降糖药与胰淀素的相互关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病主要特征是胰岛素抵抗及β细胞功能进行性衰竭,从而导致胰岛素效应不足,引起血糖的升高。来自英国前瞻性糖尿病研究中心的数据显示,尽管各种不同的治疗方案均能较好的控制血糖,但并不能阻止β细胞功能的进行性衰竭。越来越多的研究表明,胰淀素(Amylin)在β细胞功能衰竭的发展并最终导致高血糖的2型糖尿病中具有重要的作用。
     胰淀素是β细胞的一种正常分泌产物,与胰岛素由同一β细胞共同分泌和产生的,在生理量葡萄糖的刺激下二者按照1:100的比列相伴释放到胰岛β细胞外。但在高糖刺激下胰淀素的分泌远远超过胰岛素。高浓度的胰淀素一方面可抑制胰岛素的分泌,另一方面胰淀素在一定的条件下可自我聚集,沉积在胰岛中,破坏胰岛组织,损伤β细胞,以致功能衰竭。由于胰淀素与胰岛素是由编码基因启动子区域的β细胞特异性调控元件共同调节的,因此那些促进内源性胰岛素分泌的治疗药物很可能会引起胰淀素分泌的增加,而这样的变化是否足以影响其降糖的效应,或者影响糖尿病病程,并不是非常清楚。
     鉴于此,本课题选用了促胰岛素分泌的磺酰脲类药物和肠促胰岛素——胰高血糖素样肽-1为研究对象,通过整体和离体实验观察药物药效与胰淀素之间的相互关系,探讨胰淀素在2型糖尿病治疗中的作用,进一步揭示降糖药的分子作用机制。本课题得到了高等学校博士学科点专项科研基金的资助(项目号:20040246069)
     本课题主要的研究方法、结果及结论按二个部分分述如下:
     第一部分:磺酰脲类药物药效与胰淀素的关系;
     第二部分:GLP-1对胰淀素分泌和表达的影响
     第一部分:磺酰脲类药物药效与胰淀素的关系
     目的:
     考察大剂量磺酰脲类药物(sulfonylurea,SU)长期应用对小鼠糖代谢及胰岛功能的影响,研究胰淀素对SU药效的影响。
     方法:
     采用尾静脉注射四氧嘧啶制备糖尿病模型。正常和四氧嘧啶糖尿病小鼠灌胃给予格列本脲7.2mg/kg/d,格列齐特80mg/kg/d,每日2次,连续5周,每周测定体重和血糖;于给药5周末测定各组小鼠糖耐量变化;测定血清中胰淀素的浓度。在光镜下观察胰岛组织形态的变化。
     格列本脲灌胃给药1h后,尾静脉注射胰淀素,再腹腔注射葡萄糖,观察小鼠血糖峰值、血糖曲线下面积、葡萄糖增量及平均血糖增量的变化。离体原代培养胰岛细胞,将不同浓度的格列吡嗪加入细胞中孵育2h,ELASA法测定培养上清中胰岛素浓度。将不同浓度的胰淀素与格列吡嗪共同孵育在胰岛细胞中,测定培养上清中胰岛素浓度。
     结果:
     大剂量SU对四氧嘧啶糖尿病模型小鼠血糖的影响
     与正常组相比,四氧嘧啶模型组小鼠血糖明显升高(P<0.001),并且维持在整个实验过程,表明糖尿病模型制备成功。格列本脲3.6mg/kg(b.i.d)及格列齐特40mg/kg(b.i.d)连续灌胃给药5周,均没有观察到小鼠血糖的变化。提示,此模型并不适用于SU类药物药效的研究。因此,本实验在后续的试验中均以正常小鼠为观察对象。
     大剂量SU对正常小鼠血糖及糖耐量的影响
     以未治疗小鼠为对照组,格列本脲3.6mg/kg(b.i.d)在灌胃给药的第2周起表现出明显的降糖作用,在第3、4周仍然维持此作用,与对照组相比差异显著(P<0.05,P<0.01),但在第5周时此降糖作用消失。提示,格列本脲3.6mg/kg(b.i.d)的给药模式持续5周,该药降低空腹血糖的效应减弱。
     格列齐特40mg/kg(b.i.d)对正常小鼠的血糖及糖耐量无明显的影响。
     SU对葡萄糖负荷正常小鼠胰淀素分泌的影响
     实验小鼠腹腔注射葡萄糖后胰淀素的分泌均有增加,但在未治疗组、格列本脲治疗组及格列齐特治疗组之间无显著性差异。提示,格列本脲及格列齐特大剂量给药5周后对胰淀素的分泌没有影响。
     胰淀素对SU降糖效应的的影响
     与未治疗组相比,胰淀素80μg/kg单独应用对小鼠的空腹血糖和葡萄糖的曲线下面积AUC没有明显的作用,但可显著降低血糖峰值和葡萄糖增量(P<0.01)。这将有利于控制餐后血糖,减少血糖波动。
     与未治疗组相比,胰淀素80μg/kg可明显增强格列本脲3.6mg/kg降低正常小鼠空腹血糖的作用(P<0.001),使葡萄糖的曲线下面积AUC显著降低(P<0.05),改善糖耐量,表现出对格列本脲降糖作用的相加。
