Jagged1和p53共同参与病理性心肌肥厚中心肌微血管内皮细胞损伤的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,高血压可以引起心肌肥厚,起初的病理性心肌肥厚是心肌细胞适应压力负荷的一种代偿机制,但长时间的肥厚刺激,加之肥厚自身的有害性最终将导致心室的扩大、左室功能的减退和慢性心力衰竭的发生;目前来讲,慢性心力衰竭在我们当今社会中仍然存在着较高的病死率,如何延缓心肌肥厚到心力衰竭的进展仍然是我们需要解决的话题。因此,对心肌肥厚发生发展机制的阐述具有其一定的必要性及现实性。以往的研究认为,在心肌肥厚发生发展的过程中,存在着心肌细胞和微血管数量之间的不平衡,使得心肌细胞相对缺氧,最终导致心肌肥厚发展到心力衰竭。尽管肾素-血管紧张素系统,尤其是血管紧张素Ⅱ(AngⅡ)在心肌肥厚发生发展中的重要作用早已明确,伴随着血管紧张素转换酶抑制剂(ACEⅠ)及血管紧张素Ⅱ受体阻断剂(ARBs)在临床中的广泛应用,AngⅡ在心肌肥厚治疗中的地位亦被大多数学者所认可,但以往基于AngⅡ对心脏影响的研究主要集中在其对心肌细胞凋亡和心肌重构的探讨上,其对心脏微血管的作用目前尚鲜有研究、作用机理亦尚未明确,因此本研究主要探讨AngⅡ对心脏微血管的作用及其可能的分子机制,以期对心肌肥厚发生发展机理提供新的研究思路。
     P53,肿瘤抑制因子,由393个氨基酸组成,是调节细胞周期、细胞衰老及凋亡的重要转录调控因子。生理条件下,p53蛋白在心脏组织中维持在较低的水平上,但在心肌细胞缺氧的条件下,p53蛋白被上调、左心室收缩功能障碍,但其并不直接导致心肌细胞死亡,而是通过抑制心脏血管的新生间接导致了心肌细胞死亡,进而影响了左室的收缩功能。当p53发生磷酸化之后,不但失去野生型p53抑制肿瘤增殖的作用,而且突变本身又使该基因具备癌基因功能。突变的p53蛋白与野生型p53蛋白相结合所形成的寡聚蛋白不能结合DNA,使得一些癌变基因转录失控最终导致肿瘤的发生。例如,p53可以被ATM, ATR和DNA-PK等在Ser15和Ser37位磷酸化,从而抑制p53的泛素化降解,促进p53的激活和积累。Chkl和Chk2可以磷酸化p53的Ser20,促进p53的四聚化,增强其稳定性和活性。P53的Ser46磷酸化和其诱导细胞凋亡密切相关。P53的Ser392可以被CAK磷酸化,该位点磷酸化和p53的抑制生长功能及其与DNA结合并转录激活有关。2007年,日本Komuro团队发表在Nature的研究发现,压力负荷下,p53累积,其下游保护性因子Hif-1a表达减少,使得心肌肥厚发展到心力衰竭,其在研究中提出此机制可能通过抑制心脏血管的新生间接导致心肌细胞死亡的这一假设,但尚未阐述p53对心肌微血管影响的具体机制。本文就此机理进行进一步的阐述。
     Jagged1,Ⅰ型膜蛋白,Noth信号通路的一个配体,通过其Delta/Serrate/Lag2与Noth受体的EGF repeat结合参与诸如细胞表型、差异、分化、迁移、凋亡和血管新生等生理过程。尽管Jagged1在胚胎期动静脉形成中所起的作用不可替代,但其在出生后的血管形成中并非必不可少。目前Jagged1在血管新生方面的研究主要集中在肿瘤领域的研究上,本实验室先前的研究也主要集中在Jagged1在动脉粥样硬化中动脉内皮、动脉平滑肌的研究上,Jagged1在成年啮齿类动物心肌微血管内皮中的作用本实验室及以外尚未有此方面的报道、其作用机制尚不是很明确。
     鉴于此,我们假设Angll作用于心肌微血管内皮细胞(CMVEC)上的AT1R,引起细胞膜上Notch配体-Jagged1的下调,进而增加了p53在细胞浆中的蓄积,联动保护性因子Hif-1a下调,血管新生因子VEGF分泌减少,心脏血管新生障碍。本实验共分为三个部分分别从离体和在体两个层面上对这一设想进行阐述。
     第一部分P53参与血管紧张素Ⅱ致心肌微血管内皮细胞功能障碍的分子机制(离体实验)
     目的:P53在Angll致CMVEC功能障碍中的作用。
     方法:1.心肌植块法培养成年Wistar雄性大鼠的原代CMVEC,通过免疫荧光染色法鉴定细胞表面分子(vWF、CD31)的表达确定此种方法所培养的细胞为CMVEC,体外迁移实验及体外管腔样结构形成实验明确CMVEC的体外血管新生能力。
     2.10-6MAngⅡ干预第二或第三代CMVEC18hrs后,体外管腔样结构形成实验观察其体外血管新生能力,同时采用western blotting方法观察细胞中磷酸化p53(S392)、p53、Hif-1a及Jagged1的表达变化;realtime RT-PCR方法检测AngⅡ干预后细胞中VEGF基因的变化;ELISA方法观察CMVEC分泌到培养基中VEGF蛋白的变化。
     3.在50μMpifithrin-a (PFT-a)阻断p53的基础上,AngⅡ干预CMVEC18hrs后,观察CMVEC中上述指标(phospho-p53(S392)、p53、Hif-1a、Jagged1、gene/protein of VEGF)的变化(实验所用方法同方法2)。
     结果:1.心肌植块法培养出的成年大鼠原代CMVEC具有很高的纯度(约95%),此方法培养的CMVEC具备诸如体外迁移、体外血管新生的能力。
     2.10-6M AngⅡ干预CMVEC后,上调了细胞核中p53的磷酸化,并使得胞浆中p53的蓄积增加,同时下调了细胞核中的Hif-1a蛋白,上调了细胞膜上Jagged1的表达、胞浆内VEGF在RNA水平的表达,但减少了分泌到培养基中的VEGF蛋白。
     3.50gM的PFT-a可以很好的阻断p53的表达,在PFT-a阻断p53的基础上, AngⅡ干预CMVEC后,与单纯AngⅡ干预组比较,CMVEC体外管腔样结构形成能力增强,胞核中Hif-la表达上调,分泌到培养基中的VEGF增加,胞膜上的Jagged1表达减少。
     结论:10-6MAngⅡ干预CMVEC,引起CMVEC体外管腔样结构形成障碍,这种损伤作用通过磷酸化细胞核中的p53,实现p53在胞浆中的蓄积,进而引起胞核中具有保护作用的Hif-1a下调,血管新生因子VEGF分泌减少,从而损伤了CMVEC的体外血管新生能力。上调的Jagged1配体可能作为一种代偿机制参与了AngⅡ致CMVEC的血管新生损伤作用。
     第二部分在体实验验证p53参与血管紧张素Ⅱ致心肌微血管内皮细胞功能损伤的分子机制
     目的:对p53在AngⅡ致CMVEC功能障碍中的分子机理进行在体验证。
     方法:采用皮下埋藏微量泵的方法持续给予6-8周龄C57/BL6雄性小鼠200ng/kg/min AngⅡ,给药时间为2周(预实验建立给药时间为1周、2周及4周的实验动物模型);在建立AngⅡ干预引起心肌肥厚模型的同时,设置p53抑制组,即在AngⅡ干预前一天腹腔注射3.0mg/kg PFT-a一次,随后每间隔三天同剂量腹腔给药一次,直至AngⅡ微量泵埋藏的第14天PFT-a给药结束。AngⅡ给药结束取材前,小动物心脏超声测量小鼠左心室的肥厚程度,并用尾动脉压测量装置无创测量小鼠尾动脉压力;取材时,称量小鼠体重及其心脏重量,并在心脏的中1/2处将心脏横断为两部分,将心尖所在部分立即投入液氮中备用于分子生物学实验(western blotting, realtime RT-PCR)心底部放入10%中性福尔马林溶液中,用做随后的苏木精-伊红染色(HE)、免疫组织化学染色(CD31)。
     结果:1.200ng/kg/min AngⅡ持续皮下给药1周、2周、4周引起C57/BL6雄性小鼠心室壁的肥厚,以2周肥厚最为显著;200ng/kg/min AngⅡ干预C57/BL6雄性小鼠2周后,CD31免疫组织化学染色显示心脏微血管数量减少,同时有胞核中p53的磷酸化增加,胞浆中p53的蓄积增多,Hif-1a在胞核中的表达下调,Jagged1在胞膜上的表达上调,VEGF在组织中的表达增加。
     2.3.0mg/kg PFT-a腹腔给药,初次给药时间为AngⅡ给药前一天,后续每间隔三天给药一次的方法能够抑制p53的表达,并缓解AngⅡ给药14天所致小鼠左心室的肥厚程度,与单纯AngⅡ给药14天组比较,此种处理增加了Hif-1a在心肌组织细胞核中的表达、减少了VEGF及Jagged1在心肌组织中的表达。
     结论:200ng/kg/min AngⅡ干预C57/BL6雄性小鼠2周后,引起小鼠左心室肥厚,心脏微血管数量减少,且p53参与了此种损伤作用;抑制p53后,缓解了AngⅡ所致心肌的肥厚程度及心脏微血管数量的减少程度,与离体实验p53参与了AngⅡ致CMVEC体外血管新生障碍这一实验结果相符;但体实验中,组织中增加的VEGF蛋白,可能是心肌细胞通过旁分泌对微血管障碍的一种代偿机制。
     第三部分Jagged1与p53在参与血管紧张素Ⅱ致心肌微血管内皮细胞功能障碍机理中的关系
     目的:分析Jagged1在AngⅡ所致CMVEC功能障碍中的角色及其与p53的关系。
     方法:心肌植块法培养成年Wistar雄性大鼠的原代CMVEC, anti-rat Jagged1siRNA预处置第二或第三代CMVEC后,10-6MAngⅡ干预CMVEC18hrs,体外管腔样结构形成实验观察CMVEC的体外血管新生能力,western blotting方法观察CMVEC中磷酸化p53(S392)、p53、Hif-1a的表达变化,realtime RT-PCR方法检测AngⅡ干预后CMVEC中VEGF基因的变化;ELISA方法观察培养基中分泌性蛋白-VEGF的变化。
     结果:与单纯AngⅡ干预组相比,anti-rat Jagged1siRNA预处置后、AngⅡ干预,CMVEC体外管腔样结构形成能力增强,胞核中p53的磷酸化减少,但p53在胞浆中的累积、Hif-1a在胞核及胞浆中的表达、分泌到培养基中的VEGF均没有统计学意义的变化。
     结论:Jagged1在AngⅡ致CMVEC功能损伤作用中,既不是此处p53信号通路的上游分子,亦非其下游分子;而是作为另一个独立信号分子参与此种损伤作用的。
