价[J].中国畜牧兽医,2006,33(8):70-73.
    [17]孙耀贵,黄姜生,陈佳.三种血清学方法检测奶牛布鲁氏菌病的比较试验[J].黑龙江畜牧兽医,2005,(1):42-43.
    [18] Klaus Nielsen. Diagnosis of brucellosis by serology[J]. Veterinary Microbiology,2002,90:447-459.
    [19] Romero C, Pardo M, Grillo M J, et al. Evaluation of PCR and indirectenzyme-inked immunosorbent assay on milk samples for diagnosis ofBrucellosis in dairy cattle[J]. J Clin Microbiol,2005,33(12):3198-3200.
    [20]杨洋,汤华.液相芯片技术在检验医学和生物医学中的应用[J].中国生物化学与分子生物学报,2007,23(4):256-261.
    [21] Bay J T, Garred P. Rapid bead-based immunoassay for measurement ofmannose-binding lectin[J]. Scand J Immunol,2009,69(6):570-575.
    [22] Livingston A D, Campbell C J, Wagner E K, et al. Biochip sensors for the rapidand sensitive detection viral disease[J]. Genome Biol,2005,6(6):112-115.
    [23]谢冲,王国民. Luminex液相芯片的发展及应用[J].复旦学报(医学版),2010,37(2):241-244.
    [24] Biagini R E, Sammons D L, Smith J P, et al. Comparison of a multiplexedfluorescent covalent microsphere immunoassay and an enzyme-linkedimmunosorbent assay for measurement of human immunoglobulin G antibodiesto anthrax toxins[J]. Clin Diagn Lab Immunol,2004,11(1):50-55.
    [25] Haasnoot W, Pre J G. Luminex-based triplex immunoassay for the simultaneousdetection of soy, pea, and soluble wheat proteins in milk powder[J]. J Agric FoodChem,2007,55(10):3771-3777.
    [26]王恩波,胡长文,多酸化学导论.化学工业出版社,1997.
    [27] Dossing A. Luminescence from Lanthanide(3+) ions in solution[J]. Eur J InorgChem,2005,8:1425-1434.
    [28] Müller A, Peters F, Pope MT, et al. Polyoxometalates: Very LargeClusters-Nanoscale Magnets[J]. Chem Rev,1998,98(l):239-272.
    [29]康振辉,王恩波,王轶博,等.有机-无机杂化纳米材料的制备、表征及性质[J].东北师大学报(自然科学版),200l,33(3):60-63.
    [30] Wang X L,Kang Z H,Wang E B. Preparation,eiectrochemicai property andappiication in chemicaiiy buik modified eiectrode of a hybrid inorganic-organicsiiicomoiybdate nanoparticies[J]. Mater Lett,2002,56:393-396.
    [31]张权庚,张玉祥,丁卫,等主译.抗体的制备与使用指南[M].科学出版社,第一版,2010.
    [32]赵振祥,赵鸿雁,崔步云.鲁氏菌强毒株16M和疫苗株M5差异探索[J].中国人兽共患病学报,2009,25(10):961-963.
    [33] Cloeckaert A, Vizcaíno N, paquet J-Y, et al. Major Outer membrane proteins ofBrucellaspp: past、present and future[J]. Veterinary Microbiology,2002,90(10):229-247
    [34] Schunk M K, Macallum G E. Applications and optimization of immunizationprocedure[J]. Ilar J,2005,46(3):241-57.
    [35] Hanly W C, Artwohl J E, Bennett B T. Review of polyclonal antibody productionprocedure in mammals and poultry [J]. Ilar J,1995,37(3):93-118.
    [36] Hu J G, Yokoyama T, Kitagawa T. Studies on the optimal immunization scheduleof experimental animals. V. The effects of the route of injection, the content ofMycobacteria in Freund's adjuvant and the emulsifying antigen[J]. Chem PharmBull (Tokyo),1990,38(7):1961-1965.
    [37]夏芳,罗满林,郭林.免疫佐剂的研究进展[J].畜牧与饲料科学,2009,30(10):150-152.