     与格列本脲、胰淀素合用组相比,胰淀素单用对葡萄糖增量的降低更为显著。这与合用组在糖负荷前较低的空腹血糖有关,表明胰淀素降血糖作用有一定的葡萄糖依赖性。
     胰淀素对SU促胰岛素分泌作用的影响
     在16.7mmol/L葡萄糖刺激下,格列吡嗪5.36μmol/L可明显增加胰岛素的释放(P<0.01),但当与不同浓度的胰淀素共同孵育时,其促胰岛素分泌作用发生了变化,1μM的胰淀素并未影响其作用,而5、10μM的胰淀素则明显抑制了胰岛素的释放,与格列吡嗪组相比差异显著(P<0.05)。表明5、10μM的胰淀素在体外可减弱格列吡嗪的促胰岛素分泌作用。
     结论:
     格列本脲长期大剂量给药,可导致其降低正常小鼠空腹血糖的效应减弱,这一作用与胰淀素水平无明显的关系。胰淀素在体内增强磺酰脲类的降糖作用,在体外抑制其促胰岛素分泌作用。
     第二部分:GLP-1对胰淀素分泌和表达的影响
     目的:
     在2型糖尿病动物模型Goto-Kakizaki(GK)大鼠上,观察重组人胰高血糖素样肽-1(recombined human glucagon-like peptide 1,GLP-1)的降糖作用及对胰淀素分泌、表达的影响,探讨胰淀素与GLP-1降糖效应间的关系,并进一步从分子水平上阐明其作用机制。
     方法:
     以同周龄、同性别的Wistar大鼠为正常对照组,自发性糖尿病GK大鼠连续皮下注射给药GLP-1 56、133μg/kg 12周,定期测定血糖,在第11周,测定进食后30、60min的餐后血糖。在给药的第12周测定腹腔注射糖耐量,同时从眼静脉丛取血。用ELASA法测定血样中胰淀素浓度。处死大鼠取出胰腺,在光镜下观察GK大鼠胰岛基本形态结构的变化计数胰岛的数目。用免疫组化技术评价胰岛组织中胰淀素含量。用荧光定量PCR法测定胰淀素及胰岛素mRNA表达。
     结果:
     GLP-1对GK鼠血糖及糖耐量的影响
     以同周龄、同性别的Wistar大鼠为正常组,模型对照组的GK模型大鼠空腹及餐后血糖均明显高于正常对照组(P<0.01)。GLP-1 56、133μg/kg能显著降低GK鼠餐后30、60min的血糖(P<0.05),改善糖耐量。但是对于空腹血糖,GLP-1 56、133μg/kg均没有明显的影响(P>0.05)。
     GLP-1对血清中胰淀素水平的影响
     与正常组相比,模型对照组大鼠的胰淀素水平在空腹及糖负荷后均明显降低(P<0.05,P<0.01)。GLP-1治疗组大鼠的空腹胰淀素水平有下降的趋势,但与模型对照组相比无统计学意义。糖负荷后,GLP-1显著升高了GK大鼠的胰淀素水平(P<0.05)。表明GLP-1改善了胰岛的分泌功能。
     GLP-1对胰岛细胞中胰淀素含量的影响
     正常组大鼠的胰岛内,可见强阳性、深棕色的胰淀素染色斑块,在胰岛细胞中广泛分布,几乎充满了整个胰岛。在模型对照组的GK大鼠中,只见少量的弱阳性染色散在的分布在胰岛中。而GLP-1治疗的GK大鼠则呈现出较多的胰淀素阳性染色细胞,染色强度也有所增加。提示,GLP-1增加了胰岛细胞中胰淀素的含量,与血清中水平的升高一致。
     GLP-1对胰岛组织形态和胰岛数目的影响
     模型对照组GK鼠的胰岛已不能保持规整圆形,表现为胰岛萎缩,边缘皱缩,并可观察到胰腺滤泡与胰岛交错生长。甚至失去胰岛结构,完全萎缩、崩解,与周围组织混合。
     GLP-1 56、133μg/kg治疗对胰岛结构均有所改善,胰岛的界限趋于清楚,外形趋于完整,核结构清晰,细胞排列整齐。表明GLP-1促进GK大鼠的胰岛结构逐步恢复和改善,但对胰岛数目无明显的影响(P>0.05)。提示,GLP-1增加了胰淀素的分泌和表达,但这并没有影响其降糖的效应及对胰岛结构的改善。
     GLP-1对胰淀素及胰岛素mRNA表达水平的影响
     GK模型鼠胰岛中胰淀素及胰岛素的mRNA表达水平均显著降低(P<0.01),但胰淀素mRNA/胰岛素mRNA的比值远远大于正常组(P<0.05)。
     GLP-1上调了胰淀素和胰岛素的mRNA表达水平,降低了胰淀素mRNA/胰岛素mRNA的比值。相关性分析显示,胰淀素mRNA水平及胰岛素的mRNA水平与血糖均呈现负相关,而胰淀素mRNA/胰岛素mRNA的比值与血糖呈现正相关。提示GLP-1对胰淀素mRNA/胰岛素mRNA比值的降低可能是其降糖的机制之一。
     结论:
     GLP-1增加了胰淀素的分泌和表达,但这并没有影响其降糖的效应及对胰岛结构的改善,分析其原因可能与GLP-1降低了胰淀素mRNA/胰岛素mRNA的比值有关。研究结果提示GLP-1及其类似物将是一类治疗2型糖尿病理想的候选药物。
