用户名: 密码: 验证码:
轮胎胎面胶抗湿滑性能及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们对汽车安全、舒适、节能的要求逐年提高,相应的轮胎要求具有优异的抗湿滑性能、耐磨性能和低滚动阻力特性,这三项性能被人们称为“魔鬼三角”。新的欧洲法规标签将在2012年强制执行,主要内容是针对轮胎胎面的三大基本性能:滚动阻力、抗湿滑和噪声作为乘用车胎替换胎的硬性指标提出了限制。抗湿滑性能作为强制要求的性能之一,可见其是轮胎胎面胶最重要的性能之一,因此对其机理的研究是极其必要的。对于抗湿滑性能的机理,近二十年的关注越来越多,但同时又是充满挑战的,因为迄今没有得到系统的研究。到目前为止,还局限在用0℃的tanδ来表征抗湿滑性能,实际上当以白炭黑作为主要填料的绿色轮胎工业化之后,动态粘弹性能已经不能用来作为衡量抗湿滑性能的唯一指标,这对指导高性能轮胎胎面的配方设计是不利的。因此,研究动态粘弹性能对抗湿滑性能的贡献和不同填料填充胶的抗湿滑性能的关键影响因素和机理是本论文致力研究的方向。
     论文的第一部分,主要用LAT-100磨耗实验机测定了炭黑和白炭黑补强溶聚丁苯(SSBR)原位改性胶料的抗湿滑性能,用动态热分析仪(DMA)测定了胶料的动态粘弹性能,并分析了抗湿滑性能的影响因素。结果表明,在一定的温度和速度范围内,白炭黑SSBR胎面胶抗湿滑性能优于炭黑胎面胶;仅采用动态粘弹性能描述胶料的抗湿滑能是不全面的,抗湿滑性能受温度、速度和胶料硬度等的共同影响,随着温度的升高而降低,随着速度的增大呈现先增大后减小的趋势,这是润滑作用和动态粘弹性能等共同作用的结果。根据本章的结论,有助于指导抗湿滑性能影响的外因,并对本论文后几章研究具有指导意义。
     论文的第二部分,研究了动态粘弹性能对抗湿滑性能的影响。首先用DMA在拉伸和剪切两种模式下分别测定了0℃的tanδ随应变(0.7%-10%)的变化,在不同粒径炭黑补强体系中确定动态粘弹性参数tanδ表征抗湿滑性能的最佳条件,然后在炭黑和白炭黑补强不同丁苯胶体系中研究动态粘弹性能对抗湿滑的贡献。实验结果表明,对于相同硬度的不同粒径炭黑填充的SSBR/BR胶料,0℃的tanδ与抗湿滑性能的相关性系数高达0.98,此相关性系数下的tanδ的应变范围在拉伸模式下为4%-7%,在剪切模式下为0.7%-10%。因此接下来采用4%拉伸形变下的tanδ来表征动态粘弹性能与抗湿滑性能的相关性。对于炭黑和白炭黑填充不同的丁苯胶体系,炭黑和白炭黑胶料的tanδ分别与抗湿滑性能有很好的相关性,却没有统一的好的相关性。然而,对于未预磨的炭黑和白炭黑填充不同丁苯胶体系,可以得到统一的较好的相关性,此时胶料的抗湿滑性能可以直接用0-C的tanδ表征。以上充分说明了动态粘弹性能可用来对比同种填料补强炭胶料的抗湿滑性能,同时发现尽管炭黑胶料O℃的tanδ较高,所有白炭黑胶料的抗湿滑性能均优于炭黑胶料,故填料不同时,动态粘弹性能不再是抗湿滑性能的唯一决定因素,表面对抗湿滑性能的影响也需要考虑。炭黑和白炭黑粉末的纳米压痕硬度测试进一步说明了硬粒子的存在可能是白炭黑胶料抗湿滑性能优越的最重要的原因。根据本章的结论,有助于指导分析动态粘弹性能对抗湿滑性的贡献,同时引导我们去思考炭黑和白炭黑补强(不同种类填料补强)胶料抗湿滑性能差别的原因。
     论文的第三部分,探索了炭黑和白炭黑等不同种类填料补强胶料的抗湿滑性能机理。为了研究其机理我们进行了表面的表征,用白光干涉仪测定了胶料表面预磨后的表面粗糙度和三维表面形貌,用划痕实验对比了胶料的微观硬度。结果表明,在毛玻璃面和光滑玻璃面上白炭黑胶料的抗湿滑性能均优于炭黑胶料,但是动态粘弹性能不是白炭黑胶料抗湿滑性能优越的主要原因。进一步测定了胶料的表面粗糙度发现,胶料大的表面粗糙度有助于抗湿滑性能的改善,这可能是白炭黑填充胶料抗湿滑性能优于炭黑填充胶料的主要原因之一,XPS表面分析表明,白炭黑摩擦后表面的白炭黑粒子出现了脱落,无法证明摩擦后白炭黑粒子露在外面起到刺破水膜的作用;进而设计用胶料来摩擦玻璃的划痕实验进一步说明了白炭黑胶料的微观硬度远远高于炭黑胶料的微观硬度,这可能是白炭黑胶料抗湿滑性能优于炭黑胶料的又一重要原因。为了验证硬粒子对抗湿滑性能的改善作用,用金刚石部分等量代替炭黑和白炭黑补强胶料,抗湿滑性能的数据表明,加入金刚石之后,胶料的抗湿滑性能大幅度改善,进一步证明了硬粒子刺破水膜、改善抗湿滑这一结论的正确性,从而成功解决了白炭黑抗湿滑性能优越的原因这一难题——粗糙胶料表面和高的微观硬度对抗湿滑性能的改善作用。通过对比不同水膜厚度下炭黑、白炭黑、纳米金刚石胶料的抗湿滑性能,进一步验证了粗糙胶料表面和高的微观硬度在厚水膜时(约为50μm-1mm)对抗湿滑性能的改善作用。这对不同种类填料补强橡胶的抗湿滑性能机理研究和高抗湿滑性能轮胎胎面配方设计提供了指导。
In the last decades, with the demand of energy conservation and emission reduction in our country and the increased requirements of security, energy-saving, and comfort for cares, good wet-skid resistance (WSR), abrasion resistance and low rolling resistance becomes the essential desire for high-performance tires, which are often called "magic triangle" in the tire industry. The new European label, accroding to three basic properties of tire tread, including the rolling resistance, WSR and voice, will be carried out in 2012. Therefore, the study on the mechanism of WSR is one of the research focuses and of significant importance. In the rencent twenty yeaars, the study on WSR gardually increased but without producing a systematial theory. Since the'green'tire was commercialized, it was found that besides the low rolling resistance, this tire featured better WSR. The viscoelasticity could no longer explain the better WSR of silica filled composites, which is disadvantages to the design of tire tread with high WSR. It becomes a changlling topic. Therefore, it is essential to study the contribution of viscoelasticity to WSR for filled rubber composites and the influence of other factors to WSR, which is the main research direction of this thesis.
