用户名: 密码: 验证码:
少齿差行星减速器动态特性分析及非线性振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题来源于国防科工委“十一五”民用航天预研项目—“空间环境下的高性能摩擦副与高效传动机构技术”(C4220061319)、国家教育部“长江学者和创新团队发展计划”项目—“高性能机电传动系统的创新设计理论、方法与技术”(IRT0763)、国家自然科学基金重点项目—“新型高性能传动件及系统的可靠性设计理论与方法”(50735008)。
     减速器系统的工作状态极其复杂,不仅载荷工况和动力装置多样,且对于齿轮传动系统,由于时变啮合刚度、传动误差、齿侧间隙等因素的影响,引起轮齿接触–脱离–接触周期性、强非线性耦合振动,对传动系统的平稳性、可靠性产生严重影响。因此对其进行动态特性、间隙非线性振动行为及影响因素的研究,为高性能齿轮系统的设计、分析、制造提供了一定的理论依据与实验参考。
     论文以NN型少齿差行星减速器为对象,先分析其结构及传动原理,用有限元法分析其固有频率及模态振型,用集中质量法建立减速器系统非线性振动模型与方程,通过数值求解分析减速器非线性振动特性以及参数对它的影响。最后对其模态特性和振动响应进行实验研究。
     论文主要研究内容如下:
     (1)分析该减速器的结构、传动原理,计算某常见工况下各传动件的理论转速。求得两级传动的理论啮合频率、啮合阻尼。详细分析各滚动轴承的变形、刚度、阻尼等动特性参数。
     (2)推导内齿副单齿刚度计算式,考虑理论重合度,计算多对齿啮合刚度。将两级传动多对齿时变啮合刚度拟合为8阶Fourier级数的形式。分别以各级传动啮合角频率为角速度的正弦函数模拟各级齿轮误差。
     (3)采用ABAQUS建立该减速器有限元自由模态分析模型,其中轮齿啮合部位采用绑定约束,用弹簧单元模拟轴承。采用Lanczos特征值求解器对该减速器进行自由模态求解,获得该减速器前20阶固有频率及模态振型。
     (4)综合考虑齿轮啮合刚度、传动误差、齿侧间隙及支撑刚度和阻尼,用集中质量法建立多自由度、多间隙、变参数、弯–扭耦合的两级齿轮系统非线性振动模型,用Lagrange方程推导齿轮系统的非线性振动微分方程组。用四阶五级的RKF法对非线性微分方程组求解,系统地分析该减速器各齿轮振动位移、速度响应,以及振动位移–速度相图、Poincaré截面。进一步计算得齿轮弹粘啮合力、轴承动载荷、振动加速度响应。最后分析各参数对减速器非线性振动特性的影响。
     (5)用LMS Test. Lab对该减速器进行锤击法自由模态实验,验证理论分析结果的正确性。用三向加速度传感器采集减速器壳体振动信号,由FFT变换得到相应的振动频率,经1/3倍频处理分析振动加速度级结构噪声,经积分处理得到振动速度及位移响应。
This research subject stems from the projects “Commission of Science,Technology and Industry for National Defense "Eleventh Five-Year" civilian spacepre-research project-the high performance friction pairs and efficient transmissionmechanism technology under space environment (No. C4220061319)" and “Programfor Changjiang Scholars and Innovative Research Team of Chinese Ministry ofEducation-the innovation design theory, method and technology of high performanceelectric drive system (No. IRT0763)" and “National Natural Science Foundation KeyProject of China-the reliability design theory and methods of new high performancetransmission parts and system (No.50735008)".
     Working state of reducer system is extremely complex, also the load cases andpower plants are diverse, and for the gear transmission, the factors of the time-varyingmesh stiffness, transmission errors, backlash, and so on, may cause tooth periodical andstrong nonlinear coupled vibration of contact-detachment-contact, which will seriouslyinfluence the smooth and reliability of transmission system. So the researches on itsdynamic characteristics, the backlash nonlinear vibration behaviors and theirinfluencing factors will provide a theoretical basis and experimental reference for thedesign, analysis, and manufacture of high-performance gear system.