Although pathological cardiac hypertrophy is initially a compensatory mechanism that a cellular response to increased workload by decreasing wall stress, sustained hypertrophy is deleterious and long-term decompensation may lead to a decline in left ventricular function and congestive heart failure, which has high rate of mortality. The necessity and feasibility of researches about cardiac hypertrophy is still needed. Reports have been postulated that a mismatch between the number of capillaries and the size of cardiomyocytes develops during the development of cardiac hypertrophy, leading to myocardial hypoxia. Though, the renin-angiotensin system(RAS), especially angiotensinll, has previously been established to play an important role in the progression of cardiac remodeling, inhibition of a hyperactive RAS provides protection from cardiac remodeling and subsequent heart failure, studies about AngⅡ were mainly about the apoptosis and remodeling of myocardial cells, effects of Angll on cardiac microvascular endothelial cells(CMVEC) in the heart remains unexplored. Therefore, our studies try to investigate the effects of AngⅡ on CMVEC and the possible mechanisms in order to put a new derivation forward about cardiac hypertrophy.
     P53, a tumor inhibitor, contains393amino acids, is a factor that regulated apoptosis, cycles and ageing of cells. Under unstressed conditions, p53protein is generally present at a low concentration, is presumably inactive as a transcription factor and is diffusely distributed throughout the cell. But, it was up-regulated when under myocardial hypoxia, and obstacles of systolic functions of left ventricular occurred, the machanism might be that it can induce apoptosis of myocardial cells through impairment of angiogenesis rather than cause apoptosis directly. The effect of p53on inhibition of tumor proliferation was dispeared when p53was phosphorylated, futhennore, the mutant type can prompt tumors by itself. The oligomeric protein that wild type and mutant type combined together can not combine DNA again, and the combination lead to dys-regulation of genes that prompt tumors, tumors occurred subsequently. P53can be phosphorylated by ATM, ATR and DAN-PK. at both Ser15and Ser37, and the phosphorylation at this point can inhibit the degradation of ubiquitinoylation, promt the accumulation and activation. P53can also be phosphorylated by Chkl and Chk2at Ser20, and this phosphorylation can stumulate tetramerization of itself, enhance the security and activation. Phosphorylation of p53at Ser46was related with the induction of apoptosis. P53can be phosphorylated by CAK at Ser392, phosphorylation at this point is connected with inhibition of growth, combination of DNA and activation of transcription. One paper published in nature by Kumuro group during2007considered that accumulation of p53and reduction of Hif-la promt cardiac hypertrophy to heart failure, and they also made a hypothesis that the machanism was through the inhibition of angiogenesis which lead to apoptosis of cardiomyocyte. However, no discussion about effects of p53on CMVEC was involved. Consequently, we investigate the mechanism intensively here.
     Jagged1, a Notch ligand, is a type I transmembrane protein and binds to the EGF repeat of Notch receptor through Delta/Serrate/Lag2domain. The Notch signaling pathway is involved in many biological processes, such as cell fate specification, differentiation, proliferation, apoptosis, migration and angiogenesis. Though, Jagged1plays a critical role during angiogenesis of embryos, its not essential in angiogenesis during adult procedure. Research about effects of Jaggedl on angiogenesis is mainly related to tumors, and the effects on endothelial cells and smooth musules of blood vessels in atherosclerosis were reported in our laboratory. Its effects on CMVEC from adult rodent animals have no reference presently. Therefore, we suppose that AngⅡ combined with AT1R on CMVEC, which lead to up-regulation of Jaggedl, can induce the accumulation of p53and down-regulation of Hif-1α. reduction of VEGF and dysfunction of angiogenesis occurred finally.
     This paper is composed of three parts and discussed respectively both in vitro and in vivo as follows.
     Part I Mechanisms of p53participated in dysfunctions of cardiac microvascular endothelial cells induced by angiotensinll in vitro
     Objective:
     Make a disccusion about AngⅡ-induced dysfunctions of CMVEC that p53participated in vitro.
