AChR-IgGFc段融合蛋白真核表达载体的构建及表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重症肌无力(myasthenia gravis ,MG)是一种典型的抗体介导、补体参与的器官特异性自身免疫性疾病,烟碱型乙酰胆碱受体(nicotinic Acetylcholine receptor ,nAChR)抗体是其发病的重要效应因子。临床表现主要为横纹肌无力,严重时可累及呼吸肌,危及生命。
     现有治疗手段主要为胆碱酯酶抑制剂、皮质激素、免疫抑制剂、血浆置换、静脉注射免疫球蛋白、胸腺切除术等,能一定程度控制病情,但不能抑制病程发展,且会影响全身免疫系统。致病性B细胞分泌产生AChR抗体,是MG发病的关键因子,若能从源头上清除这类B细胞则有望控制MG病情。
     本研究希望通过真核表达载体转染CHOk1细胞以获得一种AChR‐ IgG Fc融合蛋白,该融合蛋白可与分泌AChR抗体的致病B细胞表面抑制性受体FcγRⅡB或单核‐巨噬细胞表面的Fcγ受体特异性结合,抑制B细胞活化并促进其凋亡。
     以人nAChRα1亚基全序列为模板,以PCR法扩增AChRα1亚基胞外段主要免疫区基因片段Hα1-121 ,将其插入真核表达载体pAN1782。将构建的新载体转染至CHOk1细胞,建立稳定表达AChR‐ IgG Fc融合蛋白的CHOk1细胞株,以Western blot法检测AChR‐ IgG Fc融合蛋白表达。
     结果显示Hα1-121经PCR法扩增后所获428 bp基因片段大小符合预计结果,测序所得核苷酸序列与人类基因库中AChRα1亚基胞外段基因片段Hα1-121序列完全一致,未出现点突变或移码突变。所构建的新载体经酶切鉴定证实片段插入正确,载体构建成功。Western blot法检测结果显示转染新载体的CHOk1细胞培养上清液中有AChR‐ IgG Fc融合蛋白表达。
     综上所述,成功构建人AChR‐ IgG Fc段融合蛋白真核表达载体,且该融合蛋白可在转染新载体的CHOk1细胞中稳定表达,为下一步靶向B细胞治疗重症肌无力奠定了初步基础。
     EAMG是MG的动物模型,是研究MG发病机制、治疗策略的重要手段。我们采用重组表达的人肌肉AChR的α亚基(α1-210)ECD蛋白免疫雌性Lewis大鼠,观察免疫后大鼠的体重变化、行走、进食情况,抽取大鼠尾静脉血液,用ELISA法检测血清中AChR抗体滴度变化。
     该方法较传统建模方法简便快捷,EAMG模型的成功建立可为功能蛋白的检测以及MG发病机制、治疗方法的研究奠定基础。
Myasthenia gravis (MG) is a disorder of neuromuscular transmission mediated by autoantibodies to the nicotinic acetylcholine receptor (AChR) and involved in activation of complement. It is characterised by fatigable muscle weakness. The most common treatment options used for MG are acetylcholinesterase inhibitors, corticosteroids, immunosuppressants, plasmapheresis, intravenous immunoglobulin, thymectomy, which can relieve the conditions but can not stop course of the disease, and may affect the whole immune system.The pathogenic B cell which produces AChR antibodies, is a key factor in the pathogenesis of MG.
     Our study is to construct an AChR‐IgG Fc fusion protein which can specificly bind to the FcγRⅡB of pathogenic B cells or FcγR of mononuclear macrophage to inhibit the activation of pathogenic B cell and accelerate its apoptosis.
     The genomic fragment Hα1-121 of the human skeletal muscle Acetylcholine receptor (AChR)α1 subunit was amplified by PCR and inserted into the eukaryotic expression vector pAN1782.The recombinant plasmid was transfected into CHOk1 cells with screening culture by G418 for stable expression.The expression of the AChR‐IgG Fc fusion protein was detected by Western blot.