     Aimed at a NN-type planetary reducer with small tooth number difference reducer,firstly, the structure and transmission principle are analyzed, secondly, the naturalfrequencies and mode shapes are analyzed by means of the FE method, then, thenonlinear vibration model and equations of reducer system are established by thelumped mass method, and the equations are solved by numerical method to analyze thenonlinear vibration characteristics and influences of parameters on them, finally, themodal characteristics and vibration response testing is carried out, respectively.
     The main contents of this paper are as follows:
     (1) The structure and transmission principle of this reducer are analyzed, thetheoretical speed of each transmission part is calculated under a common operatingcondition, also the theoretical meshing frequency and meshing damping are calculated,the dynamic characteristics parameters such as deformation, stiffness, damping of eachrolling bearing are analyzed in detail.
     (2) The stiffness calculation formula of single tooth in internal gear pair is deduced. Then, the mesh stiffness of multi-pair of teeth is calculated considering the theoreticalcontact ratio, the time-varying mesh stiffness of two stage transmissions are fitted to8-order Fourier series form, and a sine function, whose angular velocity is meshingangle frequency, is simulated as gear error.
     (3) The FE modal analysis model of this reducer is established using the ABAQUS,in which the tooth engaging portions are constrained as binding, the bearings aresimulated by spring units. The Lanczos eigenvalue solver is adopted for the free modalsolving of the reducer, the first20orders natural frequencies and mode shapes of thereducer are obtained.
     (4) Considering the gear meshing stiffness, transmission error, backlash andsupport stiffness and damping, the multi-degree-of-freedom, multi-backlash, variableparameters, bending-torsion coupled nonlinear vibration model of the two-stage gearsystem is established by the lumped mass method, the nonlinear vibration differentialequations of the gear system is deduced by the Lagrange equation. The fourth-orderfifth-grade RKF method is adopted to solve the nonlinear differential equations, the gearvibration displacements, velocity responses, and the vibration displacement-velocityphase portraits, Poincaré sections are analyzed systematically. The elasticity viscousmeshing forces of gear pair, bearing dynamic loads, and vibration accelerationresponses are further calculated, finally, the influences of various parameters on thenonlinear vibration characteristics of the reducer are analyzed.
     (5) The Hammer free modal experiment on the reducer is carried out by utilizingthe LMS Test. Lab to verify the theoretical analysis results. The three-directionacceleration sensors are adopted to capture the vibration signal of the reducer shell, thevibration frequency can be obtained by the FFT transform, the vibration accelerationstructural noise is analyzed through1/3octave processing, the vibration velocity anddisplacement response can be obtained by integral processing.
引文
[1]梁锡昌,吕宏展.减速器的分类创新研究[J].机械工程学报,2011,47(7):1–7.
    [2]库德里亚夫采夫,基尔佳舍夫,陈启松.行星齿轮传动手册[M].北京:冶金工业出版社,1986.
    [3]马从谦.渐开线行星齿轮传动设计[M].北京:机械工业出版社,1987.
    [4]饶振纲.行星齿轮传动设计[M].北京:化学工业出版社,2003.
    [5]朱景梓.齿数差Zd=1的渐开线K-H-V型行星齿轮减速器及其设计[J].太原工学院学报,1963,(4):13–42.
    [6]崔建昆,张光辉.轴销式少齿差行星齿轮传动研究[J].华东工业大学学报,1996,18(2):35–40.
    [7]王丽敏.偏曲轴少齿差行星减速器优化设计[D].天津:河北工业大学,2005.
    [8]刘斌彬.少齿差传动多齿弹性啮合效应的研究[D].天津:天津大学,2007.
    [9]王长明,阳培,张立勇.谐波齿轮传动概述[J].机械传动,2006,30(4):86–88.
    [10]费仁元,张慧慧.机器人机械设计和分析[M].北京:北京工业大学出版社,1998.
    [11] Chen E, Walton D. The optimum design of KHV planetary gears with small toothdifferences[J]. Int. J. Mach. Tool Manu.,1990,30(1):99–109.
    [12] Shu X L. Determination of load sharing factor for planetary gearing with small tooth numberdifference[J]. Mech. Mach. Theory,1995,30(2):313–321.