     In the first part, we mainly studied the WSR of carbon black (CB)- and silica-filled SSBR (Solution styrene-butadiene rubber) composites measured with LAT-100 abrader and analyzed the influening factors. A dynamic mechanical thermal analyzer was used to obtain the visoelasticity of the composites. The results showed that the silica-filled composites exhibited better WSR than CB-filled composites under the measuring conditions. It was not sufficient to represent WSR just using viscoelasticity. The temperature, velocity and the hardness of the composites also have effect on WSR. The WSR increases with the decreasing temperature and the increasing velocity, which was caused by the water lubrication effect and viscoelasticity. The conclusions of this part are in favor of choosing the influencing factors of WSR and have significance on the subsequent parts.
     In the second part, we mainly revisited the role of viscoelasticity in WSR of rubber composites by comparing the effects of CB and silica on WSR. The WSR on wet ground glass was obtained with a portable British Pendulum Skid Tester (BPST). Under shear and tensile modes, tanδof the composites was measured at 0℃in a wide range of strains (0.7%-10%) via a dynamic mechanical analyzer. For different sizes of CB-filled composites, a high correlation coefficient (R2=0.98) between WSR and tan 8 under both shear (0.7%-10%) and tensile (4%-7%) modes was obtained. Tanδat tensile strain 4% was thus adopted as a parameter to characterize viscoelasticity. Good correlations at tensile strain of 4% was also found for CB- and silica-filled SBR composites with rough surface, while a good correlation was also observed for rubber composites with smooth surface regardless the type of filler. The higher WSRs of silica-filled composites over those filled with CB were mainly due to the higher nanohardness of silica. All these results demonstrate that WSR can be predicted from viscoelasticity for composites with similar surface roughness and micro-hardness. Basing on this conclusion, it is helpful to analyze the contribution of viscoelasticity to WSR. Besides, it guides us to explore the mechanism of WSR for different fillers-filled system. Therefore, the conclusions of this part are in favor of choosing the influencing factors of WSR and have significance on the subsequent parts.
     In the third part, we mainly studied the wet skid resistance (WSR) of SSBR/BR (Butadiene rubber) composites filled with carbon black, silica, and nano-diamond partly replacing carbon black or silica, respectively, with BPST. A 3D scanning white-light interfering profilometer was used and the scratch test performed to characterize surface roughness and micro-roughness, respectively, of the composites. WSR of the silica filled composite was better than that of the carbon black filled one, and further enhancement of WSR was obtained by replacing silica with nano-diamond. Tanδof the composites at 0℃,10 Hz, and tensile strain of 5% did not show good correlation with WSR. The surface roughness of the composites had effects on WSR. The scratch test was designed to compare the micro-hardness of the composites surface, which indicated that the higher the hardness of the filler in the composite, the higher the micro-hardness and the better the WSR. Therefore, the surface micro-hardness of the composites is an important factor affecting WSR, besides viscoelasticity and surface roughness. Besides, we studied the influence of water film thickness for WSR for the composites filled with carbon black, silica, and nano-diamond. It further indicated that the effect of stiff particles is of significant importance for improving WSR when the water film is thick (50μm-1mm).
引文
[1]Wriggers P. Multi-scale approach for frictional contact of elastomers on rough rigid surfaces [J]. Comput. Methods Appl. Mech. Engrg.2009,198 (12):1996-2008.
    [2]吴清洁.高性能轮胎胎面胶的研究进展[J].弹性体.2001,11(2):34-38.