    [38] Petrovsky N, Aguilar J C. Vaccine adjuvants: Current state and future trends [J],Immunol Cell Biol,2004,82,48-496.
    [39] Hanly W C, Artwolhl J E, Bennett, B. Review of Polyclonal Antibody ProductionProcedures in Mammals and Poultry[J]. ILAR Journal,1995,37(3):93-11.
    [40]Leenaars P P A M, Hendriksena C F M, Koedama M A. Comparison of adjuvantsfor immune potentiating properties and side effects in mice[J]. Vet ImmunlImmunop.1995,48(1-2):123-138.
    [41]柳忠辉主编.医学免疫学实验技术[M].北京市:人民卫生出版社,2008.
    [42]甘丽晶,刘晓波,胡质毅.抗体分离纯化技术研究进[J].检验医学与临床,2013,10(4):461-464.
    [43]徐顺清主编.免疫学检验.北京市:人民卫生出版社,2006.
    [44] Katsolulis A. A survey of applications of polyoxometalates[J]. Chem Rev,1998,98,359-387.
    [45]Yamase T. Photo and Electrochrosmism of Polyoxometalates and RelatedMaterials[J]. Chem Rev,1998,98:307-326.
    [46] Xie J L, Abrahams B F, Wedd A G. Facile assembly of hybrid materialseontaining polyoxometalate cluster anions and oranic dye cations: crystalstruetures and initial spectral characterization[J]. Chem Commu,2008,576-578.
    [47] Xie J L. Investigation of inorganic-organic hybrid materials containingpolyoxometalate cluster anions and organic dye cations[J]. J Coord Chem,2008,61,3993-4003.
    [48] Guo S X, Xie J L. Synthesis and redox properties of triarylmethane dye cationsalts of anions[M6O19]2-(M=Mo,w)[J]. Dalton Trans,2011,40,356-366.
    [49] Day V W, Klemperer W G, Maltbie D J. Where Are the Protons in H3Vl0O28-?[J]. J Am Chem Soc,1987,109(10):2991-3002.
    [50] Sugeta M, Yamase T. Crystal structure and luminescence site of Na9[EuW10O36]·32H2O[J]. Bull Chem Soc Jpn,1993,66(2),444-449.
    [51] Banerjee S, Georgeseu C, Daniels E S,et al. Production of dyed Polymermicropartieles[P]. US,6964747.2005-12-15.
    [52]胡杰,刘白玲,汪地强.高通量药物筛选中的荧光微球[J].现代化工,2003,23(6):59-62.
    [53] Yang W J, Trau D, Renneberg R, etal. Layer-by-Layer construction of Novelbiofunctional Fluorescent microparticles for immunoassay applications [J]. JColloid Interf Sci,2001,234:356-362.
    [54]高明远.纳米微球、微球及其生物荧光探针的制备和应用[P]. CN,1389539A.2003-01-08.
    [55]崔亚丽,陈超,王琼.磁性荧光微球及其制备方法和采用该磁性荧光微球进行生物分子检测的方法[P]. CN,1475805A.2004-02-18.
    [56] Zhang Z L, Long Y, Pan J B, et al. Preparation of fluorescence-encodedmicrospheres in a core–shell structure for suspension arrays[J]. J Mater Chem,2010,20,1179–1185.
    [57]王亚丽,蔡阳,刘韬,等.金黄色葡萄球菌液相芯片检测方法的建立及应用[J].中国生物制品学杂志,2012,25(10):1383-1386.
    [58] Dunbar S A, Vander Z C, Oliverkg, et al. Quantitative, multiplexed detection ofbacterial pathogens: DNA and protein applications of the Luminex LabMAPsystem[J]. J Microbiol Methods,2003,53(2):245-252.
    [59] Santos H L, Bandyopadhyay K, Bandea R. LUMINEX(R): a new technology forthe simultaneous identification of five Entamoeba spp. commonly found inhuman stools[J]. Parasit Vectors,2013,6(1):69.
