土壤孔隙水压力检测系统试验研究及关系模型建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤含水率测量是个应用广泛和潜力巨大的课题,涉及到农业、工业等国民经济的许多领域;孔隙水压力测量是一相对较新的领域,和农业、地质灾害关系密切。土壤含水率和孔隙水压力二者之间既相互区别,又相互联系。土壤含水率测量和孔隙水压力测量有专用方法和设备,但如果用于地质灾害的长期监测中,又都有其缺点和不足。因此我们开始新型孔隙水压力监测系统的研制工作。该系统主要是针对滑坡监测而研制的,但其同样可以在农业中得到应用。新型孔隙水压力监测系统,包括复合式探头、主机、通讯电缆、控制软件和数据处理软件;其中主机部分由测量电路、数据存储、自动控制及通讯接口组成;控制软件包括前端机自控软件、通讯协议。压力陶瓷探头是本系统的关键部件,也是其创新点,其中压力传感器是探头的核心部件。为了找到性价比高的压力传感器,对国内航天部某研究所研制的压力传感器和美国IC公司的压力传感器做了长期的对比性实验,在相同价位和满足条件的情况下,选用了美国IC公司的压力传感器。陶瓷外壳是探头的关键部件,是我们自行研制的。压力陶瓷探头的原理是:当陶瓷筒被水浸润后,孔隙间形成一层水膜,水可通过,但在一定压差下,可阻止空气通过,即不会漏气。用密封充水的微孔陶瓷筒观测土体对水分的吸力,即筒内形成的负压值,最终得到土体的含水率。陶瓷筒的孔隙越小,测量的范围越大,其透水性就差,反映迟钝,达到稳定负压值所需时间越长;孔隙大,测量范围小,但反映快,达到稳定负压值所需时间越短。经过我们长时间的反复实验,把测量范围和稳定时间综合考虑,采用了最大负压值可测到—80Kpa(800厘米水柱)空隙度的陶瓷筒。加了陶瓷外壳的压力传感器,既可以测饱和土壤中孔隙水的正压力,又可以测不饱和土壤中孔隙水的负压力。大家都知道测出的孔隙水负压力和土壤含水率之间有一定的关系,但它们之间具体的数学模型,由于涉及的因素较多,比如土体的结构、粒度等,都对模型有影响,因此国内和国际上一直没有定论。本研究在分析试验数据、仪器监测数据和前人结论的基础上,得出了一种算法,该算法主要针对颗粒直径在0.1-0.2MM、松散结构的土体,该土体是模拟长江三峡地区滑带处的土体特征而构建的。根据该算法编写的软件,应用于三峡地区的滑坡地质灾害监测中,取得了不错的效果。论文最后介绍了软件的流程图,并附有部分程序。
The soil moisture measuring is the subject which has huge potential and extensive useness. It is often used in the agriculture and industry. The study of the pore water pressure is a relatively younger subject which is more related with agriculture and geological disaster. The soil moisture and the pore water pressure have some common ground. But they are quite different on almost all aspects. The paper first introduce several methods which is often used in measuring soil moisture and pore water pressure and analyze their strongpoint and fault. On the basis of this, the paper introduce a new style of pore water pressure monitoring system which made by Institute of Hydrogeology and Engineering geology Techniques, CGS. The system is studied for the purpose of monitoring coast, but it can also be used in the agriculture.The monitoring system includes the multi-sensor, the field instrument,the communication cable,the controlling software and the data managing software. The field instrument consistsof measuring c
    ircuit, data memory, automatic controlling and communication interface. The controlling software includes the field instrument's self-control software and the communication protocol. The ceramic pressure sensor is the key components. It is the innovation of the system. The pressure sensor is the important component of the sensor. In order to search for the mos fitting pressure sensor for the performance and price,we worked for a long time to compare the sensors made by domestic institute of aviation and the American IC company.At last we decided to apply the product of the IC company. The ceramic crust which is studied by ourselves is the key component of the sensor. The theory of ceramic pressure sensor is: after the ceramic crust was soaked, it forms a flat of water film during the pores. The water can go through the film, but the air cann't go through it under some pressure difference. That is inside the ceramic sensor is vacuum. We observed the suction of the sealed ceramic canister which is full of wate
    r to the soil. The suction is equal to the negative pressure inside the canister. The pore of the ceramic crust is more small, the measuring range is more wide. But its infiltration get worse. The reflection is slow. The time to get a stable stateis long. We spend a great deal time on experiment. In the end, the most negative pressure of the ceramic pressure sensor is -80Kpa. The data coming from instrument may be negative or positive. The positive data is the water level of the saturated soil from the
    
    
    sensor to the surface .If the data is negative, they show the soil is not saturated. Because the mathematic relates to the soil's construction and the size of the grains, the relation between the negative pore water pressure and the aquiferous rate of soil hasn't a conclusion internationally. Through studing the data receiving from the systeml and the data of soil acquiferous rate receiving from lab, we conclude a arithmetic on the base of former achievement. The arithmetic is fit for the soil whose grains is 0.1-0.2MM and the construction of soil is loose. The type of soil simulate the Three Gorge area's soil. Based on the arithmetic, we program a set of soft. The soft is used on the monitoring of Three Gorge's geological disaster and get a good result. At last the paper introduces the soft's flow chart and how to realize.