     Methods:
     1. Wistar rats (male,8-9weeks of age) were selected for primary cell culture by method of planting myocardial tissue. Molecular markers, vWF, CD31were observed and identified by immunocytochemistry to determin the purity of CMVEC. Ability of migration and capillary tube-like formation were also observed to investigate its function.
     2. The capillary tube-like formation was observed under a microscope after incubation of CMVEC with AngII(10-6M) for18hrs. Protein expresssion of p53(S392), p53, Hif-1α and Jaggedl was observed by western blotting method, RNA expression of VEGF was observed by realtime RT-PCR, and VEGF secreted in cell culture medium was observed by ELISA method. The scanning of all these molecules was under the same treatment of AngII(10-6M,18hrs).
     3.CMVEC were incubated with AngⅡ(10-6M) for18hrs after inhibition of p53by pifithrin-a(PFT-α,50μM), measurements about capillary-like tubes and molecules were the same as step2above.
     Results:
     1. Results showed that purity of CMVEC characterized by staining with vWF or CD31was about95%, cells performed a power for migration, and a high ability to form the capillary tube-like structures after grown in matrigel for18hrs. CMVEC cultured by this method were able to be used later.
     2. The phosphorylation of p53in nucleus was up-regulated when CMVEC were treated by AngⅡ for18hrs, and the phosphorylation made a accumulation of p53in cytoplasm and a reduction of Hif-la in nucleus. Protein of Jagged1in membrain was also up-regulated under this treatment. But, VEGF secreted into culture medium was down-regulated, gene of VEGF was up-regualted.
     3. PFT-a(50μM) inhibited p53perfectly in CMVEC. The ability of CMVEC to form capillary-like tubes was enhanced when p53was inhibited before AngⅡ treatment comparing with groups that AngⅡ treated only, both Hif-1α in nucleus and VEGF that secreted into cell culture medium were up-ragulated, and Jaggedl in membrain was down-ragulated mercifully.
     Conclusion:
     AngII(10-6M,18hrs) made dysfunctions of CMVEC to form capillary-like tubes. The mechanism might be roles of p53phosphorylation, the phosphorylaiton could accumulate p53in cytoplasm and reduce Hif-la in nucleus. Furthermore, VEGF that secreted into cell culture medium was down-regulated and functions of CMVEC were damaged. The up-regulation of Jagged1might be a compensation that participated in this injury.
     Objective:
     Verification of AngⅡ-induced dysfunctions of CMVEC that p53participated.
     Methods:
     6-8weeks old male C57BL/6mice were purchased from Shanghai Animal Administration Center (Shanghai, China). AngⅡ (200ng/kg/min, Sigma-Aldrich) was continuously administered by Alzet micro-osmotic pumps (DURECT Corporation) that implanted subcutaneously. PFT-a (Sigma-Aldrich) was dissolved in DMSO, and was injected into mice intraperitoneally with a3.0mg/kg dose one day before the operation, then was injected every3days once a time. Mice were anesthetized by ketamine (100mg/kg) intraperitoneally injected, and performed by the echocardiography and noninvasive blood pressure (NIBP) when AngⅡ was infused for14days. Excised hearts were perfused with PBS and cut apart into two parts, one part that cantained the bottom was fixed in10%formalin for histological analysis(HE or CD31), and the other was putted in liquid nitrogen for western blotting and realtime RT-PCR
     Results:
     1.Cardiac hypertrophy appeared when treated male C57/BL6mice with AngⅡ (200ng/kg/min) for2weeks, accompanied by a reduction of the ratio of CD31positive cells/cardiomyocytes. For molecules, Jaggedl in membrane and phosphorylation of p53at S392in nucleus were up-regulated during cardiac hypertrophy, presence of the accumulation of p53in cytoplasm, up-regulation of VEGF in tissues and a reduction of Hif-1a in nucleus.
     2. PFT-α(3.0mg/kg) could inhibite p53perfectly by this route of administration, and alleviate the degree of hypertrophy that AngⅡ induced. Meanwhile, Hif-1α was up-regulated, VEGF and Jagged1were down-regulated in the heart.
     Conclusion:
     P53participated in the impairment of CMVEC induced by AngⅡ in vivo which was the same as results that in vitro. But, VEGF in heart tisssue was up-regulated which was down-regulated in vitro. The reason might be a compensation for dysfunctions of capillaries by cardiomyocyte for its paracrine secretion.
     Objective:
     To analyze the relationship between Jagged1and p53in dysfunctions of CMVEC induced by Angll.
     Methods:
     Primary cells of CMVEC were got from aldult male Wistar rats by method of planting myocardial tissue. CMVEC were treated by AngII(10-6M) for18hrs after anti-rat Jagged1siRNA incubation, the capillary tube-like formation was observed under a microscope, phosphorylation of p53at S392, p53and Hif-1α were observed by western blotting method, VEGF that excreted into cell culture medium was also observed under the same treatment by AngⅡ.
     Results:
     The ability of CMVEC to form capillary-like tubes was enhanced when Jaggedl were silent by anti-rat Jagged1siRNA before AngⅡ treatment comparing with groups that AngⅡ treated only; Accumulation of p53, protein expression of Hif-1α both in nucleus and in cytoplasm, VEGF that secreted into cell culture medium had no significant difference.
     Conclusion:
     Jaggedl participated in the impairment of CMVEC induced by Angll, but its damageable effect might not be through p53accumulation way.