     全文结论及创新点
     (一)全文结论
     1.格列本脲3.6mg/kg b.i.d连续给药5周,其降低空腹血糖的效应减弱。这一作用与胰淀素水平无明显的关系。
     2.胰淀素单用具有降糖作用,与SU联用降糖作用相加,但离体胰岛培养实验中胰淀素抑制SU的促胰岛素释放作用。表明胰淀素的降糖作用不依赖胰岛素的释放。
     3.GLP-1明显降低GK大鼠餐后血糖,改善糖耐量,连续给药8周未见耐受性,显示出良好的降糖效应。
     4.GLP-1能改善GK大鼠的胰岛结构,促进糖负荷后胰淀素的分泌,增加胰岛细胞中胰淀素的含量,改善了胰岛的分泌功能。提示,GLP-1引起的胰淀素水平的增加并没有影响到它的降糖效应及对胰岛结构的改善作用。
     5.GLP-1上调了胰淀素和胰岛素的mRNA表达水平,降低了胰淀素mRNA/胰岛素mRNA的比值。相关性分析显示,胰淀素mRNA水平及胰岛素的mRNA水平与血糖均呈现负相关,而胰淀素mRNA/胰岛素mRNA的比值与血糖呈现正相关。提示GLP-1对胰淀素mRNA/胰岛素mRNA比值的降低可能是其降糖的机制之一。
     (二)创新点
     1.首次在正常小鼠实验中观察到SU的降糖作用随着连续给药而减弱,对胰淀素水平无明显影响。
     2.首次在动物实验中观察到胰淀素与SU联用使降糖作用相加,表明胰淀素的降糖作用和SU的降糖作用是相互独立的。
     3.首次在2型糖尿病动物模型GK大鼠上观察到GLP-1促进了胰淀素的分泌,且长期用药降糖作用不产生耐受性。
     4.首次发现GLP-1同时上调了胰淀素和胰岛素的mRNA水平,但胰淀素mRNA/胰岛素mRNA的比值降低,逆转了糖尿病模型中胰淀素和胰岛素mRNA水平的变化,为GLP-1的临床应用提供了理论依据。
     5.研究表明胰淀素mRNA/胰岛素mRNA比值与血糖水平正相关,提出胰淀素mRNA/胰岛素mRNA比值的降低可能是一些降糖药的一条重要的作用机制,为开发、筛选新型降糖药提供了新思路。
     6.SU及GLP-1对胰淀素分泌的不同影响提示,胰淀素可能与SU的耐受性发生有关。同时本研究结果支持胰淀素对胰岛功能具有保护作用这一学术观点。
Type 2 diabetes is characterized by insulin resistance and progressiveβ-cell dysfunction leading to insulin deficiency.Type 2 diabetes is a chronic metabolic disease,which is characterized by fasting hyperglycemia that worsens as the disease progresses.Data from the UK Prospective Diabetes Study(UK-PDS) have shown that an almost inevitable progressiveβ-cell failure occurs despite the use of various therapies aimed at ameliorating hyperglycemia.Several mechanisms may contribute to the progressiveβ-cell failure in type 2 diabetes,including loss ofβ-cell mass,β-cell exhaustion,and the cytotoxic effects of elevated glucose and lipid levels.A growing body of evidence suggests that islet amyloid deposits may play an important role in the loss ofβ-cells and the progressive decline in insulin secretion.Westermark identified the major component of islet amyloid as a 37 amino acid peptide and named it amylin or islet amyloid polypeptide.