    [13] Velex P, Flamand L. Dynamic response of planetary trains to mesh parametric excitations[J].ASME J. Mech. Des.,1996,118(1):7–14.
    [14]张锁怀,李忆平,丘大谋.齿轮耦合的转子–轴承系统非线性动力特性的研究[J].机械工程学报,2001,37(9):53–57.
    [15]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报,2002,38(2):44–52.
    [16]孙涛.行星齿轮系统非线性动力学研究[D].西安:西北工业大学,2000.
    [17]孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学模型与方程[J].机械工程学报,2002,38(3):6–10.
    [18]孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报,2002,38(3):11–15.
    [19]宋轶民,许伟东,张策,等.2K-H行星传动的修正扭转模型建立与固有特性分析[J].机械工程学报,2006,42(5):16–21.
    [20]张俊,宋轶民,张策.少齿差环板式减速器的弹性动力学分析[J].机械工程学报,2008,44(2):118–123.
    [21]张俊,宋轶民,张策,等.NGW型直齿行星传动自由振动分析[J].天津大学学报,2010,43(1):90–94.
    [22] Inalpolat M, Kahraman A. Dynamic modelling of planetary gears of automatictransmissions[J]. Proc. IMechE. Part K J. Multi-body Dyn.,2008,222(3):229–242.
    [23]杨富春,周晓军,郑津洋.复式行星齿轮传动系统综合动力学模型及振动特性研究[J].振动与冲击,2011,30(8):144–148.
    [24]蔡仲昌,刘辉,项昌乐,等.车辆多级行星传动系统强迫扭转振动与动载特性[J].吉林大学学报(工学版),2012,42(1):19–26.
    [25]罗玉涛,陈营生.混合动力两级行星机构动力耦合系统动力学建模及分析[J].机械工程学报,2012,48(5):70–75.
    [26] zgüven H N, Houser D R. Mathematical models used in gear dynamics–a review[J]. J.Sound Vib.,1988,121(3):383–411.
    [27] zgüven H N, Houser D R. Dynamic analysis of high speed gears by using loaded statictransmission error[J]. J. Sound Vib.,1988,125(1):71–83.
    [28] Kahraman A, Singh R. Interactions between time-varying mesh stiffness and clearancenon-linearities in a geared system[J]. J. Sound Vib.,1991,146(1):135–156.
    [29] Kahraman A, zgüven H N, Houser D R, et al. Dynamic analysis of geared rotors by finiteelements[J]. ASME J. Mech. Des.,1992,114(3):507–514.
    [30] Valco Mark J. Planetary gear train ring gear and support structure investigation[D]. Cleveland,Ohio: Cleveland State University,1992.
    [31] Vedmar L, Henriksson B. A general approach for determining dynamic forces in spur gears[J].ASME J. Mech. Des.,1998,120(4):593–598.
    [32] Bajer Andrzej. Parallel finite element simulator of planetary gear trains[D]. Austin, Texas:The University of Texas at Austin,2001.
    [33] Baud S, Velex P. Static and dynamic tooth loading in spur and helical geared systems–experiments and model validation[J]. ASME J. Mech. Des.,2002,124(2):334–346.
    [34] Zhang N, Crowther A, Liu D K, et al. A finite element method for the dynamic analysis ofautomatic transmission gear shifting with a four-degree-of-freedom planetary gearsetelement[J]. Proc. IMechE. Part D J. Automob. Eng.,2003,217(6):461–473.
    [35] Ajmi M, Velex P. A model for simulating the quasi-static and dynamic behaviour of solidwide-faced spur and helical gears[J]. Mech. Mach. Theory,2005,40(2):173–190.
    [36] Kahraman A. Natural modes of planetary gear trains[J]. J. Sound Vib.,1994,173(1):125–130.
    [37] Kahraman A. Load sharing characteristics of planetary transmissions[J]. Mech. Mach. Theory,1994,29(8):1151–1165.
    [38] Kahraman A. Planetary gear train dynamics[J]. ASME J. Mech. Des.,1994,116(3):713–720.
    [39] Saada A, Velex P. An extended model for the analysis of the dynamic behavior of planetarytrains[J]. ASME J. Mech. Des.,1995,117(2):241–247.