    [3]Cunningham A, Andrew K R, Roberts A D. Short duration sliding contacts between elastomers and smooth rigid substrates:exploratory studies with an instrumented pendulum skid tester [J]. Wear. 1999,232:122-130.
    [4]Le Gal A, Guyb L. Modelling of sliding friction for carbon black and silica filled elastomers on road tracks. wear.2008,264:606-615.
    [5]Le Gal A, Yang X, Kluppel M. Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis [J]. J. Chem. Phys.2005,123:014704.
    [6]Yurdumakan B, Ali Dhinojwala K N. Origin of Higher Friction for Elastomers Sliding on Glassy Polymers [J]. J. Phys. Chem. C. 111 (2007) 960-965.
    [7]Bhaduri D, Kumar, R, Jain, A K, Chattopadhyay, A K. On tribological behaviour and application of TiN and MoS2-Ti composite coating for enhancing performance of monolayer cBN grinding wheel [J]. wear.2010,268:1053-1065.
    [8]Kasemchaisiri R. A method to determine water retainability of porous fine aggregate for design and quality control of fresh concrete [J]. Constr. Build. Mater.2007,21:38-43.
    [9]Le Gal A, Kluppel M. Investigation and modelling of rubber stationary friction on rough surfaces[J]. J. Phys.:Condens. Matter.2008,20:015007.
    [10]Pan X D. Significance of tuning bulk viscoelasticity via polymer molecular design on wet sliding friction of elastomer compounds [J]. Tribology Letters.2005,20:209-219.
    [11]Pan X D. Bulk viscoelastic contribution to the wet-sliding friction of rubber compounds [J]. J.Polym. Sci. Part B:Polym. Phys.2003,41:757-771.
    [12]Bureau L. Sliding Friction at a Rubber/Brush Interface [J]. Langmuir.2004,20:4523-4529.
    [13]Baek K S, Kyogoku K, Nakahara T. An experimental investigation of transient traction characteristics in rolling-sliding wheel/rail contacts under dry-wet conditions[J]. Wear.2007, 263:169-179.
    [14]Pettet G. A contribution to the understanding of elementary wear mechanisms of rubber filled composites [J]. Rubber Chem. Technol.2005,78(2):312.
    [15]Lindenmann H P. New findings regarding the significance of pavement skid resistance for road safety on Swiss freeways [J]. Journal of Safety Research.2006,37:395-400.
    [16]王晓.轮胎的滚动阻力和抗湿滑性的分析[J].广州橡胶.2001,(9):6-11.
    [17]Grosch K A. The Relation between the friction and visco-elastic properties of rubber [J]. Proc. R. Soc., Lond. A.1963,274:21-39.
    [18]Grosch K A. Relation between the friction and visco-elastic properties of rubber [J]. Nature.1963, 197:858-864.
    [19]Heinrich G. The dynamics of tire tread compounds and their relationship to wet skid behavior [J]. Progr Colloid Polym. Sci.1992,90:16-26.
    [20]Nahmias M, Serra A. Correlations of wet traction with viscoelastic properties of passenger tread compounds [J]. Rubber World.1997,216:38-42.
    [21]Heinrich, G The dynamic Glass transition Temperature as a criterion for the wet skid Behavior of Tread Compounds [J]. Kummi Gummi Kunsts.1996,49:32-37
    [22]A.D. Roberts, A.G. Thomas, The adhesion and friction of smooth rubber surface[J]. Wear.1973,33: 45-64.
    [23]Nordisek K H. The integral rubber concept-an approach to an ideal tire tread rubber [J]. Kummi Gummi Kunsts.1985,38:178-185.
    [24]Grosch, K A. The rolling resistance, wear and traction properties of tread compounds [J]. Rubber Chem. Technol.1996,69:494-568.
    [25]Takino H, Nakayama R, Yamada Y. Viscoelastic properties of elastomers and tire WSR [J]. Rubber Chem. Technol.1997,70:584-594.
    [26]Heinrich G, Dumler H B. Wet skid properties of filled rubbers and the rubber-glass transition [J]. Rubber Chem. Technol.1998,71:53.
    [27]Pan X D. Significance of tuning bulk viscoelasticity via polymer molecular design on wet sliding friction of elastomer compounds [J]. Tribology Letters.2005,20:209-219.
    [28]Pan X D. Impact of reinforcing filler on the dynamic moduli of elastomer compounds under shear deformation in relation to wet sliding friction [J]. Rheol. Acta.2005,44:379-395.
    [29]Pan X D. Wet sliding friction of elastomer compounds on a rough surface under varied lubrication conditions, Wear.2007,262:707-717.
    [30]Pan X D. Contribution of fine filler particles to energy dissipation during wet sliding of elastomer compounds on a rough surface [J]. J. Phys. D:Appl. Phys.2007,40:4657-4667.
    [31]James D I. Abrasion of Rubber [M]. McLaren:London,1967.
    [32]Y. Saito, New polymer development for low rolling resistance tyres [J]. Kautsch. Gummi Kunstst. 1986,30:39-46.
    [33]Conant F S, Dum J L. Frictional Properties of Tread tire compounds on ice [J]. In dustrialand engineering chemistry.1949,41(1):120-146.