     Amylin is colocalized with insulin in the isleβ-cells and is cosecreted with insulin in response toβ-cell stimulation by both glucose and non-glucose secretagogues agents, such as arginine.In type 2 diabetes,this peptide aggregates to form amyloid fibrils that are toxic toβ-cells.The mechanism responsible for islet amyloid formation in type 2 diabetes is still unclear,but it appears that an increase in the secretion and expression of amylin can result in its onset.Therefore,therapies that alter endogenous insulin secretion are likely to cause parallel changes in amylin secretion.In fact,previous studies have suggested that sulfonylurea therapy increases the post-prandial amylin concentration,but not so in insulin therapy.These changes in turn may influence the rate of the formation of islet amyloids,which may be disadvantageous in the long term.
     In the present study,sulfonylurea and recombined human glucagon-like peptide 1(GLP-1) were adopted to study the relationship between hypoglycemic drugs and amylin,and explore the role of amylin in type 2 diabetes therapy and the mechanism of hypoglycemic drugs.The present project was supported by a research fund for the Doctoral Program of Higher Education(№2004-024-6069).
     The major methods,results and conclusions were described in two parts.
     PartⅠ:The relationship between amylin and effectiveness of SU
     AIM:
     To investigate the effect sulfonylurea(SU) on glycometabolism andβ-cell function in normal mice treated with a large dose in a long-term.The effect of amylin on hypoglycemic effectiveness of SU was evaluated in the present study.
     METHODS:
     The diabetes mice model was established by intravenous injection alloxan The mice were treated for 5 weeks with Glibenclamide 7.2mg/kg/d tid and gliclazide 80mg/kg/d tid,respectively.The weight and blood glucose were measured during the experiment.At the 5~(th) week,the glucose tolerance test was performed and the blood sample was taken to measure glucose,amylin level in the fasting state and for 120min after injection glucose.When the treatment finished,the mice pancreas were taken and made section.The Histological examination was performed in light microscopy.
     Mice were treated with Glibenclamide 3.6 mg/kg.After 1 hour,they were injected amylin 80μg/kg by i.v,and given glucose 2g/kg by i.p at once.The blood glucose spike, area under the curve(AUC),incremental glucose,time -averaged mean incremental are determined after glucose loading.Glipizide and amylin were incubated together for 2h in the primary culture islet cell,and then insulin level was measured in the culture supernatant by ELASA.
     RESULTS:
     Effects of Sulfonylureas on the level of blood glucose in diabetic mice induced by alloxan.
     Alloxan-treated mice had markedly elevated level of blood glucose compared with normal mice(P<0.001),which indicated the diabetes model induced by alloxan was available.Treatment with Glibenclamide 3.6mg/kg(b.i.d) and gliclazide 40mg/kg(b.i.d) for 5weeks did not reduce the level of blood glucose in diabetes mice. It suggests that the diabetes model induced by alloxan is not applicable to study the drugs treated type 2 diabetes,such as SU.
     Effect of SU on the level of blood glucose and glucose tolerance in normal mice
     Treatment with Glibenclamide 3.6mg/kg(b.i.d) caused a marked fasting hypoglycemia compared with untreated group.during administration for 2,3,4 weeks(P<0.05,P<0.01).However,the role of hypoglycemia disappeared at treatment for 5 weeks.Gliclazide 40mg/kg(b.i.d) had not effect on the level of blood glucose in normal mice.
     The glucose tolerance of normal mice was not changed by treatment with Glibenclamide 3.6mg/kg(b.i.d) and Gliclazide 40mg/kg(b.i.d) for 5 weeks.