    [40] Lin J, Parker R G. Analytical characterization of the unique properties of planetary gear freevibration[J]. ASME J. Vib. Acoust.,1999,121(3):316–321.
    [41] Lin Jian. Analytical investigation of planetary gear dynamics[D]. Columbus, Ohio: The OhioState University,2000.
    [42] Lin J, Parker R G. Natural frequency veering in planetary gears[J]. Mech. Struct. Mach.,2001,29(4):411–429.
    [43] Kahraman A. Free torsional vibration characteristics of compound planetary gear sets[J].Mech. Mach. Theory,2001,36(8):953–971.
    [44] Bajer A, Demkowicz L. Dynamic contact/impact problems, energy conservation, andplanetary gear trains[J]. Comput. Methods Appl. Mech. Engrg.,2002,191(37):4159–4191.
    [45] Abousleiman V, Velex P. A hybrid3D finite element/lumped parameter model for quasi-staticand dynamic analyses of planetary/epicyclic gear sets[J]. Mech. Mach. Theory,2006,41(6):725–748.
    [46] Ambarisha V K, Parker R G. Nonlinear dynamics of planetary gears using analytical and finiteelement models[J]. J. Sound Vib.,2007,302(3):577–595.
    [47] Li Shuting. Contact problem and numeric method of a planetary drive with small teethnumber difference[J]. Mech. Mach. Theory,2008,43(9):1065–1086.
    [48] Al-shyyab A, Alwidyan K, Jawarneh A, et al. Non-linear dynamic behaviour of compoundplanetary gear trains: model formulation and semi-analytical solution[J]. Proc. IMechE. PartK J. Multi-body Dyn.,2009,223(3):199–210.
    [49] Guo Yi, Parker R G. Dynamic modeling and analysis of a spur planetary gear involving toothwedging and bearing clearance nonlinearity[J]. Eur. J. Mech. A/Solid.,2010,29(6):1022–1033.
    [50] Raghothama A, Narayanan S. Bifurcation and chaos in geared rotor bearing system byincremental harmonic balance method[J]. J. Sound Vib.,1999,226(3):469–492.
    [51] Theodossiades S, Natsiavas S. Non-linear dynamics of gear-pair systems with periodicstiffness and backlash[J]. J. Sound Vib.,2000,229(2):287–310.
    [52] Parker R G, Agashe V, Vijayakar S M. Dynamic response of a planetary gear system using afinite element/contact mechanics model[J]. ASME J. Mech. Des.,2000,122(3):304–310.
    [53] Parker R G, Vijayakar S M, Imajo T. Non-linear dynamic response of a spur gear pair:modelling and experimental comparisons[J]. J. Sound Vib.,2000,237(3):435–455.
    [54]孙智民,沈允文,王三民,等.星型齿轮传动非线性动力学分析[J].西北工业大学学报,2002,20(2):222–226.
    [55]孙涛,胡海岩.基于离散傅里叶变换与谐波平衡法的行星齿轮系统非线性动力学分析[J].机械工程学报,2002,38(11):58–61.
    [56] Sun Tao, Hu Haiyan. Nonlinear dynamics of a planetary gear system with multipleclearances[J]. Mech. Mach. Theory,2003,38(12):1371–1390.
    [57] Howard I, Jia Shengxiang, Wang Jiande. The dynamic modelling of a spur gear in meshincluding friction and a crack[J]. Mech. Syst. Signal Pro.,2001,15(5):831–853.
    [58] Vaishya M, Singh R. Analysis of periodically varying gear mesh systems with coulombfriction using floquet theory[J]. J. Sound Vib.,2001,243(3):525–545.
    [59] Vaishya M, Singh R. Sliding friction-induced non-linearity and parametric effects in geardynamics[J]. J. Sound Vib.,2001,248(4):671–694.
    [60]孙智民,沈允文,王三民,等.星形齿轮传动系统分岔与混沌的研究[J].机械工程学报,2001,37(12):11–15.
    [61]王三民,沈允文,董海军.含摩擦和间隙直齿轮副的混沌与分叉研究[J].机械工程学报,2002,38(9):8–11.