引文
1. Berk BC, Fujiwara K, Lehoux S. Ecm remodeling in hypertensive heart disease. J Clin Invest. 2007; 117:568-575
    2. Oka T, Komuro I. Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure. Circ J.2008;72 Suppl A:A13-16
    3. Marcus ML, Koyanagi S, Harrison DG, Doty DB, Hiratzka LF, Eastham CL. Abnormalities in the coronary circulation that occur as a consequence of cardiac hypertrophy. Am J Med. 1983;75:62-66
    4. Tomanek RJ. Response of the coronary vasculature to myocardial hypertrophy. J Am Coll Cardiol.1990; 15:528-533
    5. Giordano FJ, Gerber HP, Williams SP, VanBruggen N, Bunting S, Ruiz-Lozano P, Gu Y, Nath AK, Huang Y, Hickey R, Dalton N, Peterson KL, Ross J, Jr., Chien KR, Ferrara N. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A.2001;98:5780-5785
    6. Shyu KG, Liou JY, Wang BW, Fang WJ, Chang H. Carvedilol prevents cardiac hypertrophy and overexpression of hypoxia-inducible factor-lalpha and vascular endothelial growth factor in pressure-overloaded rat heart. J BiomedSci.2005;12:409-420
    7. Yoon YS, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, Kirchmair R, Bahlman F, Walter D, Curry C, Hanley A, Isner JM, Losordo DW. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: Restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation. 2005; 111:2073-2085
    8. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu I, Asahara T, Hamada H, Tomita S, Molkentin JD, Zou Y, Komuro I. P53-induced inhibition of hif-1 causes cardiac dysfunction during pressure overload.Nature. 2007;446:444-448
    9. Long X, Boluyt MO, Hipolito ML, Lundberg MS, Zheng JS, O'Neill L, Cirielli C, Lakatta EG, Crow MT. P53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes.J Clin Invest.1997;99:2635-2643
    10. Liu P, Xu B, Cavalieri TA, Hock CE. Pifithrin-alpha attenuates p53-mediated apoptosis and improves cardiac function in response to myocardial ischemia/reperfusion in aged rats. Shock. 2006;26:608-614
    11. Yap DB, Hsieh JK, Zhong S, Heath V, Gusterson B, Crook T, Lu X. Ser392 phosphorylation regulates the oncogenic function of mutant p53. Cancer Res.2004;64:4749-4754
    12. Bar JK, Slomska I, Rabczynki J, Noga L, Grybos M. Expression of p53 protein phosphorylated at serine 20 and serine 392 in malignant and benign ovarian neoplasms:Correlation with clinicopathological parameters of tumors.Int J Gynecol Cancer.2009;19:1322-1328
    13. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H. A DNA damage-induced p53 serine 392 kinase complex contains ck2, hsptl6, and ssrp1. Mol Cell.2001;7:283-292
    14. Jayaraman L, Prives C. Covalent and noncovalent modifiers of the p53 protein. Cell Mol Life Sci.1999;55:76-87
    15. Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH. The notch ligands dll4 and jaggedl have opposing effects on angiogenesis. Cell.2009;137:1124-1135
    16. Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T. Embryonic lethality and vascular defects in mice lacking the notch ligand jaggedl. Hum Mol Genet.1999;8:723-730
    17. High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA. Endothelial expression of the notch ligand jaggedl is required for vascular smooth muscle development. Proc Natl Acad Sci USA.2008;105:1955-1959
    18. Takeshita K, Satoh M, Ii M, Silver M, Limbourg FP, Mukai Y, Rikitake Y, Radtke F, Gridley T, Losordo DW, Liao JK. Critical role of endothelial notchl signaling in postnatal angiogenesis. Circ Res.2007; 100:70-78
    19. Wu X, Zou Y, Zhou Q, Huang L, Gong H, Sun A, Tateno K, Katsube K, Radtke F, Ge J, Minamino T, Komuro I. Role of jaggedl in arterial lesions after vascular injury. Arterioscler Thromb Vasc Biol.2011;31:2000-2006
    20. Wu X, Zou Y, Liang Y, Zhou Q, Gong H, Sun A, Yuan L, Wang K, Ge J. Coup-tfii switches responses of venous endothelium to atherosclerotic factors through controlling the profile of various inherent genes expression. J Cell Biochem.2011;112:256-264
    21. Wu X, Zhou Q, Huang L, Sun A, Wang K, Zou Y, Ge J. Ageing-exaggerated proliferation of vascular smooth muscle cells is related to attenuation of jaggedl expression in endothelial cells. Cardiovasc Res.2008;77:800-808
    22. Wang XH, Chen SF, Jin HM, Hu RM. Differential analyses of angiogenesis and expression of growth factors in micro- and macrovascular endothelial cells of type 2 diabetic rats. Life Sci. 2009;84:240-249
    23. Marelli-Berg FM, Peek E, Lidington EA, Stauss HJ, Lechler RI. Isolation of endothelial cells from murine tissue. J Immunol Methods.2000;244:205-215
    24. Chang JT, Chen IH, Liao CT, Wang HM, Hsu YM, Hung KF, Lin CJ, Hsieh LL, Cheng AJ. A reverse transcription comparative real-time pcr method for quantitative detection of angiogenic growth factors in head and neck cancer patients. Clin Biochem.2002;35:591-596
    25. Brutsaert DL. Cardiac endothelial-myocardial signaling:Its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev.2003;83:59-115
    26. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization:Implications for cardiac regeneration. Circulation.2004; 110:962-968
    27. Lecht S, Foerster C, Arien-Zakay H, Marcinkiewicz C, Lazarovici P, Lelkes PI. Cardiac microvascular endothelial cells express and release nerve growth factor but not fibroblast growth factor-2. In Vitro Cell Dev Biol Anim.2010;46:469-476
    28. Yue H, Li W, Desnoyer R, Karnik SS. Role of nuclear unphosphorylated stat3 in angiotensin ii type 1 receptor-induced cardiac hypertrophy. Cardiovasc Res.2010;85:90-99
    29. Ainscough JF, Drinkhill MJ, Sedo A, Turner NA, Brooke DA, Balmforth AJ, Ball SG. Angiotensin ii type-1 receptor activation in the adult heart causes blood pressure-independent hypertrophy and cardiac dysfunction. Cardiovasc Res.2009;81:592-600
    30. Maxwell PH, Ratcliffe PJ. Oxygen sensors and angiogenesis. Semin Cell Dev Biol.2002;13:29-37
    31. Blancher C, Moore JW, Talks KL, Houlbrook S, Harris AL. Relationship of hypoxia-inducible factor (hif)-1alpha and hif-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res.2000;60:7106-7113
    32. Ikeda E, Achen MG, Breier G, Risau W. Hypoxia-induced transcriptional activation and increased mrna stability of vascular endothelial growth factor in c6 glioma cells. J Biol Chem. 1995;270:19761-19766
    33. Mall G, Zimmer G, Baden S, Mattfeldt T. Capillary neoformation in the rat heart--stereological studies on papillary muscles in hypertrophy and physiologic growth. Basic Res Cardiol. 1990;85:531-540
    34. Baker KM, Booz GW, Dostal DE. Cardiac actions of angiotensin ii:Role of an intracardiac renin-angiotensin system. Annu Rev Physiol.1992;54:227-241
    35. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. Overexpression of angiotensin ii type i receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA.2000;97:931-936
    36. Lin L, Gong H, Ge J, Jiang G, Zhou N, Li L, Ye Y, Zhang G, Zou Y. High density lipoprotein downregulates angiotensin ii type 1 receptor and inhibits angiotensin ii-induced cardiac hypertrophy. Biochem Biophys Res Commun.2011;404:28-33
    37. Di X, Gennings C, Bear HD, Graham LJ, Sheth CM, White KL, Jr., Gewirtz DA. Influence of the phosphodiesterase-5 inhibitor, sildenafil, on sensitivity to chemotherapy in breast tumor cells. Breast Cancer Res Treat.2010;124:349-360
    38. Thandavarayan RA, Watanabe K, Sari FR, Ma M, Lakshmanan AP, Giridharan VV, Gurusamy N, Nishida H, Konishi T, Zhang S, Muslin AJ, Kodama M, Aizawa Y. Modulation of doxorubicin-induced cardiac dysfunction in dominant-negative p38alpha mitogen-activated protein kinase mice. Free Radic Biol Med.2010;49:1422-1431