    [1] Bruce D. Note on the discovery of a microorganism in Malta Fever[J]. Practitioner,1987,36:161-170.
    [2]李凡,谷鸿喜,黄敏.医学微生物学[M].高等教育出版社,2003.
    [3]白文彬,于康震.动物传染病诊断学[M].北京:中国农业出版社,2002:621-627.
    [4]任洪林,卢士英,周玉,等.布鲁氏菌病的研究与防控进展[J].中国畜牧兽医,2009,36(9):139-143.
    [5] Bortg G, O.Callaghan D, Boschiroli M L. The genomic structure of Brucellastrainsisolated from marine mammals gives clues to evolutionary history withinthe genus [J]. Vet Microbiol,2007,125:375-380.
    [6] Bricker B J, Ewalt D R, MacMillan A P, et al. Molecular characterization ofBrucella strains isolated from marine maxmmals[J]. J Clin Microbiol,2000,38(3):1258-1262.
    [7] Godfroid J. Brucellosis in wildlife [J]. Rev sci.tech. Off int EPiz,2002,21(2):277-286.
    [8] Marianne M, Michel S Z, Axel C. Marine mammal Brucella isolates with differentgenomic characteristics display a differential response when infecting humanmacrophages in culture[J]. Microbes and Infection,2009,11(3):361-366.
    [9] Scholz H C, Hubalek Z, Sedlacek I, et al. Brucella microti sp.nov.,isolated fromthe common vole Microtus arvalis[J]. IJEM,2008,58(2):375-382.
    [10] De B K, Stauffer L, Koylass M S, et al. Novel Brucella strain(BO1) associatedwith a prosthetic breast implant infecion [J]. J Clin Microbiol,2008,46(1):43-49.
    [11] Tiller R V, Gee J E, Lonsway D R, et al. Identification of an unusual Brucellastrain (BO2) from a lung biopsy in a52year old patient with chronic destructivepneumonia [J]. BMC Microbiol,2010,10:23.
    [12] Al Dahouk S, Flèche P L, Ckler K, et al. Evaluation of brucella MLVA typing forhuman brucellosis[J]. J Microbiol Methods,2007,69(1):137-145.
    [13] Gorvel J P, Moreno E. Brucella intracellular life: from invasion to intracellularReplication[J]. Vet Mierobiol,2002,90(l-4):281-297.
    [14]柳建新,陈创夫,王远志.布鲁氏菌致病及免疫机制研究进展动物医学进展[J].2004,25(3):62-65.
    [15] Kohler S, Teyssier J, Cloeckaert A, et al. Participation of the molecularchaperone DnaK in intracellular growth of Brucella suis within U937-derivedphagocytes[J]. Mol Microbiol,1996,20(4):701-712.
    [16]玉花,陈敏洁,王晶妍.布鲁氏菌免疫保护抗原与抗病疫苗的研究进展[J].广东农业科学,2011,24:102-104.
    [17]邢进,王金锋,赵宝华,等.布鲁菌病及其诊断方法研究进展[J].动物医学进展,2009,30(3):69-73.
    [18]崔丽瑾,王兴龙,王英超,等.野生动物布鲁氏菌病[J].中国人兽共患传染病学报,2010,26(3):283-288.
    [19]赵凤菊.布鲁氏菌病的流行情况及危害[J].中国畜牧兽医文摘,2011,27(2):62-63.
    [20] Skendros P, Boura P, Kamaria F, et al. CD80/CD28co-stimulation in humanbrucellosis [J]. Clin Exp Immunol,2006,146(3):400-408.
    [21]刘应麟.传染病学[M].北京:人民卫生出版社(第二版),2001.
    [22]韩果方,罗治华.应高度重视布鲁氏菌病对人畜的危害[J].贵州畜牧兽医2008,32(6):16-17.
    [23]南京农业大学主编.家畜传染病(第二版),北京:1995.5:113-119.
    [24]朱维正.新编兽医手册.北京:金质出版社,2000.8:216-219.
