用户名: 密码: 验证码:
黄、红麻纤维的木质素结构特征及其脱胶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄麻和红麻纤维是麻纺织工业的主要原料之一。黄麻和红麻纤维的木质素含量高,导致纤维粗硬,因此决定了黄麻和红麻纤维主要应用于生产麻布、麻袋等低档产品。黄麻和红麻纤维中木质素的存在对于纺织染整加工过程也会产生不利影响。实际上,黄、红麻纺织加工中对纤维进行加工的主要目的就是研究如何在保护黄、红麻纤维中纤维素少受损伤的同时,尽可能多地去除黄麻和红麻纤维中的木质素。在纺织行业中,红麻常作为黄麻的代用品用来进行各种加工。
     木质素是植物体次生代谢合成的一种天然有机高分子物质,在自然界中的含量仅次于纤维素。木质素是苯丙烷结构单元以醚键和碳碳键连接,而在木质素骨架侧链上有各种化学官能团,这些结构单元间的键型组成变化和化学官能团的差异,都会影响纤维的力学性质和化学反应性。因此如何正确制定黄麻和红麻纤维精细化加工工艺、及对黄麻和红麻纤维的研究和应用都有赖于深入研究黄麻和红麻纤维木质素的化学结构特征。
     本文研究比较了黄麻和红麻纤维木质素的结构特征,并对木质素结构单元之间的连接方式和官能团含量进行了定量分析,从而对黄麻和红麻纤维木质素化学结构进行了更深入的研究,进而为阐明其各种反应机理提供可靠的理论依据。并应用生物酶和化学处理对红麻纤维进行脱胶,评价了纤维中木质素去除的效果并阐述了木质素结构在脱胶过程中的变化。本文的研究结果如下:
     (1)应用傅里叶变换红外光谱、核磁共振氢谱(1H-NMR)、核磁共振碳谱(13C-NMR)研究了自制的黄麻和红麻纤维磨木木质素的结构特征。结果表明,黄麻纤维和红麻纤维木质素的苯基丙烷结构单元的经验式分别为C9H9.27O3.52(OCH3)1.26和C9H9.66O3.79(OCH3)1.30。黄麻和红麻纤维的木质素中含有羟基、羰基、甲基等复杂的官能团,且含有相当数量的紫丁香基单元,其木质素结构归属于阔叶材木质素化学结构GS型。黄麻和红麻纤维磨木木质素中木质素结构单元愈创木基单元和紫丁香基单元间主要以醚键和碳碳键相互连接,互相连接的方式有如下几种:β-O-4结构、β-1结构、β-β结构、β-5结构。在这几种结构中,β-O-4和β-β结构比例较大,β-1和β-5结构,结构含量相对较少。黄麻和红麻纤维磨木木质素中β-O-4结构、β-β结构是属于非缩合型结构,而β-1结构、β-5结构属于缩合型结构。缩合型木质素结构的存在,增加了黄麻和红麻纤维中木质素结构的复杂性,缩合型木质素结构很难降解,红麻纤维磨木木质素中的缩合型结构较黄麻纤维多。
     (2)通过化学方法和仪器分析方法对黄麻和红麻纤维木质素结构单元的比例进行了测定。从黄麻和红麻纤维的碱性硝基苯氧化反应产物液相色谱分析可知:黄麻纤维的非缩合型木质素结构中主要含有非缩合型紫丁香基丙烷结构(S)和非缩合型愈创木基结构(G);红麻纤维的非缩合型未质素结构中含有少量的非缩合型对羟基苯丙烷结构(H),绝大多数结构单元为非缩合型愈创木基结构(G)和非缩合型紫丁香基丙烷结构(S),其总量占非缩合型木质素结构单元的99%。黄麻纤维木质素的非缩合型愈创木基丙烷结构(G)约占7.56%左右,非缩合型紫丁香基丙烷结构(S)约占92.44%左右,其非缩合型S/G值约为12.22;而红麻纤维木质素的非缩合型愈创木基丙烷结构(G)约占10.6%左右,非缩合型紫丁香基丙烷结构(S)约占89.29%左右,其非缩合型S/G值约为8.4。通过裂解气相色谱-质谱联用法对黄麻纤维和红麻纤维磨木木质素的结构进一步分析得出:黄麻纤维木质素中三种结构单元(含缩合型及非缩合型结构单元)的比例H:G:S为0:26.08:73.92,S/G比值为2.835;红麻纤维磨木木质素中三种结构单元(含缩合型及非缩合型结构单元)的比例H:G:S为4.59:34.11:61.30,S/G比值为1.797。
     (3)应用X-射线光电子能谱确定了黄麻和红麻纤维木质素的碳的结合态C1s各个子峰的电子结合能分别为284.6 eV(C-C或C=C),285.2 eV(C-H),286.5 eV(C-O),289.27 eV (O-C=O);氧的结合态O1s各个子峰的电子结合能分别为532.3eV(O1—碳氧单键中的氧原子),533.3 eV(02—碳氧双键中的氧原子)。相比黄麻纤维木质素,红麻纤维木质素中含有较多的碳碳键连接碳原子,较少的碳氢键连接碳原子,较少的醚键连接碳原子,较多的酯键或羧酸中的羰基碳原子。黄麻纤维木质素的O1/02比值高于红麻纤维木质素,说明黄麻纤维木质素含有更多的单键连接的氧原子。
     (4)应用漆酶及漆酶/介体体系对红麻纤维进行脱胶处理,对单独使用漆酶、加入介体ABTS以及增加预处理工序的多种脱胶工艺进行了研究,测试了脱胶后红麻纤维的性能指标,并通过X-射线衍射、红外光谱、碱性硝基苯氧化产物的液相色谱分析评价了脱胶效果。结果显示,漆酶单独应用于红麻纤维的脱胶工艺效果不明显,必须加入介体ABTS、增加预处理工序才能发挥其作用效果。漆酶/ABTS处理后红麻纤维的结晶度提高。红外光谱分析可以知漆酶/ABTS方案脱胶后的红麻纤维的光谱图中木质素和半纤维素的主要特征峰强度下降,而大部分纤维素的特征峰强度增加了。由脱胶后纤维的碱性硝基苯氧化实验结果可以推论漆酶/ABTS脱胶方案有助于去除红麻纤维的木质素结构中非缩合型愈创木基丙烷结构单元及非缩合型紫丁香基丙烷结构单元。