    39. Naito AT, Okada S, Minamino T, Iwanaga K, Liu ML, Sumida T, Nomura S, Sahara N, Mizoroki T, Takashima A, Akazawa H, Nagai T, Shiojima I, Komuro I. Promotion of chip-mediated p53 degradation protects the heart from ischemic injury. Circ Res. 2010;106:1692-1702
    40. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling:Cell fate control and signal integration in development. Science.1999;284:770-776
    41. Bolos V, Grego-Bessa J, de la Pompa JL. Notch signaling in development and cancer. Endocr Rev.2007;28:339-363
    42. Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S. Crossing paths with notch in the hyper-network. Curr Opin Cell Biol.2007;19:166-175
    43. Hofmann JJ, Iruela-Arispe ML. Notch signaling in blood vessels:Who is talking to whom about what? Circ Res.2007;100:1556-1568
    44. Kopan R, Ilagan MX. The canonical notch signaling pathway:Unfolding the activation mechanism. Cell.2009;137:216-233
    45. Pratt EB, Wentzell JS, Maxson JE, Courter L, Hazelett D, Christian JL. The cell giveth and the cell taketh away:An overview of notch pathway activation by endocytic trafficking of ligands and receptors. Acta Histochem.2011;113:248-255
    46. Gerhardt H. Vegf and endothelial guidance in angiogenic sprouting. Organ ogenesis. 2008;4:241-246
    47. Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res.2005;65:8690-8697
    48. Patel NS, Dobbie MS, Rochester M, Steers G, Poulsom R, Le Monnier K, Cranston DW, Li JL, Harris AL. Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin Cancer Res.2006;12:4836-4844
    49. Seo S, Fujita H, Nakano A, Kang M, Duarte A, Kume T. The forkhead transcription factors, foxcl and foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol.2006;294:458-470
    50. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC, Herlyn M. Regulation of notchl and dll4 by vascular endothelial growth factor in arterial endothelial cells: Implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol.2003;23:14-25
    51. Williams CK, Li JL, Murga M, Harris AL, Tosato G. Up-regulation of the notch ligand delta-like 4 inhibits vegf-induced endothelial cell function. Blood.2006;107:931-939
    52. Hayashi H, Kume T. Foxc transcription factors directly regulate dll4 and hey2 expression by interacting with the vegf-notch signaling pathways in endothelial cells. PLoS One.2008;3:e2401
    53. Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G. Blockade of dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature.2006;444:1032-1037
    54. Sainson RC, Johnston DA, Chu HC, Holderfield MT, Nakatsu MN, Crampton SP, Davis J, Conn E, Hughes CC. Tnf primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood.2008;111:4997-5007
    55. Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E, Hughes CC. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J.2005;19:1027-1029
    56. Weijzen S, Velders MP, Elmishad AG, Bacon PE, Panella JR, Nickoloff BJ, Miele L, Kast WM. The notch ligand jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. J Immunol.2002;169:4273-4278
    57. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C. Dll4 signalling through notchl regulates formation of tip cells during angiogenesis. Nature. 2007;445:776-780
    58. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study. N Engl J Med.1990;322:1561-1566
    59. Frey N, Olson EN. Cardiac hypertrophy:The good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45-79
    60. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest.2005;115:2108-2118
    61. Miyachi M, Yazawa H, Furukawa M, Tsuboi K, Ohtake M, Nishizawa T, Hashimoto K, Yokoi T, Kojima T, Murate T, Yokota M, Murohara T, Koike Y, Nagata K. Exercise training alters left ventricular geometry and attenuates heart failure in dahl salt-sensitive hypertensive rats. Hypertension.2009;53:701-707
    62. Walsh K, Shiojima I. Cardiac growth and angiogenesis coordinated by intertissue interactions. J Clin Invest.2007; 117:3176-3179
    63. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int.1999;56:794-814
    64. Ferrara N, Gerber HP, LeCouter J. The biology of vegf and its receptors. Nat Med. 2003;9:669-676
    65. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science.1992;255:989-991
    66. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of kdr and flt1, two receptors for vascular endothelial growth factor. J Biol Chem.1994;269:26988-26995
    67. Meyer RD, Mohammadi M, Rahimi N. A single amino acid substitution in the activation loop defines the decoy characteristic of vegfr-1/flt-1. J Biol Client.2006;281:867-875
    68. Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol.2006;39:469-478
    69. Shinkaruk S, Bayle M, Lain G, Deleris G. Vascular endothelial cell growth factor (vegf), an emerging target for cancer chemotherapy. Curr Med Client Anticancer Agents.2003;3:95-117
    70. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA.1993;90:10705-10709
    71. Maynard SE, Venkatesha S, Thadhani R, Karumanchi SA. Soluble fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Pediatr Res.2005;57:1R-7R
    72. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA. Excess placental soluble fms-like tyrosine kinase 1 (sfltl) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest.2003;111:649-658
    73. Kendall RL, Wang G, Thomas K.A. Identification of a natural soluble form of the vascular endothelial growth factor receptor, flt-1, and its heterodimerization with kdr. Biochem Biophys Res Commun.1996;226:324-328
    74. Kaza E, Ablasser K, Poutias D, Griffiths ER, Saad FA, Hofstaetter JG, del Nido PJ, Friehs I. Up-regulation of soluble vascular endothelial growth factor receptor-1 prevents angiogenesis in hypertrophied myocardium. Cardiovasc Res.2011;89:410-418
    75. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a Iigand for the tie2 receptor, during embryonic angiogenesis. Cell.1996;87:1171-1180
    76. Lee JS, Song SH, Kim JM, Shin IS, Kim KL, Suh YL, Kim HZ, Koh GY, Byun J, Jeon ES, Suh W, Kim DK. Angiopoietin-1 prevents hypertension and target organ damage through its interaction with endothelial tie2 receptor. Cardiovasc Res.2008;78:572-580
    77. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG. Angiopoietin-2 sensitizes endothelial cells to tnf-alpha and has a crucial role in the induction of inflammation. Nat Med.2006; 12:235-239
    78. Lowenstein CJ, Morrell CN, Yamakuchi M. Regulation of weibel-palade body exocytosis. Trends Cardiovasc Med.2005;15:302-308
    79. Rondaij MG, Bierings R, Kragt A, van Mourik JA, Voorberg J. Dynamics and plasticity of weibel-palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol.2006;26:1002-1007
    80. Patel JV, Lim HS, Varughese GI, Hughes EA, Lip GY. Angiopoietin-2 levels as a biomarker of cardiovascular risk in patients with hypertension. Ann Med.2008;40:215-222
    81. Rusai K, Jianxing C, Schneider R, Struijker-Boudier H, Lutz J, Heemann U, Baumann M. Renin inhibition mitigates anti-angiogenesis in spontaneously hypertensive rats. J Hypertens. 2011;29:266-272
    82. Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG. Isolation of a human placenta cdna coding fora protein related to the vascular permeability factor. Proc Natl Acad Sci U S A. 1991;88:9267-9271
    83. Achen MG, Gad JM, Stacker SA, Wilks AF. Placenta growth factor and vascular endothelial growth factor are co-expressed during early embryonic development. Growth Factors. 1997;15:69-80
    84. Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to flt-1 but not to flk-1/kdr. J Biol Chem.1994;269:25646-25654