引文
[1] X Hong and H Ting. Effects of saturated and back pressure on sand liquetaction. J. Geotech. Engrg. [J].ASCE, 1992, 117(9)
    [2] 龚健雅.当代GIS的若干理论与技术[M].武汉:武汉测绘科技大学出版社,1999
    [3] 陈愈炯,温彦锋.基坑支护结构上的水土压力[J].岩土工程学报,1999,21(3)
    [4] 魏汝龙.总应力计算土压力的几个问题[J].岩土工程学报,1995,17(6)
    [5] 沈珠江.基于有效固结应力理论的粘土土压力公式[J].岩土工程学报,2000,22(3)
    [6] Fredlund D G and Rahardio H.Soil machanics for unsaturated soils(非饱和土力学),中译本.北京:中国建筑工业出版社,1997
    [7] 宋二祥.试论有效应力法与总应力法的应用.地基处理,2001,12(1)
    [8] 谢定义.土动力学[M].西安:西安交通大学出版社,1988
    [9] 谢定义,张建民.饱和砂土瞬态动力学特性与机理分析[M].西安:陕西科学技术出版社,1995
    [10] Huang W X. Investigation on stability of saturated sand foundations and slopes against liquefaction. In: ISSFE eds. Paris: Proceedings of the Fifth international Conference of Soil Mechanics and Foundation Engineering, 1961
    [11] 汪闻韶.饱和砂土振动孔隙水压力试验研究[J].水利学报,1962(2)
    [12] Seed H B, Martin P P, Lysmer J. Pore water pressure changes during soil liquefaction.J. Geotech. Engrg. Div., ASCE, 1977, 102(GT4)
    [13] Finn W D L, Lee K W, Martin G R.An effective stress model for liquefaction. J. Geotech. Engrg. Div., ASCE, 1977, 103(6)
    [14] 徐志英,沈珠江.地震液化的有效应力二维分析方法[J].华东水利学院学报,1981,9(3)
    [15] 刘颖,谢君斐.砂土振动液化[M].北京:地震出版社,1984
    [16] 王志良,王余庆,韩靖宇.不规则循环荷载作用下的粘弹塑性模型[J].岩土工程学报,1980,2(3)
    [17] Dobry R, Ladd R S, Yokel et al. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. National Bureau of Standards, Building Science Series 138, 1982
    [18] 王天颂,刘颖.地震荷载作用下饱和砂层孔隙水压力增长及消散[J].岩土工程学报,1983,
    [19] 石桥.孔隙水压力上升机理与土的液化.见:地基基础译文集(1).北京:中国建筑工业出版社,1979
    [20] 何广讷.砂土振动孔隙水压力的研究[J].水利学报,1983(8)
    [21] 石兆吉.循环等幅应变作用下砂土孔隙水压力的变化规律.见:全国土工建筑物及地基抗震学术会议论文集,西安,1986
    [22] Wang J N. Pore pressure development during non-uniform cyclic loading. Soil and foundatlon, 1989, 29(2)
    
    
    [23] Martin G B, Finn W D L, Seed H B. Fundamentals of liquefaction under cyclic loading. J. Geotech. Engrg. Div., ASCE, 1975, 101(GT5)
    [24] 谢定义,张建民.往返荷载下饱和砂土强度变形瞬态变化的机理[J].土木工程学报,1987,20(3)
    [25] Ishihara K. Undrained deformation and liquefaction of sand under cyclic stress. Soils and Foundation, 1975, 15(1)
    [26] Nemat S, Shokooh A. A unified approach to destination and liquefaction of cohesionless sand in cyclic shearing. J. Can. Geotech. Engrg., 1979, 16(4)
    [27] Davis R O, Berrill J B. Energy dissipation and seismic liquefaction in sands. Earthquake Engineering and Structural Dynajnics, 1982, 10(5)
    [28] 曹亚林,何广讷,林皋.土中振动孔隙水压力增长程度的能量分析法[J].大连工学院学报,1987,26(3)