    [34]Heinrich G, Kluppel M. Rubber friction, tread deformation and tire traction [J]. Wear.2008, 265:1052-1060.
    [35]孙建林,萧田国,黄立宇,张志超.橡胶轮胎与路面间摩擦模型及分析[J].青海大学学报.2004,(2):1-5.
    [36]彭旭东,郭孔辉,丁玉华,单国玲,侯汝成.橡胶和轮胎的摩擦[J].橡胶工业.2003,50(9):562-568.
    [37]Nakayama R. Presented at a meeting of the rubber division America Chemical Society [J]. Abstract in Rubber Chem. Technol.1993.
    [38]Pan X D. Understanding wet skid resistance testing with the British Pendulum Skid Tester:Analysis of sliding Rubber Chem. Technol.2010,83:97-122.
    [39]Wang M J. Effect of fillers on wet skid resistance of tires. Part Ⅰ:water lubrication vs filler-elastomer interactions[J]. Rubber Chem. Technol.2008,81:552-575.
    [40]Wang M J, Effect of fillers on wet skid resistance of tires. Part Ⅱ. water lubrication vs filler-elastomer interactions[J]. Rubber Chem. Technol.2008,81:576-599.
    [41]Grosch, K. A. Relation between the friction and visco-elastic properties of rubber. Nature.1963,197 (2):858-859.
    [42]Gent A N, Walter J D. The pneumatic tire. The national highway traffic safety administration:2005
    [43]Koklas S N, Kalfoglou K N. Epoxidized styrene-butadiene star block copolymers with chlorinated polymers [J]. Polymer.1994,35:1425.
    [44]赵金义,毕雪玲,周丽玲,王伟,赵炳帅.硅烷偶联剂改性白炭黑在丁苯橡胶中的应用.2004,25(2):160-162.
    [45]Heinrich G. Why Silica Technology Needs S-SBR in High PerformanceTires [J]. Kautsch. Gummi Kunstst.2008,368-376
    [46]Bang D Y, S. D. Y, Lee S. Characterization of functionalized styrene-butadiene rubber by flow field-flow fractionation/light scattering in organic solvent [J]. J.Chromatogr.A.2007,1147:200-205.
    [47]Zhang A Q, Zhou Y Y A study on rheological properties of carbon black extended powdered SBR using a torque rheomete. Polym. test.2003,22 (9):133-141.
    [48]韩慧,李大为,陈志宏.白炭黑/炭黑并用比对轿车轮胎胎面胶性能的影响[J].轮胎工业.2007,27:25-31.
    [49]李花婷,李迎.不同牌号ESBR的性能特点及应用[J].轮胎工业,2007,27(4):214-218
    [50]曹建明,李晶,赵玉中.我国乳聚丁苯橡胶现状及发展建议[J].2007,35(1):87-89.
    [51]代云水,张萍,赵树高.SSBR在高性能轮胎胶料中的应用[J].弹性体,2007,17(4):23-26.
    [53]宋力航,许秋华,王钧周,等.齐鲁充油丁苯橡胶SBR1778的应用[J].2001,11(3):27-30.
    [54]李花婷,蔡尚脉,颜晋钧.乳聚丁苯橡胶SBR 1507基本性能试验研究[J].橡胶科技市场,2007,4.21-25.
    [55]昌焰.溶聚丁苯橡胶结构与性能的研究[J].弹性体,1994,4(4):35-39.
    [56]薛广智,涂学忠.在胎面胶料中使用白炭黑降低滚动阻力[J].轮胎工业,1996,16(2):74-79.
    [57]Cochet P H, Petit D, Barriquand L, et al.高分散性沉淀法白炭黑在轮胎中的应用研究[J].轮胎工业,2001,21(8):482-489.
    [58]Koenen A, Sanon A. Tribological and vibroacoustic behavior of a contact between rubber and glass (application to wiper blade) [J]. Tribol. Int.2007,40:1484-1491.
    [59]Mohammadreza M, Braham Prakash E K. Tribological behaviour of an elastomer aged in different oils [J]. Tribol. Int.2008,41:860-866.
    [60]Myant C. Influence of load and elastic properties on the rolling and sliding friction of lubricated compliant contacts [J]. Tribol. Int.2009,43:55-63.
    [61]Persson B N J. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion [J]. J. Phys.:Condens. Matter.2005,17:R1-R62.
    [62]Persson B N J. Sealing is at the Origin of Rubber Slipping on Wet Roads [J]. Nat Mater.2004:882-885.
    [63]Persson B N J. Rubber friction on wet and dry road surfaces:the sealing effect [J]. Phys. Rev. B 71. 2005,035428.
    [64]Mofidi M, Persson B N J. Rubber friction on (apparently) smooth lubricated surfaces [J]. J. Phys: Condens. Matter.2008,20:085223.
    [65]Persson B N J. On the theory of rubber friction [J]. Surf. Sci.1998,401(10):445-454.
    [66]Pal K, Rajasekar R. Influence of carbon blacks on butadiene rubber/high styrene rubber/natural rubber with nanosilica:Morphology and wear [J]. Mater. Design.2010,31:1156-1164.
    [67]S. Riosa, R. Chicurelb, L F. Del CastilloaPotential of particle and fibre reinforcement of tyre tread Elastomers[J]. Mater. Design.2001,22:369-374.