    85. Persico MG, Vincenti V, DiPalma T. Structure, expression and receptor-binding properties of placenta growth factor (plgf)-Curr Top Microbiol Immunol.1999;237:31-40
    86. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med.2001;7:575-583
    87. Roncal C, Buysschaert I, Chorianopoulos E, Georgiadou M, Meilhac O, Demol M, Michel JB, Vinckier S, Moons L, Carmeliet P. Beneficial effects of prolonged systemic administration of plgf on late outcome of post-ischaemic myocardial performance. JPathol.2008;216:236-244
    88. Kolakowski S, Jr., Berry MF, Atluri P, Grand T, Fisher O, Moise MA, Cohen J, Hsu V, Woo YJ. Placental growth factor provides a novel local angiogenic therapy for ischemic cardiomyopathy. J Card Surg.2006;21:559-564
    89. Accornero F, van Berlo JH, Benard MJ, Lorenz JN, Carmeliet P, Molkentin JD. Placental growth factor regulates cardiac adaptation and hypertrophy through a paracrine mechanism. Circ Res.2011;109:272-280
    90. Lohela M, Bry M, Tammela T, Alitalo K. Vegfs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol.2009;21:154-165
    91. Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A, Cahill MM, Tonks ID, Grimmond SM, Townson S, Wells C, Little M, Cummings MC, Hayward NK, Kay GF. Mice lacking the vascular endothelial growth factor-b gene (vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res. 2000;86:E29-35
    92. Aase K, von Euler G, Li X, Ponten A, Thoren P, Cao R, Cao Y, Olofsson B, Gebre-Medhin S, Pekny M, Alitalo K, Betsholtz C, Eriksson U. Vascular endothelial growth factor-b-deficient mice display an atrial conduction defect. Circulation.2001;104:358-364
    93. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, Kholova I, Kauppinen RA, Achen MG, Stacker SA, Alitalo K, Yla-Herttuala S. Vegf-d is the strongest angiogenic and lymphangiogenic effector among vegfs delivered into skeletal muscle via adenoviruses. Circ Res.2003;92:1098-1106
    94. Karpanen T, Bry M, Ollila HM, Seppanen-Laakso T, Liimatta E, Leskinen H, Kivela R, Helkamaa T, Merentie M, Jeltsch M, Paavonen K, Andersson LC, Mervaala E, Hassinen IE, Yla-Herttuala S, Oresic M, Alitalo K. Overexpression of vascular endothelial growth factor-b in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ Res. 2008;103:1018-1026
    95. Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vahakangas E, Korpisalo P, Enholm B, Carmeliet P, Alitalo K, Eriksson U, Yla-Herttuala S. Vascular endothelial growth factor-b induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation.2009;119:845-856
    96. Bry M, Kivela R, Holopainen T, Anisimov A, Tammela T, Soronen J, Silvola J, Saraste A, Jeltsch M, Korpisalo P, Carmeliet P, Lemstrom KB, Shibuya M, Yla-Herttuala S, Alhonen L, Mervaala E, Andersson LC, Knuuti J, Alitalo K. Vascular endothelial growth factor-b acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation.2010;122:1725-1733
    97. Lambeth JD. Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181-189
    98. Bedard K, Krause KH. The nox family of ros-generating nadph oxidases:Physiology and pathophysiology. Physiol Rev.2007;87:245-313
    99. Sumimoto H. Structure, regulation and evolution of nox-family nadph oxidases that produce reactive oxygen species. FEBS J.2008;275:3249-3277
    100. Lambeth JD, Kawahara T, Diebold B. Regulation of nox and duox enzymatic activity and expression. Free Radic Biol Med.2007;43:319-331
    101. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91(phox)-containing nadph oxidase in angiotensin ii-induced cardiac hypertrophy in mice. Circulation. 2002;105:293-296
    102. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J. Upregulation of nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res. 2010;106:1253-1264
    103. Zhang M, Brewer AC, Schroder K, Santos CX, Grieve DJ, Wang M, Anilkumar N, Yu B, Dong X, Walker SJ, Brandes RP, Shah AM. Nadph oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci USA. 2010;107:18121-18126
    104. Oka T, Xu J, Molkentin JD. Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol.2007;18:117-131
    105. Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA, York A, Klevitsky R, Vaikunth S, Duncan SA, Aronow BJ, Robbins J, Crombleholme TM, Molkentin JD. Cardiomyocyte gata4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest. 2007;117:3198-3210
    106. Morisco C, Seta K, Hardt SE, Lee Y, Vatner SF, Sadoshima J. Glycogen synthase kinase 3beta regulates gata4 in cardiac myocytes. J Biol Chem.2001;276:28586-28597
    107. Charron F, Tsimiklis G, Arcand M, Robitaille L, Liang Q, Molkentin JD, Meloche S, Nemer M. Tissue-specific gata factors are transcriptional effectors of the small gtpase rhoa. Genes Dev. 2001;15:2702-2719
    108. Liang Q, Wiese RJ, Bueno OF, Dai YS, Markham BE, Molkentin JD. The transcription factor gata4 is activated by extracellular signal-regulated kinase 1-and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol Cell Biol.2001;21:7460-7469
    109. Friehs I, Margossian RE, Moran AM, Cao-Danh H, Moses MA, del Nido PJ. Vascular endothelial growth factor delays onset of failure in pressure-overload hypertrophy through matrix metalloproteinase activation and angiogenesis. Basic Res Cardiol.2006;101:204-213
    110. Sang QX. Complex role of matrix metalloproteinases in angiogenesis. Cell Res.1998;8:171-177
    111. Givvimani S, Tyagi N, Sen U, Mishra PK, Qipshidze N, Munjal C, Vacek JC, Abe OA, Tyagi SC. Mmp-2/timp-2/timp-4 versus mmp-9/timp-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure. Arch Physiol Biochem.2010;116:63-72
    112. Pajvani UB, Scherer PE. Adiponectin:Systemic contributor to insulin sensitivity. Curr Diab Rep. 2003;3:207-213
    113. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun.1999;257:79-83
    114. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol.2000;20:1595-1599
    115. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Hiraoka H, Nakamura T, Funahashi T, Matsuzawa Y. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003;23:85-89
    116. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Novel modulator for endothelial adhesion molecules:Adipocyte-derived plasma protein adiponectin. Circulation. 1999;100:2473-2476
    117. Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, Ohishi M, Sugimoto K, Fu Y, Motone M, Yamamoto K, Matsuo A, Ohashi K, Kihara S, Funahashi T, Rakugi H, Matsuzawa Y, Ogihara T. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension. 2004;43:1318-1323
    118. Goldstein BJ, Scalia RG, Ma XL. Protective vascular and myocardial effects of adiponectin. Nat Clin Pract Cardiovasc Med.2009;6:27-35
    119. Ouchi N, Shibata R, Walsh K. Cardioprotection by adiponectin. Trends Cardiovasc Med. 2006;16:141-146
    120. Duda MK, O'Shea KM, Lei B, Barrows BR, Azimzadeh AM, McElfresh TE, Hoit BD, Kop WJ, Stanley WC. Dietary supplementation with omega-3 pufa increases adiponectin and attenuates ventricular remodeling and dysfunction with pressure overload. Cardiovasc Res. 2007;76:303-310
    121. Liao Y, Takashima S, Maeda N, Ouchi N, Komamura K, Shimomura I, Hori M, Matsuzawa Y, Funahashi T, Kitakaze M. Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of ampk and glucose metabolism. Cardiovasc Res.2005;67:705-713
    122. Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, Kumada M, Sato K, Schiekofer S, Ohashi K, Funahashi T, Colucci WS, Walsh K. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med.2004;10:1384-1389