    [25] Pei J, Turse J E, Ficht T A. Evidence of Brucella abortus OPS dictating uptakeand restricting NF-KB activation in murine macrophages[J]. Microbes Infect,2008,10:582-590.
    [26] Guihot A, Bossi P, Bricaire F. Bioterrorism with brucellosis[J]. Presse Med,2004,33(2):119-122.
    [27] Pappas G P. PanagoPoulou, L. Christou, et al, Brucella as a biological weapon[J].Cell Mol Life Sci,2006,63:2229-2236.
    [28]钟志军,陈泽良,黄克和,等.布氏杆菌病致病因子及防治研究进展[J].畜牧与兽医,2008,40(12):96-101.
    [29] Palanduz A, Palanduz S, Guler K, et al. Brucellosis in a mother and her younginfant: Probable transmission by breast milk[J]. Int J Infect Dis,2000,4(1):55-56.
    [30]尚德秋.布鲁氏菌病再度肆虐及其原因[J].中国地方病防治杂志200l,16(l):29-34.
    [31]周艳彬,柳晓琳.布鲁氏菌病的流行、发病原因及防治进展[J].辽宁医学院学报,2010,31(1):81-85.
    [32] Taleski V, Zerva L, Kantardjiev T, et al. An overview of the epidemiology andepizootology of brucellosis in selected countries of Central and SoutheastEurope[J]. Vet Microbiol,2002,90(1-4):147-155.
    [33] Seleem M N, Boyle S M, Sriranganathan N. Brucellosis: a re-emergingzoonosis[J]. Vet Microbiol,2010,140(3-4):392-398.
    [34] Haerry T E, Gehring W J. Intron of the mouse Hoxa-7gene contains conservedhom eodom ain binding sites that can function as an enhancer element inDrosophila[J]. Proc Natl Acad Sci USA,1996,93(24):13884-13889.
    [35]姜顺求.布病防治手册[M].北京:人民卫生出版社,1986:264-268.
    [36]刘秉阳,孙玺,尚德秋.等.布鲁氏菌病学[M].人民卫生出版社,1989.
    [37]殷文武,孙辉.中国布鲁氏菌病疫情形势及对策建议[J].疾病监测,2009,24(7):475-477.
    [38]陈丹,柳晓琳,刘孝刚,等.布鲁氏菌病流行趋势及其防治措施的研究进展[J].中国地方病防治杂志,2011,26(1):26-28.
    [39] Sascha A D, Tomaso H, Nockler K, et al. Laboratory-based diagnosis ofbrucellosis--a review of the literature. Part II: serological tests for brucellosis[J].Clin Lab,2003,49(11-12):577-589.
    [40] Glynn, M K, Lynn, T V. Brucellosis[J]. J Am Vet Med Assoc,2008,233(6):900-908.
    [41] Wright A E, Smith F. On the application of the serumtest to the differentialdiagnosis of typhoid and Maltafever[J]. Lancet,1897,149(3836):656-659.
    [42]冯元璋.血清学技术在布病诊断的应用研究现状及评价[J].仲恺农业技术学院学报,1997,1(1):79-87.
    [43] Huddleson. Sensitivity and specificity of Brucella ovisinfection in rams[J]. AustVet J,1982,58(1):5-7.
    [44]黄建,李恪梅.布病防治工作中检测制剂和技术的新动向[J].中国地方病杂志,1999,14(2):80-82.
    [45]尹尧,杨丽萍,吴强,等.提高布氏杆菌病虎红平板凝集试验抗原产量的研究[J].中国兽药杂志,2008,42(3):32-33.
    [46]高明华,张志琰,李跃,等.布鲁氏菌病实验室诊断研究进展[J].中国人兽共患病学报,2010,26(1):81-87.
    [47]孙耀贵,黄姜生,陈佳.三种血清学方法检测奶牛布鲁氏菌病的比较试验[J].黑龙江畜牧兽医,2005,(1):42-43.
    [48]肖洪亮,姚桂萍,单志贵,等.半胱氨酸凝集法代替补体结合法诊断奶牛布病[J].黑龙江畜牧兽医杂志,中国奶牛,1998(5):27-28.