     (5)应用七种化学工艺对红麻纤维进行脱胶处理,并对脱胶后红麻纤维的分裂度及残余木质素含量进行了测试,通过X-射线衍射、红外光谱、扫描电镜、碱性硝基苯氧化产物的液相色谱测试等手段评价了七种化学工艺对红麻纤维脱胶处理的效果。化学脱胶后,纤维的结晶度提高。在氢氧化钠双氧水法或过碳酸钠法处理(CT1和CR1方案)的后道加入强氧化剂过氧单硫酸和过醋酸处理(CT2和CR2方案),再进行硫酸盐法煮练后(CT3和CR3方案),红麻纤维红外光谱图中纤维素特征峰积分面积相对值Ai/As之和逐步增加,木质素和半纤维素特征峰积分面积相对值Ai/As之和逐步减少,且纤维的木质素含量逐步减少,纤维的分裂度逐步增加。说明本试验所采用的七种方案均有明显的脱胶效果,且过氧单硫酸和过醋酸混合液作为一种新型的氧化剂,具有一定的脱除木质素效果。对CT1~CT3脱胶后的纤维进行碱性硝基苯氧化实验,发现CT1~CT3脱胶方案有助于去除红麻纤维的木质素结构中非缩合型对羟基苯丙烷结构单元和非缩合型愈创木基丙烷结构单元,并可能在脱胶过程中导致缩合型紫丁香基丙烷结构苯环C2,C5上的其他连接键被打断,形成更多的非缩合型紫丁香基丙烷结构单元。相比较而言,CTl方案更易于去除非缩合型愈创木基结构单元和非缩合型对羟基苯丙烷结构单元,CT2方案更易于去除非缩合型愈创木基结构单元,CT3方案更易于去除非缩合型对羟基苯丙烷结构单元和非缩合型紫丁香基结构单元。
Jute and kenaf are renewable, cheap, and easily grown annual plant. The lignin content of jute and kenaf fiber is high which resulted in the coarse and rigidity handle of the fiber, therefore, jute and kenaf fiber are mainly used to make the low grade products such as package fabric and bag. At the same time, the existence of lignin in jute and kenaf fiber have more disadvantages to the performances of fiber obtained after fiber preparation and to the fiber post-processing. Actually, the predominant task aiming at getting finer and soft fiber in degumming process is to remove lignin with as less as possible damage to the fiber cellulose. In the textile industry, jute and kenaf fiber are processed as the same fiber.
     Lignin is a three-dimensional polymer that basically consists of numerous, various substituted phenylpropane units linked by carbon-carbon and ether bonds. This skeleton bears a wide variety of functional groups affording reactive centers for chemical and biochemical modification. There are many kinds of function groups in the side chain of lignin. The changes of linkages among units and the differences of function groups in lignin structure will affect the mechanical character and chemical reactivity of fiber. Therefore, an understanding of the chemical composition of jute and kenaf fiber lignin gives insight into the preparation to get finer fibers and application of kenaf fiber as material for clothing and other high grade products.