    123. Kobayashi H, Ouchi N, Kihara S, Walsh K, Kumada M, Abe Y, Funahashi T, Matsuzawa Y. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res.2004;94:e27-31
    124. Li R, Wang WQ, Zhang H, Yang X, Fan Q, Christopher TA, Lopez BL, Tao L, Goldstein BJ, Gao F, Ma XL. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of enos/inos activity. Am J Physiol Endocrinol Metab.2007;293:E1703-1708
    125. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M, Okamoto Y, Nagaretani H, Nishizawa H, Kishida K, Komuro R, Ouchi N, Kihara S, Nagai R, Funahashi T, Matsuzawa Y. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem.2002;277:37487-37491
    126. Ouchi N, Kobayashi H, Kihara S, Kumada M, Sato K, Inoue T, Funahashi T, Walsh K. Adiponectin stimulates angiogenesis by promoting cross-talk between amp-activated protein kinase and akt signaling in endothelial cells. J Biol Chem.2004;279:1304-1309
    127. Shibata R, Ouchi N, Kihara S, Sato K, Funahashi T, Walsh K. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem.2004;279:28670-28674
    128. Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, Walsh K. Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an ampk-dependent angiogenic response. J Mol Cell Cardiol.2010;49:210-220
    129. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH. The role of phosphoinositide-3 kinase and pten in cardiovascular physiology and disease. J Mol Cell Cardiol.2004;37:449-471
    130. Wishart MJ, Dixon JE. Pten and myotubularin phosphatases:From 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol.2002; 12:579-585
    131. Crackower MA, Oudit G Y, Kozieradzki I, Sarao R, Sun H, Sasaki T, Hirsch E, Suzuki A, Shioi T, Irie-Sasaki J, Sah R, Cheng H Y, Rybin VO, Lembo G, Fratta L, Oliveira-dos-Santos AJ, Benovic JL, Kahn CR, Izumo S, Steinberg SF, Wymann MP, Backx PH, Penninger JM. Regulation of myocardial contractility and cell size by distinct pi3k-pten signaling pathways. Cell.2002; 110:737-749
    132. Hamada K, Sasaki T, Koni PA, Natsui M, Kishimoto H, Sasaki J, Yajima N, Horie Y, Hasegawa G, Naito M, Miyazaki J, Suda T, Itoh H, Nakao K, Mak TW, Nakano T, Suzuki A. The pten/pi3k pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 2005;19:2054-2065
    133. Lutucuta S, Tsybouleva N, Ishiyama M, Defreitas G, Wei L, Carabello B, Marian AJ. Induction and reversal of cardiac phenotype of human hypertrophic cardiomyopathy mutation cardiac troponin t-q92 in switch on-switch off bigenic mice. J Am Coll Cardiol.2004;44:2221-2230
    134. Oudit GY, Kassiri Z, Zhou J, Liu QC, Liu PP, Backx PH, Dawood F, Crackower MA, Scholey JW, Penninger JM. Loss of pten attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovasc Res.2008;78:505-514
    135. Armstrong LC, Bjorkblom B, Hankenson KD, Siadak AW, Stiles CE, Bornstein P. Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell.2002;13:1893-1905
    136. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A.2001;98:12485-12490
    137. Simantov R, Silverstein RL. Cd36:A critical anti-angiogenic receptor. Front Biosci. 2003;8:s874-882
    138. Krady MM, Zeng J, Yu J, MacLauchlan S, Skokos EA, Tian W, Bornstein P, Sessa WC, Kyriakides TR. Thrombospondin-2 modulates extracellular matrix remodeling during physiological angiogenesis. Am J Pathol.2008;173:879-891
    139. Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev. 1992;72:369-417
    140. Karch R, Neumann F, Ullrich R, Neumuller J, Podesser BK, Neumann M, Schreiner W. The spatial pattern of coronary capillaries in patients with dilated, ischemic, or inflammatory cardiomyopathy. Cardiovasc Pathol.2005;14:135-144
    141. Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G. Nitric oxide and cardiac function. Life Sci.2007;81:779-793
    142. Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, Roberts DD. Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cgmp-dependent manner. Proc Natl Acad Sci USA.2005;102:13141-13146
    143. Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA.2005;102:13147-13152
    144. Isenberg JS, Wink DA, Roberts DD. Thrombospondin-1 antagonizes nitric oxide-stimulated vascular smooth muscle cell responses. Cardiovasc Res.2006;71:785-793
    145. Lamy L, Foussat A, Brown EJ, Bornstein P, Ticchioni M, Bernard A. Interactions between cd47 and thrombospondin reduce inflammation. J Immunol.2007; 178:5930-5939
    146. Isenberg JS, Annis DS, Pendrak ML, Ptaszynska M, Frazier WA, Mosher DF, Roberts DD. Differential interactions of thrombospondin-1,-2, and -4 with cd47 and effects on cgmp signaling and ischemic injury responses. J Biol Chem.2009;284:1116-1125
    147. Simantov R, Febbraio M, Silverstein RL. The antiangiogenic effect of thrombospondin-2 is mediated by cd36 and modulated by histidine-rich glycoprotein. Matrix Biol.2005;24:27-34
    148. Sun J, Hopkins BD, Tsujikawa K, Perruzzi C, Adini I, Swerlick R, Bornstein P, Lawler J, Benjamin LE. Thrombospondin-1 modulates vegf-a-mediated akt signaling and capillary survival in the developing retina. Am J Physiol Heart Circ Physiol.2009;296:H1344-1351
    149. Malek MH, Olfert IM. Global deletion of thrombospondin-1 increases cardiac and skeletal muscle capillarity and exercise capacity in mice. Exp Physiol.2009;94:749-760
    150. Chilian WM, Wangler RD, Peters KG, Tomanek RJ, Marcus ML. Thyroxine-induced left ventricular hypertrophy in the rat. Anatomical and physiological evidence for angiogenesis. Oirc Res.1985;57:591-598
    151. Wang X, Zheng W, Christensen LP, Tomanek RJ. Ditpa stimulates bfgf, vegf, angiopoietin, and tie-2 and facilitates coronary arteriolar growth. Am J Physiol Heart Circ Physiol. 2003;284:H613-618
    152. Zheng W, Weiss RM, Wang X, Zhou R, Arlen AM, Lei L, Lazartigues E, Tomanek RJ. Ditpa stimulates arteriolar growth and modifies myocardial postinfarction remodeling. Am J Physiol Heart Circ Physiol.2004;286:H1994-2000
    153. Kuzman JA, Tang Y, Vogelsang KA, Said S, Anderson BE, Morkin E, Gerdes AM. Thyroid hormone analog, diiodothyropropionic acid (ditpa), exerts beneficial effects on chamber and cellular remodeling in cardiomyopathic hamsters. Can J Physiol Pharmacol.2007;85:311-318
    154. Liu Y, Wang D, Redetzke R4, Sherer BA, Gerdes AM. Thyroid hormone analog 3,5-diiodothyropropionic acid promotes healthy vasculature in the adult myocardium independent of thyroid effects on cardiac function. Am J Physiol Heart Circ Physiol. 2009;296:H1551-1557
    155. Mousa SA, Davis FB, Mohamed S, Davis PJ, Feng X. Pro-angiogenesis action of thyroid hormone and analogs in a three-dimensional in vitro microvascular endothelial sprouting model.Int Angiol.2006;25:407-413
    156. Makino A, Suarez J, Wang H, Belke DD, Scott BT, Dillmann WH. Thyroid hormone receptor-beta is associated with coronary angiogenesis during pathological cardiac hypertrophy. Endocrinology.2009;150:2008-2015
    157. Mancini GB, Henry GC, Macaya C, O'Neill BJ, Pucillo AL, Carere RG, Wargovich TJ, Mudra H, Luscher TF, Klibaner MI, Haber HE, Uprichard AC, Pepine CJ, Pitt B. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The trend (trial on reversing endothelial dysfunction) study. Circulation.1996;94:258-265
    158. Brooks WW, Bing OH, Robinson KG, Slawsky MT, Chaletsky DM, Conrad CH. Effect of angiotensin-converting enzyme inhibition on myocardial fibrosis and function in hypertrophied and failing myocardium from the spontaneously hypertensive rat. Circulation. 1997;96:4002-4010
    159. Ebrahimian TG, Tamarat R, Clergue M, Duriez M, Levy BI, Silvestre JS. Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arterioscler Thromb Vasc Biol.2005;25:65-70