     A 428 bp band was amplified as expected and the sequencing results showed no mutation or frame shift .The recombinant plasmid was confirmed by enzyme digestion and transfected into CHOk1 cells.The stable expression of the AChR‐IgG Fc fusion protein was demonstrated by Western blot .
     To conclude, the eukaryotic expression vector of AChR‐IgG Fc/pAN1782 was successfully constructed and the AChR‐IgG Fc fusion protein was stably expressed in CHOk1 cells,providing basis for the B cell targeted therapy of myasthenia gravis .
     Experimental autoimmune myasthenia gravis (EAMG) in mouse is the animal model of MG and helps a lot for finding the pathogenesis and therapy of the disease. The ECD (N-terminal extracellular domain (amino acids 1-210) of theαsubunit of AChR) protein was used to immunize the female Lewis rats and the clinical manifestation , the change of body weight were evaluated. The blood serum of the vena caudalis was extracted every week to test the titer of AChR-ab by ELISA.
     This method is simpler with a lower cost compared with the traditional EAMG models. The EAMG model can be used to detect the function of the therapeutic protein and research the pathogenesis of MG..
引文
[1] Fambrough DM, Drachman DB, Satyamurti S. Neuromuscular junction in myasthenia gravis: Decreased acetylcholine receptors. Science (Washington DC) . 1973,182:293–5.
    [2] Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia myasthenia gravis: Prevalence, clinical correlates,and diagnostic value. Neurology. 1976,26:1054–1059.
    [3] Christadoss, P., Lindstrom, J., Munro, S., Talal, N.. Muscle acetylcholine receptor loss in murine experimental autoimmune myasthenia gravis: correlated with cellular, humoral and clinical responses. J.Neuroimmunol. 1985,8:29–41.
    [4] Engel, A.G., Lambert, E.H., Howard, F.M.. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations.Mayo Clin. Proc. 1977 ,52:267– 280.
    [5] Tsujihata, M., Yoshimura, T., Satoh, A., Kinoshita, I., Matsuo, H., Mori,M., Nagataki, S.. Diagnostic significance of IgG, C3, and C9 at the limb muscle motor end-plate in minimal myasthenia gravis. Neurology .1989 ,39,:1359– 1363.
    [6] Vincent A, Bowen J, Newsom-Davis J, McConville J.Seronegative generalised myasthenia gravis: clinical features,antibodies, and their targets. Lancet Neurol.2003,2(2):99–106.
    [7] Osserman KE. Myasthenia gravis. New York: Grune and Stratton; 1958.
    [8] Penn AS, Low BW, Jaffe IA, Luo L, Jacques JJ. Drug-induced autoimmune myasthenia gravis. Ann N Y Acad Sci.1998,841:433–49.
    [9] Drachman DB, de Silva S, Ramsay D, Pestronk A. Humoral pathogenesis of myasthenia gravis. Ann N Y Acad Sci.1987,505:90–105.
    [10] Newsom-Davis J, Harcourt G, Sommer N, Beeson D, Willcox N, Rothbard JB. T-cell reactivity in myasthenia gravis.J Autoimmun 1989,2(Suppl):101–8.
    [11] Jaretzki A, Steinglass KM, Sonett JR. Thymectomy in the management of myasthenia gravis. Semin Neurol.2004,24(1):49–62.
    [12] Willis, T. in De Anima Brutorum 404-407(Oxonii Theatro Sheldoniano, Oxford,1672).
    [13] Wilks S. On cerebritis, hysteria, and bulbar paralysis, as illustrative of arrest of function of the cerebro-spinal centres. Guy’s Hosp Rep.1877,22:7–55. 3rd series.
    [14] Dubowitz V. In: Clifford Rose F, Bynum WF, editors. History of muscle disease. Chapter 23 in historical aspects of the neurosciences. Bynum: Raven Press.1982. p. 213–22.
    [15] Erb,W. Zur casuistik der bulb?ren l?hmungen.Arch.Psychiatr.Nervenkr. 1879,9:336–350.