     In this paper, milled wood lignin (MWL) were isolated and purified from jute and kenaf fiber, the lignin obtained was characterized and compared. Linkage style among lignin structure units and content of functional group were quantitatively analyzed for further research on the chemical structure of lignin between jute and kenaf fiber, which provided reliable theoretical basis for illuminating the various reaction mechanisms, and furthermore, kenaf fiber was degummed by the biological enzyme and chemical treatment, the effect of lignin removal was evaluated and the changes of lignin structure during the degumming process was explained. Results were illustrated as follows:
     (1) Milled wood lignin (MWL) of jute and kenaf fiber were characterized by elemental analysis, FTIR, 1H-NMR and 13C-NMR spectroscopy. The C9 formula were calculated for MWL from jute and kenaf fiber as C9H9.27O3.52(OCH3)1.26 and C9H9.32O3.69(OCH3)1.30. The spectra of FTIR,1H-NMR and 13C-NMR indicated the jute and kenaf fiber lignin to be of the G/S type with high proportion of syringyl (S) unit. It is evident that theβ-O-4 structures mainly linkaged in the MWL of jute and kenaf fiber which contain more erythro stereochemistry type than thero stereochemistry type. In general, the characteristics of lignin of jute and kenaf fiber were similar to that of hardwood. Comparing with lignin of jute fiber, lignin of kenaf fiber contained more condensedβ-5 structures.
     (2) The chemical method and instrument analysis method were adopted in the determination of three types basic lignin unit ratio. The HPLC results of the products of alkalinous nitrobenzene oxidation about the jute and kenaf fiber showed a predominance of syringyl(S) units over guaiacyl(G), the uncondensed lignin of jute contained 7.56% uncondensed guaiacyl units and 92.44% uncondensed syringyl units, the uncondensed S/G value was 12.22; the uncondensed lignin of kenaf contained 10.6% uncondensed guaiacyl units and 89.29% uncondensed syringyl units, and few 4-hydroxyphenyl units were found in lignin of kenaf fiber, the uncondesnde S/G value was 8.4; Furthermore, the MWL of jute and kenaf fiber were analyzed by Py-GC-MS, the molar ratio of H:G:S in jute lignin was 0:26.08:73.92, the S/G value was 2.835, the molar ratio of H:G:S in kenaf lignin was 4.59:34.11: 61.30, the S/G value was 1.797. It was concluded that the lignin structure in kenaf fiber was more difficult for delignification in degumming process than jute fiber.
     (3) The structure of MWL from jute and kenaf fiber were studied by using XPS. The binding energy of C1s was assigned to 284.6 eV(C-C or C=C),285.2 eV (C-H), 286.5 eV (C-O) and 289.27 eV (O-C=O). The binding energy of O1s was assigned to 532.3 eV(O1) and 533.3 eV (O2). Comparing with lignin of jute fiber, the lignin of kenaf fiber contained more carbon atom in C-C or C=C bonds, less carbon atom in C-H bonds and ether bonds, more carbon atom in carboxyl group. The ratio O1/O2 of jute fiber lignin was higher than kenaf fiber lignin indicating more single O bond in lignin of jute fiber.
     (4) Laccase and laccase/mediator system were employed in kenaf fiber degumming process. The effects of single laccase and combined with ABTS were studied. The effects on the properties of the degummed fiber such as fiber fineness, residual lignin content and tensile property were tested by the designed experiments. Meanwhile the degumming effects were analyzed by XRD, IR and HPLC of the products of alkalinous nitrobenzene oxidation about the degummed kenaf fiber. The results showed that the effect of laccase used in degumming of kenaf fiber was not obvious, and its effect could be strengthened with the existence ABTS as mediator and the process with pre-treatment. IR indicated that the intensity of characteristic peak of lignin and hemicellulose decreased, while the intensity of characteristic peak of cellulose increased. The HPLC results showed that it helped to remove the uncondensed G and S units of lignin by using laccase/ABTS degumming process.
     (5) Seven chemical treatments were employed in kenaf degumming process. The properties of degummed fiber such as fiber fineness, residual lignin content were tested, and the degumming effects were analyzed by XRD, IR and HPLC of the products of alkalinous nitrobenzene oxidation about the degummed kenaf fiber. The crystallinity of kenaf fiber increased after being treated. Adding the strong oxidizing agents including potassium peroxymonosulfate and peracetic acid (plan CT2 and CR2) in the later process of caustic soda and sodium percarbonate methods (plan CT1 and CR1), then after scouring using the sulfate method (plan CT3 and CR3), the relative integral area value Aj/As of the characteristic peek of the cellulose in IR gradually increased, while the sum of those of the lignin and hemicellulose gradually decreased, and the content of lignin gradually decreased, while the finess gradually increased. The results indicated that the seven chemical treatments adopted in degumming had obvious effects. As a new oxidant, the mixed liquid of potassium peroxymonosulfate and peracetic acid was effective on delignification. The HPLC results showed that it helped to remove the uncondensed G and H units of lignin by using plan CT1, it helped to remove the uncondensed G unit of lignin by using plan CT2, and it helped to remove the uncondensed H and S unit of lignin by using plan CT3.