    [68]Enver D, Fatma K, Mithat K. The effects of furnace carbon blacks on the mechanical and the rheological properties of SBR1502 styrene butadiene rubber [J]. Mater. Design.2007,28: 1326-1329.
    [69]王梦蛟.填料一弹性体相互作用对填充硫化胶滞后损失、湿摩擦性能和磨耗性能的影响(续一)[J].轮胎工业,2007,27(11):648-656.
    [70]王梦蛟.填料-弹性体相互作用对填充硫化胶滞后损失、湿摩擦性能和磨耗性能的影响[J].轮胎工业.2007,27:579-584.
    [71]王梦蛟.填料-弹性体相互作用对填充硫化胶滞后损失、湿摩擦性能和磨耗性能的影响(续完)[J].轮胎工业.2007,27:712-720.
    [72]Chang W R. The effects of surface roughness and contaminants on the dynamic friction between porcelain tile and vulcanized rubber [J]. Saf. Sci.2002,40:577-591.
    [73]曹东海.静摩擦因数与表面粗糙度关系的实验分析[J].机械传动,2005,3:66-68.
    [74]李伯奎.三维粗糙度参数算术平均偏差与均方根偏差的规律研究[J].工具技术.2008,42:107-110.
    [75]李克天.光照感应式表面粗糙度的测量方法[J].机械科技.1992,10:32-33.
    [76]韩香娥,吴振森.金属基及涂层表面粗糙度的测量方法研究[J].应用光学.1996,16(1):38-43.
    [77]李家文,陈宇航,黄文浩.AFM扫描参数对表面粗糙度测量的影响分析[J].电子显微学报.2006,26(2):32-35.
    [78]莫其逢,黄创高,田建民,高英俊,原子力显微镜与表面形貌观察[J].广西物理.2007,28(2):46-49.
    [79]周红军,罗颖.原子力显微镜在高分子研究中的应用[J].广东化工.2007,34(1):83-85.
    [80]Montgomery P C, Benatmane A, Fogarassy E, Ponpon J P. Large area, high resolution analysis of surface rough semiconductors using interference microscopy [J]. Mater. Sci. Eng., B.2002,91-92: 79-82.
    [81]Kayahan E, Oktem H. Measurement of surface roughness of metals using binary speckle image analysis [J]. Tribol. Int.2010,4.3:307-311.
    [82]Sara Z, Gro R.Optimization of white light interferometry on rough surfaces based on error analysis [J]. Optik.2004,115(8):351-357.
    [83]Bettge D. Quantitative description of wear surfaces of disc brakes using interference microscopy [J]. Wear.2001,248:121-127
    [84]常素萍,谢铁邦.钢球表面粗糙度的白光干涉非接触测法[J].轴承.2006(3):28-30.
    [85]Ezzat F H. Dry Sliding of Rubber on Ceramic Surface [J]. Kautsch. Gummi Kunstst.2008:576-579.
    [86]Elleuch R, Elleuch K.Surface roughness effect on friction behaviour of elastomeric material. Mater. Sci. Engineer.A.2007,465:8-12.
    [87]B. N. J. Persson. Contact mechanics for randomly rough surfaces. Sur.Sci. Rep.2006,61:201-227.
    [88]Wriggers P, Reinelt J. Multi-scale approach for frictional contact of elastomers on rough rigid surface [J]. Comput. Methods Appl. Mech. Engrg.2009,198:1996-2008.
    [89]Persson B N J. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion [J]. Wear.2009,266:468-475.
    [90]EL-Tayeb N S M, Liew K W. On the dry and wet sliding performance of potentially new frictional brake pad materials for automotive industry [J]. Wear.2009,266:275-287.
    [91]Elleuch R. Surface roughness effect on friction behaviour of elastomeric material [J]. Mat.Sci.Eng.A. 2007,465:8-12.
    [92]Manning D P. The surface roughness of a rubber soling material determines the coefficient of friction on water-lubricated surfaces [J]. J. Saf. Res.1998,29:275-283.
    [93]Manning D P. The effect of roughness, floor polish, water, oil and ice on underfoot friction:current safety footwear solings are less slip resistant than microcellular polyurethane[J]. Appl. Ergon.2001, 32:185-196.
    [94]陈容.表面粗糙度对摩擦机理的研究[J].岳阳职业技术学院学报.2006,3:74-76.
    [95]陈豪杰,李黎,王宏棣.体育地板滑动摩擦系数研究[J].木材加工机械.2007(4):25-28.
    [96]Deleau F. Sliding friction at elastomer/glass contact:Influence of the wetting conditions and instability analysis [J]. Tribo. Intern.2009,42:149-159.
    [97]刘畅.发泡橡胶在冬季轮胎胎面中的应用机理及性能研究[J].特种橡胶制品.2006,27(3):24-27.
    [98]G K C. Dynamic viscoelastic properties of carbon black loaded closed-cell microcellular ethylene propylenediene rubber vulcanizates:Effect of blowing agent, temperature f requency, and strain. J.Applym.Sci.1996,61(5):805-813.
    [99]Moore D F. Principles and application of tribology. Pergamon:London,1975.