    [16] Goldflam,S. Ueber einen scheinbar heilbaren bulbar paralytischen Symptom en complex mit Betheiligung der Extremit?ten. Dtsch.Z. Nerven-heilkd.1893,4:312–352.
    [17] Jolly F. Ueber myasthenia gravis pseudoparalytica. Berlin Klin Wochenschr. 1895,32:1–7.
    [18] Buzzard EF. The clinical history and post-mortem examination of five cases of myasthenia gravis. Brain.1905,28:438–83.
    [19] Lacquer L, Weigert C. Beitrage zur Lehre von der Erb’schen Krankheit. Neurol Centralbl.1901,20:594–601.
    [20] Remen L. Zur pathogenese und therapie der myasthenia gravis pseudoparalytica. Dtsch Z Nervenheilk.1932,128:66–78.
    [21] Walker MB. Treatment of myasthenia gravis with physostigmine. Lancet. 1934,1:1200–1.
    [22] Juel VC, Massey JM. Autoimmune myasthenia gravis: recommendations for treatment and immunologic modulation. Curr Treat Options Neurol.2005,7:3–14.
    [23] Richman DP, Agius MA. Treatment of autoimmune myasthenia gravis. Neurology.2003,61:1652–61.
    [24] Drachman DB. Myasthenia gravis. N Engl J Med 1994,330:1797– 810.
    [25] Hill M. The neuromuscular junction disorders. J Neurol Neurosurg Psychiatry. 2003,74(suppl 2):S32– 7.
    [26] Schneider-Gold C, Gajdos P, Toyka KV, Hohlfeld RR.Corticosteroids for myasthenia gravis. Cochrane Database Sys Rev. 2005,18(2) (Apr).
    [27] Saperstein DS, Barohn RJ. Management of myasthenia gravis.Semin Neurol. 2004,24(1):41– 8.
    [28] Schwendimann RN, Burton E, Minagar A. Management of myasthenia gravis. Am J Ther. 2005,12(3):262–8.
    [29] Pscuzzi RM, Coslett HD, Johns TR. Long-term corticosteroid treatment of myasthenia gravis: report of 116 patients. Ann Neurol .1984,290:81–4.
    [30] Lindberg C, Andersen O, Lefvert AK. Treatment of myasthenia gravis with methylprednisolone pulse: a double-blind study. Acta Neurol Scand .1998,97:370–3.
    [31] Ferrero S, Pretta S, Nicoletti A, Petrera P, Ragni N. Myasthenia gravis:management issues during pregnacy. Eur J Obstet Gynecol Reprod Biol. 2005,121(2):129–38.
    [32] Palace J, Newsom-Davis J, Lecky B. A randomized doubleblind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia Gravis Study Group. Neurology.1998,50(6):1778–83.
    [33] Tindall RS, Phillips JT, Rollins JA, Wells L, Hall K. A clinical therapeutic trial of cyclosporine in myasthenia gravis. Ann N Y Acad Sci 1993,681:539– 51.
    [34] Kawaguchi N, Yoshiyama Y, Nemoto Y, Munakata S, Fukutake T, Hattori T. Low-dose tacrolimus treatment in thymectomised and steroid- dependent myasthenia gravis. Curr Med Res Opin .2004,20(8):1269–73.
    [35] Chiu HC, Chen WH, Yeh JH. The six year experience of plasmapheresis in patients with myasthenia gravis. Ther Apher .2000,4(4):291–5.
    [36] Dalakas MC. The use of intravenous immunoglobulin in the treatment of autoimmune neuromuscular diseases: evidence-based indications and safety profile. Pharmacol Ther .2004,102(3):177–93.
    [37] Gajdos P, Chevret S, Clair B, Tranchant C, Chastang C.Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Myasthenia Gravis Clinical Study Group. Ann Neurol. 1997,41(6): 789–96.