引文
[1]李宗道,胡久清等.麻类形态学[M].北京:科学出版社,1987.
    [2]姜繁昌.黄麻纺纱学[M].北京:纺织工业出版社,1982.
    [3]邵松生译.黄麻,一种对于手织机极有前景的纤维[J].国外纺织技术.1996,4:1-4.
    [4]于伟东.纺织材料学[M].北京:中国纺织出版社,2006.
    [5]史加强,王滨立.亚麻生物化学加工与染整[M].北京:纺织工业出版社,2005.
    [6]赵华燕,魏建华,宋艳茹.木质素生物合成及其基因工程研究进展[J].植物生理与分子生物学学报.2004,30(4):361-370.
    [7]詹怀宇,蒲云桥,岳保珍等.湿地松深度脱木素硫酸盐法蒸煮过程中木素结
    构的变化(Ⅰ)——纸浆中残余木素结构的变化[J].造纸科学与技术.2001,20(1):8-16.
    [8]蒋挺大.木质素(第二版)[M].北京:化学工业出版社,2009.
    [9]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术.2003,11(1):41-55.
    [10]中野准三等.木质素的化学-基础与应用[M].北京:轻工业出版社,1988.
    [11]Bjorkman A. Study on finely divided wood. Part Ⅰ, Extraction of lignin with neutral solvents[J]. Svensk Papperstidn.1956,59(3):477-485.
    [12]顾瑞军.木素和木素-碳水化合物复合体的化学结构及形成机理.硕士学位论文.华南理工大学.2002.
    [13]杨海涛.木素与聚糖之间化学键连接的研究.博士学位论文.华南理工大学.2007.
    [14]李文琦,林丽蓉,黄华莉等.木素的研究及其应用新进展[J].漳州师院学报.1995,4:106-111.
    [15]Sakakibara A. A structural model of softwood lignin[J]. Wood Science of Techology.1980.14(11):89-100.
    [16]冯建豪.甘蔗渣木素的化学结构[J].中国造纸.1986,5(2):1-15.
    [17]庄文山,邰瓞生.黑荆树木材与树皮木质素的结构特性[J].福建林学院学报.1990.10(1):23-31.
    [18]秦特夫,黄洛华,周勤.杉木幼龄材与成熟材木质素的化学官能团和化学键特征研究[J].林业科学.2004.40(2):137-141.
    [19]蒲俊文,宋君龙,谢益民等.三倍体毛白杨木质素结构特性研究[J].北京林业大学学报.2002,24(5/6):211-215.
    [20]刘鑫宇.三倍体毛白杨木素结构的研究[D].硕士学位论文.北京林业大学.2001.
    [21]Higuchi T, Tanahashi M, Sato A. Acidolysis of bamboo lignin. Ⅰ. Gas-liquid chromatography and mass spectrometry of acidolysis monomers[J].1972,13(2): 102-106.
    [22]林曙明,李志清,陈中豪.不同年生竹材木素的光谱特性[J].西北轻工业学院学报.1995,13(2):102-106.
    [23]郭京波,陶宗娅,罗学刚等.竹木质素的红外光谱与X射线光电子能谱分析[J].化学学报.2005,63(16):1536-1540.
    [24]刘明友,卢娴,任维羡.浅谈红麻全秆木素结构特点及其碱脱除特性[J].中国造纸学报.1996,11:1-4.
    [25]Ralph JD. An unusual lignin from kenaf [J]. Journal of Nature Products.1996,59: 341-346.
    [26]Mazumder BB, Nakgawa-izumi A, Kuroda KI. Evaluation of harvesting time effects on kenaf bast lignin by pyrolysis-gas chromatography [J]. Industrial Crops and Products.2005,21:17-23.
    [27]Levin L, Forchiassin F. Ligninolytic enzymes of the white rot basidiomycete Trametes trogii[J]. Acta Biotechnologica 2001,21(2):179-186.
    [28]Tien M, Kent Kirk T. Lignin degrading enzyme from the hymenomycete Phanetochaete Chrysosporium Burds[J]. Science.1983,221:661-665.