    [29] 何广讷,曹亚林.饱和无粘性土动力反应的能量分析原理与方法[J].土木工程学报,1990,23(3)
    [30] Finn W D L, Bhatia S K. Prediction of seismic pore water pressure. Proc. 10th ICSMFE, 1981(3)
    [31] 何广讷,李万明.振动能量下砂土的体变与孔隙水压力.地震工程与工程振动,1987,7(2)
    [32] Seed H B. The generation and dissipation of pore water pressure during soil liquefaction. Report No. EERC75-76, University of California, Berkley, Aug., 1985
    [33] Seed H B, Booker R. Stabilization of potentially liquefiable sand deposits using gravel drains. J. Geotech. Engrg. Div., ASCE, 1977, 103(GT7)
    [34] 汪闻韶.饱和砂土振动孔隙水压力的产生、扩散和消散[J].见:第五届全国土力学及基础工程 学术论文选集.北京:中国建筑工业出版社,1987
    [35] 徐志英,沈珠江.土坝地震科学化三有利产生、扩散和消散的有限元法动力分析[J].华东水利学院学报,1981,9(4)
    [36] Schifman R L. Consolidation of soils under time dependent loading and vary permeability. Proceedings, Highway, Research Board, 1985
    [37] Wilson N E, Elgohari M M. Consolidations of soils under cyclic loading. Can. Geotech. Engrg. J., 1974, 2(3)
    [38] Baligh M M, Levadoux J N. Consolidation theory for cyclic loading. J. Geotech. Engrg. Div., ASCE, 1978, 104(GT4)
    [39] Alonso E E, Krizek R J. Randomness of settlement rate under stochastic load. J. Geotech. Engrg. Div., ASCE, 1974, 100(6)
    [40] Ghaboussi, Diklnen. Liquefaction analysis of horizontally layered sands. J. Geotech. Engrg. Div., ASCE, 1978, 104(3)
    [41] 史宏彦,谢定义.饱和砂土地基动力反应分析的瞬态有效应力分析.见:第五届全国土力学及基础工程学术会议论文选集[M].北京:中国建筑工业出版社,1987
    [42] 徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维分析.地震工程与工程地震,1985,5(4)
    [43] 周健.尾矿坝在地震作用下的三维两相有效应力动力分析.212程抗震,1995(1)
    [44] 周健,吴世明,曾国熙.土石坝三维两相分析[J]岩土工程学报,1991,13(5)
    
    
    [45] O C Zienkiewicz and P Bettess.Soil and other satorated media under transien, dynamic conditions. General formulation and the validity of various simplifying assumptions. Soil Mechanics-Transient Cyclic Loads Edit by G N Pande and O C Zienkiewicz, 1982
    [46] 白冰,刘祖德.动静荷载耦合的固结计算问题研究[J].武汉水利电力大学学报,1999(5)
    [47] Stoll R D, Kald L. The threshold of dilation under cyclic loading. ASCE, Annual Convention and Exposition. Philade 1 Phia, 1976
    [48] Dobry R., Swiger W F. The threshóld strain and cyclic behavior of coheslonless soil. Proceedings of the Third ASCE/EMDE Specialty Conference. Austin, Texas, 1979.9
    [49] 邵生俊.饱和砂土的物态有效应力动本构模型及其应用途径[M].西安理工大学博士论文,1999
    [50] 沈珠江.理论土力学[M].北京:中国水利水电出版社,2000
    [51] 江闻韶.土的动力强度和液化特性.北京:中国电力出版社,1996
    [52] 沈珠江.复杂应力条件下砂土液化变形的结构性模型.见:第五届全国土动力学学术会议论文集.大连,1998