    [49]齐景文.布鲁氏菌病常用诊断方法应用现状及评价[J].中国畜牧兽医,2006,33(8):70-73.
    [50]王栋.布鲁氏菌常用血清学检测方法的评价[J].农业技术与装备,2010(6),191,59-60.
    [51] Henk H S, Theresia H A, Javier S, et al. ImmunochromatographicBrucella-specific immunoglobulin M and G lateral flowassays for rapidserodiagnosis of human brucellosis[J]. Clin DiagnLab Immunol,2003,10(6):1141-1146.
    [52] Garin-Bastuji B, Blasco J M, Grayon M, et al. Brucella melitensis infectioninsheep: present and future[J]. Vet Res,1998,29(3-4):255-274
    [53]雷连成,陈伟,王兴龙.布鲁氏菌鉴定和检测方法研究进展[J].动物医学进展,2002,23(2):22-24.
    [54] Romero C, Pardo M, Grillo M J, et al. Evaluation of PCR and indirectenzyme-inked immunosorbent assay on milk samples for diagnosis ofBrucellosis in dairy cattle[J]. J Clin Microbiol,2005,33(12):3198-3200.
    [55] AL-Shamahy H A, Wright S G. Enzyme-linked immunosorbent assay for brucellaantigen detection in human sera[J]. J Med. Microbiol.1998,47(2),169-172.
    [56] Rylatt D B, Wyatt D M, Bundesen P G. A competitiveenzyme immunosorbentassay for the detection of bovineantibodies to Brucella abortus using monoclonalantibodies[J]. Vet Immunopathol,1985,8(3):261-271.
    [57] Batra H V, Agarwal G S, Rao P V. Evaluation of A newly developed DOT-ELISAkit for the diagnosis of human brucellosis[J]. J Commun Dis,2003,35(2):71-73.
    [58]曾瑞霞,苏玉虹.布鲁氏杆菌各类检测方法的比较[J].现代畜牧兽医,2006(5):65-70.
    [59]单志贵,陈和增,孙树友,等.乳清代替血清诊断奶牛布氏杆菌病的试验观察[J].黑龙江畜牧兽医,1992,4:29.
    [60]曾瑞霞,苏玉虹.布鲁氏杆菌各类检测方法的比较[J].现代畜牧兽医,2006(5):65-70.
    [61]向湘春.布氏杆菌病注苗牛与自然感染牛三种检查方法的比较[J].江西畜牧兽医杂志,1999,2(3):37.
    [62]李智伟,马秀敏,张跃新,等.布鲁氏菌的分子生物学诊断技术[J].中国病原生物学杂志,2011,6(11):861-864.
    [63] Fekete A, Bantle J A, Hailing S M, et al. Preliminary development of a diagnostictest for Brucella using polymerase chain reaction[J]. J Appl Bacteriol,1990,69(2):216-227.
    [64] Mukherjee F, Jain J, Patel V, et al. Multiple genus-specific markers in PCRassays improve the specificity and sensitivity of diagnosis of brucellosis in fieldanimals[J]. J Med Microbiol,2007,56(10):1309-1316.
    [65] Bricker B J, Halling S M. Differentiation of brucella abortus bv.1,2, and4,Brucella melitensis,Brucella ovis, and Brucella suis bv.1by PCR[J]. J ClinMicrobiol,1994,32(11):2660-2666.
    [66] Bounaadja L, Albert D, Chenais B, et al. Real-time PCR for identification ofBrucella spp: a comparative study of IS711,bcsp31and per target genes[J]. VetMicrobiol,2009,137(1-2):156-164.
    [67] Matar G M, Khneisser I A, Abdelnoor A M. Rapid laboratory confirmation ofhuman Brucellosis by PCR analysis of a target sequence on the31-KilodaltonBrucella antigen DNA[J]. J Clinical Microbiology,1996,34(2):477-478.
    [68] Fernández-Lago L, Vallejo F J, Trujillano I, et al. Fluorescent whole-cellhybridization with16S rRNA-targeted oligonucleotide probes to identifyBrucellaspp.by flow cytometry[J]. J Clin Microbiol,2000,38(7):2768-2771.