    [29]Young L. Ligniase-catalyzed decolorization synthetic dyes[J]. Water Research. 1997,31:1187-1193.
    [30]张运雄,王朝云.麻类生物脱胶和制浆酶系[J].中国麻业.2002,24(2):14-17.
    [31]陈素华.白腐真菌的木质素降解酶[J].生物学通报.2005,40(8):26-27.
    [32]Youn H, Hah Y, Kang S. Role of laccase in lignin degradation by white-rot fungi[J]. FEMS microbiology Letters.1995,1332:183-188.
    [33]Bourbonnais R, Paice MG. Oxidative of non-phenolic substances:An expanded role for laccase in lignin biodegradation[J]. FEBS Letters.1990,267:99-102.
    [34]韩善明.木质素生物降解机理及其在清洁高效制浆过程中的作用[D].博士学位论文.中国林业科学研究院.2008.
    [35]王习文,詹怀宇.漆酶/介体系统生物漂白技术[J].西南造纸.2002.31(3):7-10.
    [36]Bourbonnais R, Paice M G. Enzymatic delignifrcation of kraft pulp using laccase and a mediator[J].Tappi Journal.1996,79:199-204.
    [37]Fu SY, Zhan HY, He W. Degradation of residual lignin in kraft pulp by laccase and mediator system[J]. Journal of South China University of Technology(Natural Science Edition).2002,12(30):30-36.
    [38]Graca MB, Soares MT, Pessoa A, et al. Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R[J]. Journal of Biotechnology.2001, 89:123-129.
    [39]康从宝,李清心,刘瑞田等.一株白腐菌产生的漆酶对RB亮蓝的脱色作用[J].应用与环境生物学报.2002,8(3):298-301.
    [40]席丹,陶用珍,管映亭.糙皮侧耳菌漆酶的发酵及其对荨麻的应用[J].纺织高校基础科学学报.2004,17(3):228-234.
    [41]张健飞,江蕾,侯刚华等.亚麻粗纱及织物生物酶精练探讨[J].染整技术.2002.24(2):12-16.
    [42]李宗道.麻类生物进展[M].北京:中国农业出版社,1999.
    [43]Alil MM. Aerobic bacteria involved in the retting of jute[J]. Applied and Environmental Microbiology.1958,6:87-89.
    [44]Haque MS, Asaduzzaman M, Akhter F, et al. Retting of green jute ribbons (Corchorus capsularis var. CVL-1) with fungal culture[J]. Journal of Biological Science.2001,1(11):1012-1014.
    [45]Banik S, Basak MK, Paul D, et al. Ribbon retting of jute—a prospective and eco-friendly method for improvement of fibre quality [J]. Industrial Crops and Products.2003,17(3):183-190.
    [46]孙庆祥,罗才安,刘正初等.黄红麻微生物脱胶研究Ⅱ[J].中国麻作.1991,13(1):42-45.
    [47]何连芳,郑来久等.红麻微生物脱胶菌种的选育[J].大连轻工业学院学报.2001,20(3):180-182.
    [48]杨瑞鹏,邓岑华,赵学慧等。红麻微生物酶法快速脱胶研究Ⅱ.酶反应条件与脱胶试验[J].中国麻作.1991.4:38-40.
    [49]郑来久,刘剑宇.红麻全酶法脱胶工艺及机理研究[J].纺织学报.2004.25(1):46-48.
    [50]Hoondal GS, Tiwari R, Tewari R, et al. Microbial alkaline pectinases and their industrial applications:a review[J]. Applied Microbiology and Biotechnology.2002, 59:409-418.
    [51]邵松生.黄麻化学处理的研究动态[J].麻纺织技术.1999,22(2):23-26.
    [52]Parikh DV, Calamari TA, Sawhney APS, et al. Improved chemical retting of kenaf fibers[J]. Textile Research Journal.2002,72(7):618-624.
    [53]Khan F, Ahmad SR. Chemical modification and spectroscopic analysis of jute fibre[J]. Polymer Degradation and STableility.1996,52(3):335-340.
    [54]Wang J, Ramaswamy GN. One-Step processing and bleaching of mechanically separated kenaf fibers:Effects on physical and chemical properties [J]. Textile Research Journal.2003,73(4):339-344.
    [55]Kawahara Y, Tadokoro K, Endo R, et al. Chemically retted kenaf fibers [J]. SEN'I GAKKAISHI.2005,61(4):115-117.
    [56]张军民.黄麻纤维纺低特纱工艺研究[D].硕士学位论文.东华大学.1997.
    [57]郑来久,郁崇文等.红黄麻纤维化学改性及纺麻棉混纺纱[J].大连轻工业学院学报.2002,21(2):145-148.