    160. Silvestre JS, Bergaya S, Tamarat R, Duriez M, Boulanger CM, Levy BI. Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin b(2) receptor pathway. Circ Res.2001;89:678-683
    161. Nagata K, Somura F, Obata K, Odashima M, Izawa H, Ichihara S, Nagasaka T, Iwase M, Yamada Y, Nakashima N, Yokota M. At1 receptor blockade reduces cardiac calcineurin activity in hypertensive rats. Hypertension.2002;40:168-174
    162. Yamada Y, Tsuboi K, Hattori T, Murase T, Ohtake M, Furukawa M, Ueyama J, Nishiyama A, Murohara T, Nagata K. Mechanism underlying the efficacy of combination therapy with losartan and hydrochlorothiazide in rats with salt-sensitive hypertension. Hypertens Res. 2011;34:809-816
    163. Nagata K, Obata K, Xu J, Ichihara S, Noda A, Kimata H, Kato T, Izawa H, Murohara T, Yokota M. Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats. Hypertension.2006;47:656-664
    164. Kobayashi N, Hara K, Higashi T, Matsuoka H. Effects of imidapril on endothelin-1 and ace gene expression in failing hearts of salt-sensitive hypertensive rats. Am J Hypertens. 2000;13:1088-1096
    165. Inoko M, Kihara Y, Morii I, Fujiwara H, Sasayama S. Transition from compensatory hypertrophy to dilated, failing left ventricles in dahl salt-sensitive rats. Am JPhysiol. 1994;267:H2471-2482
    166. Yazawa H, Miyachi M, Furukawa M, Takahashi K, Takatsu M, Tsuboi K, Ohtake M, Murase T, Hattori T, Kato Y, Murohara T, Nagata K. Angiotensin-converting enzyme inhibition promotes coronary angiogenesis in the failing heart of dahl salt-sensitive hypertensive rats. J Card Fail. 2011;17:1041-1050
    167. Yamamoto E, Lai ZF, Yamashita T, Tanaka T, Kataoka K, Tokutomi Y, Ito T, Ogawa H, Kim-MItsuyama S. Enhancement of cardiac oxidative stress by tachycardia and its critical role in cardiac hypertrophy and fibrosis. J Hypertens.2006;24:2057-2069
    168. Cheng XW, Okumura K, Kuzuya M, Jin Z, Nagata K, Obata K, Inoue A, Hirashiki A, Takeshita K, Unno K, Harada K, Shi GP, Yokota M, Murohara T. Mechanism of diastolic stiffening of the failing myocardium and its prevention by angiotensin receptor and calcium channel blockers. J Cardiovasc Pharmacol.2009;54:47-56
    169. Jinno T, Iwai M, Li Z, Li JM, Liu HW, Cui TX, Rakugi H, Ogihara T, Horiuchi M. Calcium channel blocker azelnidipine enhances vascular protective effects of atl receptor blocker olmesartan. Hypertension.2004;43:263-269
    170. Nishizawa T, Cheng XW, Jin Z, Obata K, Nagata K, Hirashiki A, Sasaki T, Noda A, Takeshita K, Izawa H, Shi GP, Kuzuya M, Okumura K, Murohara T. Ca(2+) channel blocker benidipine promotes coronary angiogenesis and reduces both left-ventricular diastolic stiffness and mortality in hypertensive rats. J Hypertens.2010;28:1515-1526
    171. Xie H, Kang YJ. Role of copper in angiogenesis and its medicinal implications. Curr Med Chem. 2009;16:1304-1314
    172. Jiang Y, Reynolds C, Xiao C, Feng W, Zhou Z, Rodriguez W, Tyagi SC, Eaton JW, Saari JT, Kang YJ. Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J Exp Med.2007;204:657-666
    173. Zhou Y, Bourcy K, Kang YJ. Copper-induced regression of cardiomyocyte hypertrophy is associated with enhanced vascular endothelial growth factor receptor-1 signalling pathway. Cardiovasc Res.2009;84:54-63
    174. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the akt/pkb signaling pathway. Genes Dev.2006;20:3347-3365
    175. Shiojima I, Yefremashvili M, Luo Z, Kureishi Y, Takahashi A, Tao J, Rosenzweig A, Kahn CR, Abel ED, Walsh K. Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. J Biol Chem.2002;277:37670-37677
    176. Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G, Ellingsen O. Activation or inactivation of cardiac akt/mtor signaling diverges physiological from pathological hypertrophy. J Cell Physiol.2008;214:316-321
    177. Matsui T, Nagoshi T, Rosenzweig A. Akt and pi 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle.2003;2:220-223
    178. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, Sun J, Monahan-Earley RA, Shiojima I, Nagy JA, Lin MI, Walsh K, Dvorak AM, Briscoe DM, Neeman M, Sessa WC, Dvorak HF, Benjamin LE. Pathological angiogenesis is induced by sustained akt signaling and inhibited by rapamycin. Cancer Cell.2006;10:159-170
    179. Shiojima I, Walsh K. Role of akt signaling in vascular homeostasis and angiogenesis. Circ Res. 2002;90:1243-1250
    180. Somanath PR, Razorenova OV, Chen J, Byzova TV. Aktl in endothelial cell and angiogenesis. Cell Cycle.2006;5:512-518
    181. Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, Murakumo Y, Usukura J, Kaibuchi K, Takahashi M. Akt/pkb regulates actin organization and cell motility via girdin/ape. Dev Cell.2005;9:389-402
    182. Kitamura T, Asai N, Enomoto A, Maeda K, Kato T, Ishida M, Jiang P, Watanabe T, Usukura J, Kondo T, Costantini F, Murohara T, Takahashi M. Regulation of vegf-mediated angiogenesis by the akt/pkb substrate girdin. Nat Cell Biol.2008;10:329-337
    183. Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension.2006;47:887-893
    184. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G. Micrornas modulate the angiogenic properties of huvecs. Blood. 2006; 108:3068-3071
    185. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent micrornas regulate gene expression and functions in human endothelial cells. Circ Res.2007;100:1164-1173
    186. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of dicer and drosha for endothelial microrna expression and angiogenesis. Circ Res.2007;101:59-68
    187. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D. Mir-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272-284
    188. Chen Y, Gorski DH. Regulation of angiogenesis through a microrna (mir-130a) that down-regulates antiangiogenic homeobox genes gax and hoxa5. Blood.2008;111:1217-1226
    189. Suarez Y, Fernandez-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M, Sessa WC. Dicer-dependent endothelial micrornas are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA.2008;105:14082-14087
    190. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest. 1998;101:731-736
    191. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest.1998;101:2567-2578
    192. Urbich C, Kuehbacher A, Dimmeler S. Role of micrornas in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res.2008;79:581-588
    193. Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F. Microrna-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-a3. JBiol Chem.2008;283:15878-15883
    194. Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y, Ramakrishnan S. Hypoxia-induced microrna-424 expression in human endothelial cells regulates hif-alpha isoforms and promotes angiogenesis. J Clin Invest. 2010;120:4141-4154
    195. Suarez Y, Sessa WC. Micrornas as novel regulators of angiogenesis. Circ Res.2009;104:442-454
    196. Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, Ganser A, Eder M, Scherr M. Expression of the mir-17-92 polycistron in chronic myeloid leukemia (cml) cd34+cells. Blood.2007;109:4399-4405
    197. Kuhnert F, Kuo CJ. Mir-17-92 angiogenesis micromanagement. Blood.2010;115:4631-4633
    198. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A. Augmentation of tumor angiogenesis by a myc-activated microrna cluster. Nat Genet.2006;38:1060-1065
    199. Doebele C, Bonauer A, Fischer A, Scholz A, Reiss Y, Urbich C, Hofmann WK, Zeiher AM, Dimmeler S. Members of the microrna-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood.2010;115:4944-4950

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700