    [62]孙智民,季林红,沈允文.2K-H行星齿轮传动非线性动力学[J].清华大学学报(自然科学版),2003,43(5):636–639.
    [63] Al-shyyab A, Kahraman A. A non-linear dynamic model for planetary gear sets[J]. Proc.IMechE. Part K J. Multi-body Dyn.,2007,221(4):567–576.
    [64]朱自冰,朱如鹏,鲍和云.两级星型齿轮传动系统非线性动力学研究[J].航空动力学报,2007,22(11):1963–1970.
    [65]鲍和云,朱如鹏,靳广虎,等.基于增量谐波平衡法的星型齿轮传动非线性动力学分析[J].机械科学与技术,2008,27(8):1038–1042.
    [66]李同杰,朱如鹏,鲍和云,等.行星齿轮系扭转非线性振动建模与运动分岔特性研究[J].机械工程学报,2011,47(21):76–83.
    [67]朱恩涌,巫世晶,王晓笋,等.含摩擦力的行星齿轮传动系统非线性动力学模型[J].振动与冲击,2010,29(8):217–220、236.
    [68]巫世晶,刘振皓,王晓笋,等.基于谐波平衡法的复合行星齿轮传动系统非线性动态特性[J].机械工程学报,2011,47(1):55–61.
    [69]刘振皓,巫世晶,王晓笋,等.基于增量谐波平衡法的复合行星齿轮传动系统非线性动力学[J].振动与冲击,2012,31(3):117–122.
    [70]巫世晶,刘振皓,潜波,等.复合行星齿轮传动系统分岔与混沌特性研究[J].华中科技大学学报(自然科学版),2012,40(2):9–13.
    [71]李发家,朱如鹏,鲍和云,等.行星齿轮系动力学特性分析及试验研究[J].南京航空航天大学学报,2012,44(4):511–519.
    [72]王家序,田凡,肖科.固体润滑精密滤波驱动装置[P].中国,ZL200710135602.8,2007.9.26.
    [73] http://www.skf.com/cn/zh/products/index.html,2012-12-19.
    [74] Inalpolat M. A theoretical and experimental investigation of modulation sidebands ofplanetary gear sets[D]. Columbus, Ohio: The Ohio State University,2009.
    [75] Inalpolat M, Kahraman A. A theoretical and experimental investigation of modulationsidebands of planetary gear sets[J]. J. Sound Vib.,2009,323(3-5):677–696.
    [76] Smith J D. Gear noise and vibration (2nd ed.)[M]. New York: Marcel Dekker,2003.
    [77] Ding Huali. Dynamic wear models for gear systems[D]. Columbus, Ohio: The Ohio StateUniversity,2007.
    [78]唐增宝,钟毅芳.齿轮传动的振动分析与动态优化设计[M].武汉:华中理工大学出版社,1994.
    [79] Kasuba R, Evans J W. An extended model for determining dynamic loads in spur gearing[J]. J.Mech. Des.,1981,103(2):398–409.
    [80] Alec Stokes. Gear handbook: design and calculations[M]. New York: Butterworth-Heinemann,1992.
    [81]罗继伟,罗天宇.滚动轴承分析计算与应用[M].北京:机械工业出版社,2009.
    [82]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1987.
    [83]邓四二,贾群义.滚动轴承设计原理[M].北京:中国标准出版社,2008.
    [84]闻邦椿,顾家柳,夏松波,等.高等转子动力学—理论、技术与应用[M].北京:机械工业出版社,1999.
    [85] Harris Tedric A, Kotzalas Michael N. Rolling bearing analysis (fifth ed.)[M]. New York:Taylor&Francis Group, LLC. CRC Press Inc,2006.
    [86]王涛,唐增宝,钟毅芳.齿轮传动的动态啮合刚度[J].华中理工大学学报,1992,20(3):39–44.
    [87] Yesilyurt I, Gu F S, Ball A D. Gear tooth stiffness reduction measurement using modalanalysis and its use in wear fault severity assessment of spur gears[J]. NDT&E International,2003,36(5):357–372.
    [88]李军华.数控机床主传动齿轮综合啮合刚度研究[D].武汉:华中科技大学,2007.