    [58]曲丽君,管云玲,郭肖青等.黄麻碱氧一浴一步法脱胶漂白短流程工艺[J].青岛大学学报.2003,3:40-43.
    [59]秦特夫.杉木和“三北”一号杨磨木木质素化学官能团特征的研究[J].林业科学.1999,35(3):69-75.
    [60]Ludquist K, Ohlsson B, Simonson R. Isolation of lignin by means of liquid-liquid extraction[J]. Svensk Papperstidn.1977,80(5):143-144.
    [61]苏克曼等.波谱解析法[M].上海:华东理工大学出版社,2002.
    [62]李友明,陈中豪.木素苯基丙烷结构单元经典式的表达与计算[J].中国造纸学报.1999,14:98-100.
    [63]潘小琪,李忠正.麦草木素特性的研究[J].中国造纸.1986,5(2):23-34.
    [64]李坚.木材波谱学[M].北京:科学出版社,2003:104-105.
    [65]Ucar G, Meier D, Faix O, et al. Analytical pyrolysis and FTIR spectroscopy[J]. Holz als roh-und Werkstoff.2005,63:57-63.
    [66]Faix O. Classification of lignins from different botanical orignins by FT-IR spectroscopy[J]. Holzforschung.1991,45:21-27.
    [67]Pandey KK. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscop[J]. Journal of Polymer Science.1999,71:1969-1975.
    [68]Boeriu CG, Bravo D, Gosselink RJA. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy[J]. Industrial Crops and Products.2004,20(2):205-218.
    [69]陈方,陈嘉翔.桉木木素的付立叶变换红外光谱研究[J].纤维素科学与技术.1994,2(2):14-20.
    [70]Obst JR. Guaiacyl and syringyl lignin composition in hardwood cell components[J]. Holzforschung.1982,36:16-26.
    [71]Sun RC, Sun XF, Wang SQ. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood[J]. Industrial Crops and Products.2002,15(3):179-188.
    [72]Sarkanen KV, Chang HM, Allan GG. Species Variation in lignins. III. Hardwood Lignins[J]. Tappi.1967,50:587-590.
    [73]邰瓞生,潘小琪.禾草木素的化学特性[J].中国造纸.1989,(1):10-15
    [74]郭京波,陶宗娅,罗学刚.不同提纯方法对竹木质素结构特性的影响分析[J].分析测试学报.2005,24(3):77-81.
    [75]Salud EC, Faix O. The Isolation and characterization of lignins of Shorea species[J]. Holzforschung.1980,34,113-121.
    [76]Vivasa N, Noniera MF, et al. Structure of extracted lignin from oak heartwood[J]. Comptes Rendus Chimie.2006,9(9):1221-1233..
    [77]秦特夫,黄洛华,李改云.慈竹、毛竹木质素的化学官能团和化学键特征研究[J].北京林业大学学报.2010,32(3):161-165.
    [78]林本平,刘艳兰,王双飞等.粉单竹APMP制浆过程中木素结构的变化[J].中国造纸学报.2007,22(4):5-10.
    [79]Ludwig CH, Nist BJ, Mccarthy JL. Lignin. Ⅻ. The High Resolution Nuclear Magnetic Resonance Spectroscopy of Protons in compounds related to lignin[J]. Journal of the American Chemistry of Society.1964,86(6):1186-1196.
    [80]Sarwar Jahan M, Nasima Chowdhury DA, Khalidul Islam M, et al. Characterization of lignin isolated from some nonwood available in Bangladesh[J]. S Bioresource Technology.2007,98:465-469.
    [81]Akiyama T, Matsumoto Y, Okuyama T, et al. Ratio of erythro and thero form of β-O-4 structure in tension wood lignin[J]. Phytochemistry.2003,64:1157-1165.
    [82]秦特夫.“I-214杨”心材、边材木质素的红外光谱、质子和碳-13核磁共振波谱特征研究[J].林业科学研究.2001,14(4):375-382.
    [83]Nimz HH, Robert D, Faix O, et al. Carbon-13 NMR spectra of lignins,8. Structural differences between lignins of hardwoods, softwoods, grasses and compression wood[J]. Holzforschung.1981,35:16-26.
    [84]Delange M, Trummer JA, Roberts RS, et al. 13C-NMR characterization of tulip popular lignin solubilized by buffered solvent pulping[J]. Holzforschung.1991,45: 361-365.
    [85]Scalbert A, Monties B, Guitter E, et al. Comparison of wheat straw lignin preparations Ⅰ. Chemical and spectroscopic characterizations [J]. Holzforschung.1986, 40:119-127.
    [86]杨淑蕙.植物纤维化学(第三版)[M].北京:中国轻工业出版社,2006.