    [38] Budde JM, Morris CD, Gal AA, Mansour KA, Miller Jr JI.Predictors of outcome in thymectomy for myasthenia gravis.Ann Thorac Surg.2001,72(1):197–202.
    [39] Remes-Troche JM, Tellez-Zenteno JF, Estanol B, Garduno-Espinoza J, Garcia-Ramos G. Thymectomy in myasthenia gravis: response, complications, and associated conditions.Arch Med Res.2002 ,33(6):545–51.
    [40] Ciafaloni E. Mycophenolate mofetil and myasthenia gravis.Lupus.2005,14(Suppl 1):s46–9.
    [41] Tuzun E, Meriggioli MN, Rowin J, Yang H, Christadoss P.Myasthenia gravis patients with low plasma IL-6 and IFNgamma benefit from etanercept treatment. J Autoimmun.2005,24(3):261–8.
    [42] Wang P, Zuo C, Tian J, et al. CT-guided percutaneous ethanol injection of the thymus for treatment of myasthenia gravis.AJR Am J Roentgenol. 2003,181(3):721–4.
    [43] Papanastasiou D, Poulas K, Kokla A, Tzartos SJ. Prevention of passively transferred experimental autoimmune myasthenia gravis by Fab fragments of monoclonal antibodies directed against the main immunogenic region of the acetylcholine receptor. J Neuroimmunol.2000,104(2):124–32.
    [44] Edwards JCW, Cambridge G, Abrahams VM. Do self-perpetuating B lymphocytes drive human autoimmune diseases? Immunology.1999,97:1868–96 (#2).
    [45] Garvey B. Rituximab in the treatment of autoimmune haematological disorders. Br J Haematol.2008,141:149–69.
    [46] Clynes RA, Towers TL, Presta LG, et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor target. Nat Med.2000,6:443–6.
    [47] Wylam ME, Anderson PM, Kuntz NL, Rodriguez V. Successful treatment of refractory myasthenia gravis using rituximab: a pediatric case report. J Pediatr. 2003,143(5):674–7.
    [48] Vincent A. Unravelling the pathogenesis of myasthenia gravis.Nat Rev Immunol.2002,2(10): 797–804.
    [49] Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis: past, present,and future. J Clin Invest. 2006,116(11): 2843-2854.
    [50] Shenoy, M., Oshima, M., Atassi, M.Z., Christadoss, P.Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region a 146– 162 of acetylcholine receptor.Clin. Immunol.Immunopathol. 1993,66:230–238.
    [51] Patrick, J., Lindstrom, J. Autoimmune response to acetylcholine receptor. Science.1973,180:871–872.
    [52] Christadoss, P., Krco, C.J., Lennon, V.A., David, C.S. Genetic control of experimental autoimmune myasthenia gravis in mice. II.Lymphocyte proliferative response to acetylcholine receptor is dependent on Lyt-1+23- cells. J. Immunol.1981, 126:1646–1647.
    [53] Christadoss, P., Lennon, V.A., Krco, C.J., David, C.S. Genetic control of experimental autoimmune myasthenia gravis in mice. III. IA molecules mediate cellular immune responsiveness to acetylcholine receptors. J. Immunol.1982, 128:1141–1144.
    [54] Lennon VA,Lindstrom JM,Seybold ME. Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs [J]. J Exp Med.1975,141(6):1365一1375.
    [55] Fuchs, S. D., Neiro, D., Tarrab-Hazdai, R., and Yaar, G., Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature.1976,263:329–330.
    [56] Christadoss, P., Lennon, V. A., Lambert, E. H., and David, C. S.,Genetic control of experimental autoimmune myasthenia gravis in mice. In“T and B Lymphocytes: Recognition and function,”pp. 249, Academic Press, New York, 1979.
    [57] Berman, P. W., and Patrick, J., Linkage between the frequency ofmuscular weakness and loci that regulate immune responsiveness in murine experimental autoimmune myasthenia gravis.J. Exp. Med. 1980, 152:507–520.