    [100]Flores A, Ania F, Balta F J. From the glassy state to ordered polymer structures:A microhardness study [J]. Polymer.2009,50:729-746.
    [101]Johnson K. L. Adhesion and friction between a smooth elastic spherical asperity and a plane surface [J]. Proc. R. Soc. Lond. A.1997,453:163-179.
    [102]Owen M K. Adhesion Hysteresis and Friction[J]. Langmuir,1993,9:29-31.
    [103]Opitz A. Friction of thin water films:a nanotribological study [J]. Surf Sci.2002,54:199-207.
    [104]Verheydea B, Romboutsa M, Vanhulsela A.Influence of surface treatment of elastomers on their frictional behaviour in sliding contact [J]. Wear.2009,266:468-475.
    [105]Johnson K L. Adhesion and friction between a smooth elastic spherical asperity and a plane surface[J]. Proc. R. Soc. Lond. A 1997,453:163-179.
    [106]Ezzat F H, Ali W Y. Dry Sliding of Rubber on Ceramic Surface [J]. Kautsch. Gummi Kunstst. 2008:576-579.
    [107]Gong J, Iwasaki Y, Yoshihito O. Friction of Gels. Friction on Solid Surfaces [J]. J. Phys. Chem. B. 1999,103:6001-6006.
    [108]Uchiyama Y, Wada N. Friction of Short-Fiber-Reinforced Rubber on Wet Surfaces [J]. J.Applym.Sci.2005,95:82-89.
    [109]Sterle W O. Towards a better understanding of brake friction materials [J]. Wear 2007,263 (7-12): 1189-1201.
    [110]Koenen_A, Sanon A. Tribological and vibroacoustic behavior of a contact between rubber and glass (application to wiper blade) [J]. Tribol. Int.2007,40:1484-1491.
    [111]Yu S, Hu H. Tribological properties of epoxy/rubber nanocomposites [J]. Trib Inte.2008,41: 1205-1211.
    [112]El-Taye N S M, Liew K W. Effect of water spray on friction and wear behaviour of noncommercial and commercial brake pad materials [J]. J. Mater.Process.Tech.2008,208: 135-144.
    [113]Deleau F. Sliding friction at elastomer/glass contact:Influence of the wetting conditions and instability analysis. Tribol. Int.2009,42:149-159.
    [114]韩慧,李炜东,李大为,梅周蟒.用室内磨耗试验机研究胎面胶的耐磨性和抗湿滑性[J].轮胎工业.2006,26(1):48-54.
    [115]蒋志强,梅周蟒LAT100 Dr. Grosch系统磨耗和牵引力试验机[J].2004,24(5):289-292
    [116]Asi I M. Evaluating skid resistance of different asphalt concrete mixes [J]. Building and Environment.2007,42:325-329.
    [117]Ouyang G B. Carbon black effects on friction properties of tread compound using a modified ASTM-E303 Pendulum Skid Tester[J]. Kautsch. Gummi Kunstst.1993,38-43.
    [118]ASTM E303-93, Standard test method for measuring surface frictional properties using the British pendulum tester[S].1993.
    [119]Cunningham A, Andrew K R, Roberts A D. Short duration sliding contacts between elastomers and smooth rigid substrates:exploratory studies with an instrumented pendulum skid tester [J]. Wear. 1999,232:122-130.
    [1]Grosch K A. The Relation between the friction and visco-elastic properties of rubber [J]. Proc. R. Soc., Lond. A.1963,274:21-39.
    [2]Grosch, K. A. Relation between the friction and visco-elastic properties of rubber. Nature.1963,197 (2):858-859.
    [3]James D I. Abrasion of Rubber [M]. McLaren:London,1967.
    [4]Y. Saito, New polymer development for low rolling resistance tyres [J]. Kautsch. Gummi Kunstst. 1986,30:39-46.
    [5]Heinrich G. The dynamics of tire tread compounds and their relationship to wet skid behavior [J]. Progr Colloid Polym. Sci.1992,90:16-26.
    [6]Nakayama R. Presented at a meeting of the rubber division America Chemical Society. Abstract in RCT.1993.
    [7]Takino H, Nakayama R, Yamada Y. Viscoelastic properties of elastomers and tire WSR [J]. Rubber Chem. Technol.1997,70:584-594.
    [8]Pan X D. Impact of reinforcing filler on the dynamic moduli of elastomer compounds under shear deformation in relation to wet sliding friction [J]. Rheol. Acta.2005,44:379-395.
    [9]Pan X D. Significance of tuning bulk viscoelasticity via polymer molecular design on wet sliding friction of elastomer compounds [J]. Tribology Letters.2005,20:209-219.
    [10]Le Gal A, Yang X, Kluppel M. Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis [J]. J. Chem. Phys.2005,123:014704.
    [11]Le Gal A, Guyb L. Modelling of sliding friction for carbon black and silica filled elastomers on road tracks. wear.2008,264:606-615.
    [12]Wang M J. Effect of fillers on WSR of tires. Part Ⅰ:water lubrication vs filler-elastomer interactions [J]. Rubber Chem. Technol.2008,81:552-575.
    [13]王梦蛟.填料-聚合物相互作用对填充硫化胶滞后损失、湿摩擦和磨耗的影响(续一)[J].轮胎工业.2007,27(11):648-656.