    [87]Del Rio JC, Gutierrez A, Hernando M, et al. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis.2005,74(1-2):110-115.
    [88]Rodrigues J, Meier D, Faix O, et al. Determination of tree to tree variation in
    syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis[J], Journal of Analytical and Applied Pyrolysis.1999,48:121-128.
    [89]王维国,李重九,李玉兰等.有机质谱应用-在环境、农业和法庭科学中的应用[M].北京:化学工业出版社,2006.
    [90]拓植新,大谷肇.高分辨裂解色谱原理与高分子裂解谱图集[M].北京:中国科学技术出版社,1993.
    [91]刘亮,李娟,王金明.酚醛树脂的热裂解气相色谱-质谱联用分析[J].宇航材料工艺.2007,1:79-80.
    [92]谢益民,伍红,赖燕明.桉木化学组成及材性对KP法制浆特性的影响[J].中国造纸.1998,17(5):7-11.
    [93]金晓娟.三倍体毛白杨的木素结构及其在制浆漂白过程中的变化[D].博士论文.北京林业大学.2003.
    [94]王新运,吴凤义,万新军.生物质裂解机理模型的研究进展[J].广州化学.2009,37(6):15-17.
    [95]王华静,赵岩,王晨.木质素二聚体模型物裂解历程的理论研究[J].化学学报.2009,67:893-900.
    [96]Del Rio JC, Speranz M, Gutierrez A, et al. Lignin attack during eucalypt wood decay by selected basidiomycetes:a Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis.2004,64:421-431.
    [97]李雪瑶,应浩.生物质热解气化机理研究进展[J].精细石油化工进展.2009,10(10):45-50.
    [98]Yokoi H, Nakase T, Ishida Y, et al. Discriminative analysis of Eucalyptus camaldulensis grown from seeds of various origins based on lignincomponents measured by pyrolysis-gas chromatography[J]. Journal of Analytical and Applied Pyrolysis.2001,57:145-152.
    [99]Faix O, Bremer J, Schmidt O, et al. Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spectroscopy[J]. Journal of Analytical and Applied Pyrolysis.1991,21(1-2):147-162.
    [100]Marques G, Gutierrez A, del Rio JC. Chemical composition of lignin and lipids from tagasaste (Chamaecytisus proliferus spp. palmensis) [J]. Industrial Crops and Products.2008,28:29-36.
    [101]Camarero S, Bocchini P, Galletti GC, et al. Pyrolysis-gas chromatography/Mass spectrometry analysis of phenolic and etherified units in natural and industrial lignins[J]. Rapid Communications in Mass Spectrometry.1999,13:630-636.
    [102]Suzuki S, Lam T.B.T, Iiyama K.5-Hydroxyguaiacyl nuclei as aromatic constituents of native lignin[J]. Phytochemistry.1997,46(4):695-700.
    [103]Del Rio JC, Gutierrez A, Rodriguez IM, et al. Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR[J]. Journal of Analytical and Applied Pyrolysis.2007,79(1-2):39-46.
    [104]孔晓英,武书彬,吴创之等.蔗渣磨木木素(MWL)热解过程的初步研究[J].造纸科学与技术.2004,23(1):46-49.
    [105]Rencoret J, Marquesa G, Gutierreza A, et al. Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood[J]. Industrial Crops and Products.2009,30:137-143.
    [106]李桢,王宏芝,李瑞芬等.植物木质素合成调控与生物质能源利用[J].植物学报.2009,44(3):262-272.
    [107]杜官本,华毓坤,崔永杰等.微波等离子体处理木材表面光电子能谱分析[J].林业科学.1999,35(5):104-109.
    [108]刘艳新,王玉珑,曹振雷.X射线能谱技术(XPS)在造纸工业中的应用[J].中国造纸学报.2005,20(2):194-197.
    [109]华旭俊,贲玉霞,Vokta BV等.现代表面分析技术在造纸科学中的应用—化学分析电子能谱[J].中国造纸.1991,10(6):52-57.
    [110]Dorris GM, Gray DG. The surface analysis of paper and wood fibres by ESC A. Ⅰ. Application to Cellulose and Lignin[J]. Cellulose Chemistry and Technology.1978, 12:9-23.
    [111]Dorris GM, Gray DG. The surface analysis of paper and wood fibres by ESCA. Ⅱ. Surface composition of mechanical pulps[J]. Cellulose Chemistry and Technology, 1978,12:721-734.
    [112]Dorris GM, Gray DG. The surface analysis of paper and wood fibres by ESCA. Ⅲ. Interpretation of carbon(ls) peak shape[J]. Cellulose Chemistry and Technology. 1978,12:735-743.