    [58] Christadoss, P., Lennon, V. A., Krco, C. J., Lambert, E. H., and David, C. S., Genetic control of autoimmunity to acetylcholine.Role of Ia molecules. Ann. NY Acad. Sci.1981, 377:258–277.
    [59] Christadoss, P., C5 gene influences the development of murine myasthenia gravis. J. Immunol.1988,140:2589–2592.
    [60] Toyka, K. N., Drachman, D. B., Griffin, D. E., Pestronk, A., Winkelstein, J. A., Fishbeck, K. H., and Kao, J., Myasthenia gravis: Study of humoral immune mechanisms by passive transfer to mice. N. Engl. J. Med.1977, 296:125–131.
    [61] Richman, D. P., Gomez, C. M., Berman, P. W., Burres, S. A., Fitch, F. W., and Amason, B. G., Monoclonal anti-acetylcholine receptor antibodies can cause experimental myasthenia. Nature.1980, 286:738–739.
    [62] Schonbeck, S., Padberg, F., Hohlfeld, R., and Wekerle, H.,Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. J. Clin. Invest. 1992, 90:245–250.
    [63] Wang, Z.-Y., Karachunski, P. I., Howard, J. F., Jr., and Conti-Fine, B. M., Myasthenia in SCID mice grafted with myasthenic patient lymphocytes. Neurology. 1999,52:484–497.
    [64] Christadoss, P., Lindstrom, J. M., Talal, N., Duvic, C. R.,Kalantri, A., and Shenoy, M., Immune response gene control of lymphocyte proliferation induced by etylcholine receptor-specific helper factor derived from lymphocytes of myasthenic mice. J. Immunol. 1986 ,137:1845–1849.
    [65] Christadoss, P., Lindstrom, J., Munro, S., and Talal, N., Muscleacetylcholine receptor loss in murine experimental autoimmune myasthenia gravis: Correlated with cellular, humoral and clinical responses. J. Neuroimmunol. 1985, 8:29–41.
    [66] Lefvert, A. K., Bengstrom, K., Matell, G., Osterman, P. O., and Pirskanen, R., Determination of acetylcholine receptor antibodies in myasthenia gravis clinical usefulness and pathogenic implications. J. Neurol. Neurosurg. Psychiatry.1978 ,4:394–403.
    [67] Vincent, A., and Newsome-Davis, J., Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: Results in 153 validated cases and 2967 diagnostic assays. J. Neurol. Neurosurg.Psychiatry.1985, 48 :1246–1252.
    [68] Sahashi, S., Engel, A. G., Lindstrom, J., Lambert, E. H., and Lennon, V. A., Ultrastructural localization of immune complexes (IgG and C3) at the end-plate in experimental autoimmune myasthenia gravis. J. Neuropathol. Exp. Neurol.1978, 37:212–223.
    [69] Christadoss, P., Lindstrom, J. M., Melvold, R. W., and Talal, N., Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis. Immunogenetics.1985,21:33–38.
    [70] Kaul, R., Shenoy, M., Goluszko, E., and Christadoss, P., Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis. J. Immunol.1994, 152:3152–3157.
    [71] Christadoss, P., Immunogenetics of experimental autoimmune myasthenia gravis. Crit. Rev. Immunol.1989,9:247–278.
    [72] Bell, J., Rassenti, L., Smoot, S., Smith, K., Newby, C., Hohlfeld,R., Toyka, K., McDevitt, H., and Steinman, L., HLA-DQ betachain polymorphism linked to myasthenia gravis. Lancet.1986,1:1058–1060.
    [73] Hjelmstro¨m, P., Giscombe, R., Lefvert, A. K., Pirskanen, R., Kockum, I., Landin-Olsson, M., and Sanjeevi, C. B., Polymorphic amino acid domains of the HLA-DQ molecule are associated with disease heterogeneity in myasthenia gravis. J. Neuroimmunol.1996, 65:125–131.