    [89]李亚鹏.齿轮时变啮合刚度改进算法及刚度激励研究[D].大连:大连理工大学,2009.
    [90] Pandya Y, Parey A. Failure path based modified gear mesh stiffness for spur gear pair withtooth root crack[J]. Eng. Fail Anal.,2013,27(1):286–296.
    [91] Fernandez del Rincon A, Viadero F, Iglesias M, et al. A model for the study of meshingstiffness in spur gear transmissions[J]. Mech. Mach. Theory,2013,61(3):30–58.
    [92]李润方,王建军.齿轮系统动力学-振动、冲击、噪声[M].北京:科学出版社,1997.
    [93]李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998.
    [94] Mucchi E, Dalpiaz G, Rivola A. Elastodynamic analysis of a gear pump. Part II: Meshingphenomena and simulation results[J]. Mech. Syst. Signal Pro.,2010,24(7):2180–2197.
    [95]刘更.确定内啮合斜齿轮副载荷分布及啮合刚度的一种新方法[J].西北工业大学学报,1990,8(4):372–380.
    [96]康焱,石照耀,姚文席,等.渐开线直齿内齿轮的轮齿刚度简化计算[J].北京工业大学学报,2007,33(12):1246–1251.
    [97] Kuang J H, Yang Y T. An estimate of mesh stiffness and load sharing ratio of a spur gearpair[C]. Proceedings of the6th International Power Transmission and Gearing Conference-Volume1, ASME DE-Vol.43-1,1992.
    [98]冯澄宙.渐开线少齿差行星传动[M].北京:人民教育出版社,1982.
    [99] White R J. Exploration of a strategy for reducing gear noise in planetary transmissions andevaluation of laser vibrometry as a means for measuring transmission error[D]. Cleveland,Ohio: Case Western Reserve University,2006.
    [100] Kiekbusch T, Sappok D, Sauer B, et al. Calculation of the combined torsional mesh stiffnessof spur gears with two-and three-dimensional parametrical FE models[J]. Stroj. Vestn.-J.Mech. Eng.,2011,57(13):1246–1251.
    [101]同济大学应用数学系.高等数学(第五版下册)[M].北京:高等教育出版社,2002.
    [102]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解(第二版)[M].北京:清华大学出版社,2008.
    [103]王世宇,王建,曹树谦,等.锥齿行星齿轮传动模态特性分析[J].振动工程学报,2011,24(4):376–384.
    [104]卜忠红,刘更,吴立言.滑动轴承支承人字齿行星齿轮传动固有特性分析[J].机械工程学报,2011,47(1):80–88.
    [105] Bu Zhonghong, Liu Geng, Wu Liyan. Modal analyses of herringbone planetary gear trainwith journal bearings[J]. Mech. Mach. Theory,2012,54:99–115.
    [106] Kiracofe D R, Parker R G. Structured vibration modes of general compound planetary gearsystems[J]. ASME J. Vib. Acoust.,2007,129(1):1–16.
    [107] Wu Xionghua, Parker R G. Modal properties of planetary gears with an elastic continuumring gear[J]. ASME J. Appl. Mech.,2008,75(3):031014-1–12.
    [108] Eritenel T, Parker R G. Modal properties of three-dimensional helical planetary gears[J]. J.Sound Vib.,2009,325(1-2):397–420.
    [109] Eritenel Tugan. Three-dimensional nonlinear dynamics and vibration reduction of gear pairsand planetary gears[D]. Columbus, Ohio: The Ohio State University,2011.
    [110] Cooley C G, Parker R G. Mechanical stability of high-speed planetary gears[J]. Int. J. Mech.Sci.,2013,69:59–71.
    [111] Ericson T M, Parker R G. Planetary gear modal vibration experiments and correlation againstlumped-parameter and finite element models[J]. J. Sound Vib.,2013,332(9):2350–2375.
    [112] Parker R G, Wu Xionghua. Vibration modes of planetary gears with unequally spaced planetsand an elastic ring gear[J]. J. Sound Vib.,2010,329(11):2265–2275.
    [113] Wu Xionghua. Vibration of planetary gears having an elastic continuum ring gear[D].Columbus, Ohio: The Ohio State University,2010.