    [1]杨洋,汤华.液相芯片技术在检验医学和生物医学中的应用[J].中国生物化学与分子生物学报,2007,23(4):256-261.
    [2]谢冲,王国民. Luminex液相芯片的发展及应用[J].复旦学报(医学版),2010,37(2):241-244.
    [3] Oliver K G, Kettman J R, Fulton R J. Multiplexed analysis of human cytokines byuse of the Flow Metrix system[J]. Clin Chem,1998,44(9):2057-2060.
    [4] Sun K, Wang Q, Huang X H, et al. Establishment of multiplexedmicrosphere-based flow cytometric assay for multiple human tumor markers[J].Acta Pharm Sin,2007,28(12):2011-2018.
    [5] Bortolin S M, Black H, Modi I, et al. Analytical validation of the tag-ithigh-throughout microsphere-based universal array genotyping platform:application to the multiplex detection of a panel of thrombophilia-associatedsingle-nucleotide polymorphisms[J]. Clin Chem,2004,50:2028-2036.
    [6]陈玮.液相芯片技术的原理与应用进展[J].成都医学院学报,2008,3(3):225-231.
    [7] Faucher S, Martel A, Sherring A, et al. Protein bead array for the detection ofHIV-1antibodies from fresh plasma and dried blood-spot specimens[J]. ClinChem,2004,50:1250-1253.
    [8] Wong S J, Demarest V L, Boyle RH, et al. Detection of human anti-flavivirusantibodies with a west nile virus recombinant antigen microsphereimmunoassay[J]. J ClinMicrobiol,2004,42(1):65-72
    [9] Jager W, Velthuis H, Prakken B J, et al. Simultaneous detection of15humancytokines in a single sample of stimulated peripheral blood mononuclear cells[J].Clin Diagn Lab Immunol,2003,10(1):133-139.
    [10] Bellisario R, Colinas R J, Pass K A. Simultaneous measurement of thyroxine andthyrotropin from newborn dried blood-spot specimens using a multiplexedfluorescent microsphere immunoassay[J]. Clin Chem,2000,46:1422-1424.
    [11] Lukacs Z, Mordac C, Kohlschutter A, et al.Use of microsphere immunoassay forsimplified multianalyte screening of thyrotropin and thyroxine in dried bloodspots from newborns.Clin Chem[J],2003,49(2):335-336.
    [12] Bortolin S M, Black H, Modi I, et al. Analytical validation of the tag-ithigh-throughput microsphere-based universal array genotyping platform:application to the mul tiplexdetection of a panel of thrombophilia-associatedsingle-nucleotide polymorphisms[J]. Clin Chem,2004,50:2028-2036.
    [13] Fulton R J, McDade R L, Smith P L, et al. Advanced multiplexed analysis withthe FlowMetrix system[J]. Clin Chem,1997,3(9):1749-1756.
    [14] Bellisario R, Colinas R J, Pass K A, et al. Simultaneousmeasurement ofthyroxine and thyrotropin from newborn dried blood-spot specimens using amultiplexed fluorescent microsphere immunoassay[J]. Clin Chem,2000,46(9):1422-1424.
    [15] Sharma R K, Rogojina A T, Chalam K V. Multiplex immunoassay analysis ofbiomarkers in clinically accessible quantities of human aqueous humor[J].Molecular Vison,2009,15:60-69.
    [16] Biagini R E, Sammons D L, Smith J P, et al. Comparison of a multiplexedfluorescent covalent microsphere immunoassay and an enzyme-linkedimmunosorbent assay for measurement of human immunoglobulin G antibodiesto anthrax toxins[J]. Clin Diagn Lab Immunol,2004,11(1):50-55.
    [17] Haasnoot W, Pre J G. Luminex-based triplex immunoassay for the simultaneousdetection of soy, pea, and soluble wheat proteins in milk powder[J]. J Agric FoodChem,2007,55(10):3771-3777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700