    [53] 沈珠江.现代土力学的基本问题[J].力学与实践,1998,20(6)
    [54] Tzou-Shin, Chang-Jung Lee. Deformation behavior of sand under shear-particulate approach. J. Geotech. Engrg., ASCE, 1990, 116(11)
    [55] Ching S Chang, Yong Chang, Mohammed. Micro-mechanics modeling for stress-strain behavior of granular soils. J. Geotech. Engrg., ASCE, 1992, 118(12)
    [56] 王建国,蹼家骆,李广信.不同本构模型预测饱和土孔压生成的研究[J].岩土工程学报,1989,11(5)
    [57] 周健,白冰,徐建平.土动力学理论与计算[M].北京:中国建筑工业出版社,2001,1
    [58] 谢定义,张建民.周期荷载下饱和砂土瞬态孔隙水压力变化机理与计算模型[J].土木工程学报,1990,23(2)
    [59] Martin G R, Finn W D I and Seed H B. Fundamentals of liquefaction under cyclic loading. J.Geotech. Engrg. Div., ASCE, 1975
    [60] 钱家欢,殷宗泽.土木原理与计算(第二版)[M].北京:中国水利水电出版社,1996
    [61] Y Kohata, J N Mukabi et al. Effects of strain drainage on deformation characteristics at small strain of geo-materials. In: Earthquake Geotechnical Enginecring, Ishlhara (ed.), 1995
    [62] 黄锋,楼志刚.排水条件对海洋粉质土动力特性的影响[J].岩土工程学报,1997,19(1)
    [63] Yasuhara K, et al. Undrained shear behavior of qusai-overcon-solidated seabed clay induced by cyclic loading. Proc. IUTAM Sypm. Seabed Mechanics, 1983
    [64] Azzouz A S, et al. Cyclic behavior of clay in undrained simple shear. J. Geotech. Engrg., ASCE, 1989, 115(5)
    [65] Matsui T, et al. Cylic stress-strain history and shear characteristics of clay. J. Geotech. Engrg., ASCE, 1980, 106(10)
    [66] 钱寿易,楼志刚,杜金声.海洋波浪作用下土动力学特性的研究现状和发展[J].岩土工程学报,1982,4(1)
    [67] Peterson J B, Robison B F, Beck R H. Predictabililty of change in soil reflectance on wetting
    
    machine processing of remotely sensed data. Proc Purdne Univ West Lafayeffe Ind, 1979.
    [68] 邓孺孺.土壤水份垂向分布的平衡状态分析[J].中山大学学报(自然科学版),1997,36(2)
    [69] Topp G C, Davis J L, Annan A P.Measurment of water content using time-domain refletrometry (TDR): A field evaluation. Soil Sci. Soc. Am. J., 1985, 49
    [70] 莫惠栋编著.农业试验统计[M].上海:上海科学技术出版社,1984
    [71] Star J, Esters J. Geographic Information System: A Instruduction, Pretice Hall, New Jersey, 1990
    [72 王保根.配电网管理信息系统的设计[J].现代电力,1998,15(3)
    [73] Wilson J D. CAD/GIS Convergence. Creating the Next-Generation GIS [J]. GIS WORLD, 1996, 9
    [74] 李广信.基坑支护结构上水土压力的分算与合算[J].岩土工程学报,2000,22(3)
    [75] 和再良,沈巍.1994.SINCO监测仪器(2)孔隙水压力测试系统.大坝观测与土工测试.18(1).46-52.
    [76] H.A.崔托维奇(前苏联).《土力学》.
    [77] 扬金楼.《土壤水分能量概念及其测定应用方法》[M].
    [78] 南京大学水文地质工程地质教研室编.《工程地质学》[M].北京:地质出版社,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700