    [74] Hjelmstro¨m, P., De Weese-Scott, C., Penzotti, J. E., Lybrand,T. P., and Sanjeevi, C. B., Structural differences between HLA-DQ molecules associated with myasthenia gravis characterized by molecular modeling. J. Neuroimmunol. 1998,85:102–105.
    [75] Hjelmstro¨m, P., and Sanjeevi, C. B., Molecular mechanisms of MHC associations with myasthenia gravis. In“Myasthenia Gravis: Disease Mechanisms and Immunointervention”(P.Christadoss, Ed.), Narosa Publishing House, New Delhi, 1999.
    [76] Brocke, S., Brautbar, C., Steinman, L., Abramsky, O., Rothbard,J., Neumann, D., Fuchs, S., and Mozes, E., In vitro proliferative response and antibody titers specific to human acetylcholine receptor in patients with myasthenia gravis and relation to HLA class II genes. J. Clin. Invest.1988, 82:1894–1900.
    [77] Christadoss, P., and Dauphinee, M. J., Immunotherapy for myasthenia gravis: A murine model. J. Immunol.1986, 136:2437–2440.
    [78] Ahlberg, R., Yi, Q., Matell, R., Swerup, G., Rieber, P., Reithmuller,G., Holm, G., and Lafvert, A. K., Clinical improvement of myasthenia gravis by treatment with a chimeric anti-CD4 monoclonal antibody. Ann. NY Acad. Sci.1993, 681:552–555.
    [79] Meinl, E., Klinkert, W. E., and Wekerle, H., The thymus in myasthenia gravis: Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am. J. Pathol.1991,139:995–1008.
    [80] Schluep, M., Willcox, N., Vincent, A., Dhoot, G. K., and Newsom-Davis, J., Acetylcholine receptors in human thymic myoic cells in situ: An immunohistological study. Ann. Neurol.1987 , 22:212–222.
    [81] Wekerle, H., and Ketelsen, U. P., Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet. 1977,1:678–680.
    [82] Zhu D, Kepley CL, Zhang K, et al. A novel human immunoglobulin Fcγ-Fcεbifunctional fusion protein inhibits FcεRⅠ-mediated degranulation[J]. Nat Med, 2005, 11(4):446-449.
    [83]宋琛.抗人乙酰胆碱受体单链抗体1956#的可溶性表达、纯化及其功能鉴定.第四军医大学硕士学位论文,2008.
    [84]孙辰婧,徐江,李柱一.重组表达人乙酰胆碱受体α1亚基胞外域蛋白[J].中国神经免疫学和神经病学杂志,2009,16(1):35-38.
    [85]李柱一.重症肌无力与补体调节因子CD55和CD59[J].中国神经免疫学和神经病学杂志,2006,13(1):25-27.
    [86] Hodgkin PD, Heath WR, Baxter AG.The clonal selection theory:50 years since the revolution[J].Nat Immunol,2007,8(10): 1019-1026.
    [87]韩涛,周勇,王旭丹等.用我国海域电鳐电器官提取的N2AchR粗提物建立大鼠EAMG模型[J].上海免疫学杂志,2003,23(3):163-164.
    [88] LennonVA,Hunag ZX,McComikc DJ,etal.Synthetic Petide of human acetylcholine receptor alpha-subunit sequence125-147(methionine144),a more Potent autoantigen than its norleucine144 analog.Ann N Y Acad Sci.1988,540:516-9.
    [89] Baggi F,Annoni A,Ubiali F,et al.Breakdown of Tolerance to a Self-Peptide of Acetylcholine Receptor Subnuit Induces Experimental Myasthenia Gravis in Rats.The Journal of Immunology.2004, 172:2697-2703.
    [90] Lennon VA , Lambert EN , Leiby KR , etal.Recombinant human acetylcholine Receptor alpha一subunit induces chronic experimental autoimmune myasthenia gravis.JImmunol.1991,146(7):2245-8.
    [91]杨丽,程焱,乙酰胆碱受体α亚单位125-147段多肽致实验性自身免疫性重症肌无力.中华神经科杂志.2003,36(1):32-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700