    [113]Chen SP, Tanaka H. Surface analysis of paper containing polymer additives by X-ray photoelectron spectroscopy I:Application to paper containing dry strength additives[J]. Journal of Wood Science.1998,44(4):303-309.
    [114]LI K, Reeve DW. Determination of surface lignin of wood pulp fibres by X-ray photoelectron spectroscopy[J]. Cellulose Chemistry and Technology.2004,38(3-4): 197-210.
    [115]Darmstadt H, Roy C, Kaliaguine S, et al. Surface spectroscopic analysis of vapour grown carbon fibres prepared under various conditions[J]. Carbon.1998, 36(7-8):1183-1190.
    [116]Ishimaru K, Hata T, Bronsveld P, et al. Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin[J]. Journal of Materials Science.2007,42, 122-129.
    [117]Ahmed A, Adnot A, Kaliaguine S. ESCA Study of the Solid Residues of Supercritical Extraction of Populus tremudoides in methanol[J]. Journal of Applied Polymer Science.1987,34:359-375.
    [118]Kamdem DP, Riedl B, Adnot A, et al. ESCA spectroscopy of poly(methylmethacrylate) grafted onto wood fibers[J]. Journal of Applied Polymer Science.1991,43:1901-1912.
    [119]Ahmed A, Adnot A, Grandmaison JL, et al. ESCA analysis of cellulosic materials [J]. Cellulose Chemistry and Technology.1987,21:483-492.
    [120]Gustafsson J, Ciovica L, Peltonen J. The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) [J]. Polymer.2003,44:661-670.
    [121]Johansson LS, Campbell JM, Koljonen K, Stenius P. Evaluation of surface lignin on cellulose fibers with XPS[J]. Applied Surface Science.1999,1(144):92-95.
    [122]Li J, Li B, Zhang X. Comparative studies of thermal degradation between larch
    lignin and manchurian ash lignin[J]. Polymer Degradation and Stableility.2002,78(2): 279-28.
    [123]Yu YZ, Koljonen K, Paulapuro H. Surface chemical composition of some non-wood pulps[J]. Industrial Crops and Products.2002,15:123-130.
    [124]秦特夫.木材表面非极性化原理的研究Ⅳ.化学分析光电子能谱(ESCA)对木材乙酰化处理表面化学特征的研究[J].2000,14(6):12-14.
    [125]Fardim P, Hulten AH, Boisvert JP, et al. Critical comparison of methods for surface coverage by extractives and lignin in pulps by X-ray photoelectron
    spectroscopy (XPS) [J]. Holzforschung.2006,60(2):149-155.[126]杨崎峰,詹怀宇,王双飞,等.蔗渣爆破浆表面的XPS分析[J].造纸科学与技术.2006,25(4):22-31.
    [127]杨松年.黄麻和红麻纤维的纺用价值比较[J].中国麻业.1986,3:19-20.
    [128]周玲.精细化黄、红麻/亚麻混纺粗纱煮练工艺研究[D].硕士学位论文.东华大学.2005.
    [129]肖连冬,张彩莹.酶工程[M].北京:化学工业出版社,2008.
    [130]周文龙.酶在纺织领域中的应用[M].北京:中国纺织出版社,2008.
    [131]何建新.高级竹溶解浆粕的制备及其用于合成醋酸纤维素的研究[D].博士论文.东华大学.2007.
    [132]邓耀杰,林鹿,詹怀宇等.木质素酶生物漂白的研究进展[J].中华纸业.1998,19(3):21-28.
    [133]Sun RC, Tomkinson J, Wang YW, et al. Physicochemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction[J]. Polymer.2000,41:2647-2656.
    [134]Li J, Li B, Zhang XC, et al. The study of flame retardants on thermal degradation and charring process of manchurian ash lignin in the condensed phase[J]. Polymer Degradation and STableility.2001,72:493-498.
    [135]姜繁昌,邵宽等.苎麻纺纱学[M].北京:纺织工业出版社,1990.
    [136]Ouajai S, Shanks RA. Morphology and structure of hemp fibre after bioscouring. Macromolecular Bioscience.2005,5:124-134.
    [137]周学飞.桉木AS-AQ蒸煮及木质素特性研究.林产化学与工业.2004,24:107-110.
    [138]杨涛.苎麻氧化脱胶的研究[D].硕士学位论文.东华大学.2008.
    [139]赖玉荣,张曾,黄干强.木素在过氧化氢漂白条件下的反应[J].中国造纸学报.2005,20(2):203-207.
    [140]陈彬编译.过氧酸漂白对桉木硫酸盐浆性能的影响[J].国际造纸.2004,23(2):13-17.
    [141]杨玲.竹浆过氧醋酸漂白初探[J].湖南造纸.2005,2:12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700