    [14]Moore D F著,黄文治等译.摩擦学原理与应用[M].北京:机械工业出版社,1982.
    本章主要内容发表在以下文章中:
    [1]吴友平,王元霞.SSBR胎面胶抗湿滑性能的研究[J].橡胶工业.2009,56(7):412-416.(核心期刊)
    [2]王元霞,吴友平.SSBR和ESBR胎面胶性能的研究[J].橡胶工业,2009,56(8):468-471.(核心期刊)
    [1]Grosch K A. The Relation between the friction and visco-elastic properties of rubber [J]. Proc. R. Soc., Lond. A.1963,274:21-39.
    [2]Grosch K A. Relation between the friction and visco-elastic properties of rubber [J]. Nature.1963, 197:858-864.
    [3]James D I. Abrasion of Rubber [M]. McLaren:London,1967.
    [4]Y. Saito, New polymer development for low rolling resistance tyres [J]. Kautsch. Gummi Kunstst. 1986,30:39-46.
    [5]Heinrich G. The dynamics of tire tread compounds and their relationship to wet skid behavior [J]. Progr Colloid Polym. Sci.1992,90:16-26.
    [6]Nakayama R. Presented at a meeting of the rubber division America Chemical Society [J]. Abstract in RCT.1993.
    [7]Takino H, Nakayama R, Yamada Y. Viscoelastic properties of elastomers and tire WSR [J]. Rubber Chem. Technol.1997,70:584-594.
    [8]Heinrich G, Dumler H B. Wet skid properties of filled rubbers and the rubber-glass transition [J]. Rubber Chem. Technol.1998,71:53.
    [9]Nahmias M, Serra A. Correlations of wet traction with viscoelastic properties of passenger tread compounds [J]. Rubber World.1997,216:38-42.
    [10]Pan X D. Impact of reinforcing filler on the dynamic moduli of elastomer compounds under shear deformation in relation to wet sliding friction [J]. Rheol. Acta.2005,44:379-395.
    [11]Pan X D. Significance of tuning bulk viscoelasticity via polymer molecular design on wet sliding friction of elastomer compounds [J]. Tribology Letters.2005,20:209-219.
    [12]Le Gal A, Yang X, Kluppel M. Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis [J]. J. Chem. Phys.2005,123:014704.
    [13]Le Gal A. Modelling of sliding friction for carbon black and silica-filled elastomers on road tracks [J]. Wear.2008,264:606-615.
    [14]Elleuch R, Elleuch K, Abdelounis H B.Surface roughness effect on friction behavior of elastomeric material [J]. Mater. Sci. Eng., A.2007,465:8-12.
    [15]Manning D P. The surface roughness of a rubber soling material determines the coefficient of friction on water-lubricated surfaces [J]. J. Saf. Res.1998,29:275-283.
    [16]Wang Y X, Wu Y P. Influence of filler type on wet skid resistance of SSBR/BR composites:effects from roughness and micro-hardness of rubber surface [J]. Appl. Surf. Sci.257 (2011) 2058.
    [17]Wang M J. Effect of fillers on WSR of tires. Part Ⅰ:water lubrication vs filler-elastomer interactions [J]. Rubber Chem. Technol.2008,81:552-575.
    [18]Wang M J. Effect of fillers on WSR of tires. Part Ⅱ:water lubrication vs filler-elastomer interactions [J]. Rubber Chem. Technol.2008,81:576-599.
    [19]Pan X D. Contribution of fine filler particles to energy dissipation during wet sliding of elastomer compounds on a rough surface [J]. J. Phys. D:Appl. Phys.2007,40:4657-4667.
    [20]Robertson C G, Lin C J. Influence of Particle Size and Polymer#Filler Coupling on Viscoelastic Glass Transition of Particle-Reinforced Polymers [J]. Macromolecules 2008,41:2727-2731.
    [21]Rattanasom N, Prasertsri S. Relationship among mechanical properties, heat ageing resistance, cut growth behavior and morphology in natural rubber:Partial replacement of clay with various types of carbon black at similar hardness level [J]. Polym. Test.2009,28:270.
    [22]Cunningham A, Andrew K R, Roberts A D. Short duration sliding contacts between elastomers and smooth rigid substrates:exploratory studies with an instrumented pendulum skid tester [J]. Wear. 1999,232:122-130.
    [23]Payne A R. Reinforcement of elastomers [M].,New York:1965.
    [24]Wang M J. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates [J]. Rubber Chem. Technol.1998,71:570-589.
    [25]Wu Y P, Zhao Q S, Zhao S H, Zhang L Q. The influence of situ modification of silica on filler network and dynamic mechanical properties of silica-filled solution styrene-butadiene rubber [J]. J. Appl. Polym. Sci.2008,108:112-118.
    [26]赵青松,吴友平,赵索合.白炭黑/溶聚丁苯橡胶复合材料的填料网络结构与动态黏弹性能[J].合成橡胶工业.2008,30(1):26-30.
    [27]Wang W J, Mahmud K, Murphy L J, et al. Carbon-silica dual phase filler, a new generation reinforcing agent for rubber:Part I characterization [J]. Kautsch Gummi Kunstst,1998,51: 348-360.