    [114] Guo Yichao, Parker R G. Purely rotational model and vibration modes of compoundplanetary gears[J]. Mech. Mach. Theory,2010,45(3):365–377.
    [115] Guo Yichao. Analytical study on compound planetary gear dynamics[D]. Columbus, Ohio:The Ohio State University,2011.
    [116] Bahk Cheon-Jae. Analytical study on nonlinear dynamics of planetary gears[D]. Columbus,Ohio: The Ohio State University,2012.
    [117] Ligata Haris. Impact of system-level factors on planetary gear set behavior[D]. Columbus,Ohio: The Ohio State University,2007.
    [118] Prashant Sondkar. Dynamic modeling of double-helical planetary gear sets[D]. Columbus,Ohio: The Ohio State University,2012.
    [119] Kelly S G. Fundamentals of mechanical vibrations (2nd ed.)[M]. New York: McGraw-HillHigher Education,2000.
    [120]徐荣桥.结构分析的有限元法与MATLAB程序设计[M].北京:人民交通出版社,2006.
    [121]赵腾伦.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [122]王玉镯,傅传国.ABAQUS结构工程分析及实例详解[M].北京:中国建筑工业出版社,2010.
    [123]张策.机械动力学(第二版)[M].北京:高等教育出版社,2008.
    [124]杨义勇.机械系统动力学[M].北京:清华大学出版社,2009.
    [125]闻邦椿,李以农,韩淸凯.非线性振动理论中的解析方法及工程应用[M].沈阳:东北大学出版社,2001.
    [126] Ferziger Joel H. Numerical methods for engineering applications (2nd ed.)[M]. New York:Wiley-Interscience,1998.
    [127] Mathews John H, Fink Kurtis D. Numerical methods using MATLAB (4th ed.)[M]. NewYork: Pearson Prentice Hall,2004.
    [128]原思聪.MATLAB语言及机械工程应用[M].北京:机械工业出版社,2008.
    [129]张德丰.MATLAB数值分析与应用(第2版)[M].北京:国防工业出版社,2009.
    [130] Parker Thomas S, Chua Leon O. Practical numerical algorithms for chaotic systems[M].New York: Springer-verlag world publishing corp,1992.
    [131]陈予恕.非线性振动系统的分叉和混沌理论[M].北京:高等教育出版社,1993.
    [132]胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
    [133]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2005.
    [134] Verboven P. Frequency-domain system identification for modal analysis[D]. Brussels: VrijeUniversiteit Brussel,2002.
    [135]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [136] Heylen W, Lammens S, Sas P. Modal analysis theory and testing (2nd ed.)[M]. Leuven:Katholieke Universiteit Leuven,1998.
    [137] Rao Singiresu S. Mechanical vibrations (fifth ed.)[M]. New York: Prentice Hall,2010.
    [138]付才高,郑大平,欧园霞,等.航空发动机设计手册.第19册:转子动力学及整机振动[M].北京:航空工业出版社,2000.
    [139] Peeters B, Auweraer H V D, Guillaume P, et al. The PolyMAX frequency-domain method: anew standard for modal parameter estimation[J]. Shock Vib.,2004,11(3-4):395–409.
    [140] Carne T G, Dohrmann C R. A modal test design strategy for model correlation[C]//Proceedings of the13th International Modal Analysis Conference. New York: Union College,Schenectady,1995:927–933.
    [141] GB/T6404.2-2005/ISO8579-2:1993,齿轮装置的验收规范,第2部分:验收试验中齿轮装置机械振动的测定[S].北京:中国标准出版社,2005.
    [142]邵忍平.机械系统动力学[M].北京:机械工业出版社,2005.
    [143]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2005.
    [144] Gatti P L, Ferrari V. Applied structural and mechanical vibrations-Theory, methods andmeasuring instrumentation[M]. New York: Taylor&Francis e-Library,2003.
    [145] Bartelmus W. Condition monitoring of open cast mining machinery[M]. Wroc aw, Poland:Oficyna Wydawnicza Politechniki Wroc awskiej,2006.
    [146]雷振山,魏丽,赵晨光,等.LabVIEW高级编程与虚拟仪器工程应用[M].北京:中国铁道出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700