    [28]Mofidi M, Prakash B, Persson B N J. Rubber friction on (apparently) smooth lubricated surfaces, J. Phys:Condens. Matter.2008,20:085223.
    [29]Montgomery P C, Benatmane A, Fogarassy E, Ponpon J P, Large area, high resolution analysis of surface rough semiconductors using interference microscopy [J]. Mater. Sci. Eng., B.2002,91-92: 79-82.
    [30]Chang W R. The effects of surface roughness and contaminants on the dynamic friction between porcelain tile and vulcanized rubber [J]. Saf. Sci.2002,40:577-591.
    [31]Pan X D. Bulk viscoelastic contribution to the wet-sliding friction of rubber compounds [J]. J.Polym. Sci. Part B:Polym. Phys.2003,41:757-771.
    [32]Moore D F. Principles and application of tribology. Pergamon:London,1975.
    [33]王梦蛟.填料-聚合物相互作用对填充硫化胶滞后损失、湿摩擦和磨耗的影响(续一)[J].轮胎工业.2007,27(11):648-656.
    [34]Moore D F著,黄文治等译.摩擦学原理与应用[M].北京:机械工业出版社,1982.
    [1]Pan X D. Wet sliding friction of elastomer compounds on a rough surface under varied lubrication conditions, Wear.262 (2007) 707-717.
    [2]Takino H, Nakayama R, Yamada Y. Viscoelastic properties of elastomers and tire WSR [J]. Rubber Chem. Technol.1997,70:584-594.
    [3]Nahmias M, Serra A. Correlations of wet traction with viscoelastic properties of passenger tread compounds [J]. Rubber World.1997,216:38-42.
    [4]Pan X D. Impact of reinforcing filler on the dynamic moduli of elastomer compounds under shear deformation in relation to wet sliding friction [J]. Rheol. Acta.2005,44:379-395.
    [5]Pan X D. Significance of tuning bulk viscoelasticity via polymer molecular design on wet sliding friction of elastomer compounds [J]. Tribology Letters.2005,20:209-219.
    [6]Le Gal A, Yang X, Kluppel M. Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis [J]. J. Chem. Phys.2005,123:014704.
    [7]Le Gal A. Modelling of sliding friction for carbon black and silica-filled elastomers on road tracks [J]. Wear.2008,264:606-615
    [8]Elleuch R, Elleuch K, Abdelounis H B.Surface roughness effect on friction behavior of elastomeric material [J]. Mater. Sci. Eng., A.2007,465:8-12.
    [9]Manning D P. The surface roughness of a rubber soling material determines the coefficient of friction on water-lubricated surfaces[J]. J. Saf. Res.1998,29:275-283.
    [10]Wang M J. Effect of fillers on WSR of tires. Part Ⅰ:water lubrication vs filler-elastomer interactions [J]. Rubber Chem. Technol.2008,81:552-575.
    [11]Montgomery P C, Benatmane A, Fogarassy E, Ponpon J P, Large area, high resolution analysis of surface rough semiconductors using interference microscopy [J]. Mater. Sci. Eng., B.2002,91-92: 79-82.
    [12]Wang M J. Effect of fillers on WSR of tires. Part Ⅱ:water lubrication vs filler-elastomer interactions [J]. Rubber Chem. Technol.2008,81:576-599.
    [13]Cunningham A, Andrew K R, Roberts A D. Short duration sliding contacts between elastomers and smooth rigid substrates:exploratory studies with an instrumented pendulum skid tester [J]. Wear. 1999,232:122-130.
    [14]Pan X D. Bulk viscoelastic contribution to the wet-sliding friction of rubber compounds [J]. J. Polym. Sci. Part B:Polym. Phys.2003,41:757-771.
    [15]Payne A R. Reinforcement of elastomers [M].,New York:1965.
    [16]Wang M.J. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates [J]. Rubber Chem. Technol.1998,71:570-589.
    [17]Wu Y P, Zhao Q S, Zhao S H, Zhang L Q. The influence of situ modification of silica on filler network and dynamic mechanical properties of silica-filled solution styrene-butadiene rubber [J]. J. Appl. Polym. Sci.2008,108:112-118.
    [18]Deleau F. Sliding friction at elastomer/glass contact:Influence of the wetting conditions and instability analysis [J]. Tribo. Intern.2009,42:149-159.
    [19]Persson B N J. Theory of rubber friction and contact mechanics [J]. J. Chem. Phys.2004,115: 3840-3861.
    [20]Chang W R. The effects of surface roughness and contaminants on the dynamic friction between porcelain tile and vulcanized rubber [J]. Saf. Sci.2002,40:577-591.
    [21]Persson B N J. On the theory of rubber friction [J]. Surface Science 1998,401:445-454.
    [22]Mofidi M, Prakash B, Persson B N J. Rubber friction on (apparently) smooth lubricated surfaces [J]. J. Phys:Condens. Matter.2008,20:085223.
    [23]Moore D F. Principles and application of tribology. Pergamon:London,1975.
    [24]Han J, Robert B, Jason F. Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins [J]. Appl. Surf. Sci.2008,254:4494-4499.
    [25]Prakash B. Abrasive wear behavior of Fe, Co and Ni based metallic glasses [J]. Wear.2005,258: 217-222.
    本章主要内容发表在以下文章中:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700