     Effect of SU on the level of amylin in normal mice loaded glucose
     All experimental mice showed an increase in the level of amylin after administration glucose.However,there is not significant difference among untreated group,Glibenclamide treated group and Gliclazide treated group.That is to say, Glibenclamide 3.6mg/kg(b.i.d)and Gliclazide 40mg/kg(b.i.d) had no effect on the secretion of amylin.
     Effect of amylin on the role of SU hypoglycemia in normal mice.
     Treatment with amylin 80μg/kg didn't cause the reduction of fasting glucose and glucose area under the curve(AUC).However,the glucose peak and the incremental glucose after injection glucose were markedly decreased by amylin 80μg/kg compared with untreated group(P<0.01).
     The hypoglycemic effect of Glibenclamide was significantly augmented by amylin 80μg/kg intravenously compared with untreated group(P<0.001),which resulted in a reduction of glucose AUC and a improvement on glucose tolerance compared with untreated group(P<0.05).These findings indicated that amyin was in coordination with Glibenclamide in hypoglycemic action.
     The reduction of the incremental glucose in treatment with amylin group was much more than that of amylin combination with Glibenclamide group.
     Effect of amylin on the nsulinotropin of SU in primary culture islet cell.
     The islet cells were incubated in 16.7mmol/L glucose,and then stimulated for 2h in a series of concentration Glipizide.Glipizide 5.36μmol/L stimulated a marked increase in insulin level of in culture supernatants(P<0.01).When 1μM amylin was added into culture medium,no significant difference was detectable in insulin level compared with Glipizide-stimulated insulin release.However,5 and 10μM amylin significantly inhibited the release of insulin stimulated by Glipizide compared with Glipizide group (P<0.05).
     Conclusion:
     The effectiveness of Glibenclamide on fasting hypoglycemia was weaken by a long-term treatment with a large dose in normal mice.However,it doesn't significantly correlate with the level of amylin.The present data indicate that amylin increase or restrain the insulinotropin of sulfonylurea(SU) in vivo and in vitro,respectively.
     PartⅡ:Effect of GLP-1 on the secretion and expression of amylin in GK rats
     AIM:
     To observe the effect of recombined human glucagon-like peptide 1(GLP-1) on the secretion and expression of amylin in Goto-Kakizaki(GK) rats(type 2 diabetes model).To determine whether amylin had disadvantaged effects on the role of GLP-1 and explore the mechanism of GLP-1 in the molecular level.
     METHODS:
     The GK rats were treated with rhGLP-1(7-36) 56 and 133μg/kg subcutaneously for 12 weeks.The body weight and fasting blood glucose were monitored at 0,1,3,5,7, and 11 weeks.In the 11th week,the post-prandial blood glucose level was measured at 30 and 60 min after feeding by the Roche Glucotrend-2 glucometer.In the 12th week of treatment,the rats were subjected to an intraperitoneal glucose tolerance test(IPGTT). The blood samples were collected from the ophthalmic vein after the glucose injection. Serum amylin was determined using an ELISA kit based on the standard curve.
     Directly after the glucose tolerance test,the rats were killed by dislocation of the cervical vertebra,and the pancreatic tissues were taken and made section.The Histological examination and islet number counting was assayed by light microscopy. For the immunohistochemical demonstration of amylin,the streptavidin-biotin-peroxidase complex(SABC) technique was employed to detect the amylin protein.The transcription levels of amylin and insulin mRNA were evaluated by fluorescent-quantitative-PCR.
     Effect of GLP-1 on the level of blood glucose and glucose tolerance in GK rats
     Both the fasting and post-prandial blood glucose levels were significantly higher in the untreated GK rats than the Wistar rats(P<0.01).Treatment with 56 and 133μg/kg GLP-1 showed significantly lower blood glucose levels at 30 and 60 min after feeding compared with the untreated GK group(P<0.05).There was no significant difference in the fasting blood glucose level(P>0.05).The similar manifestation was observed in intraperitoneal glucose tolerance and GLP-1 showed significantly lower blood glucose levels after glucose loading compared with the untreated GK group (P<0.05).
     Effect of GLP-1 on the level of amylin in serum
     The plasma amylin levels were lower in the untreated GK rats than in the Wistar controls,both during basal conditions(P<0.05) and after the glucose administration (P<0.01).The basal plasma amylin levels in the rats treated by 56 and 133μg/kg GLP-lwere found to show a descending trend compared to those in the untreated GK rats(P>0.05).In response to the intraperitoneal glucose administration,the plasma amylin levels of the rats treated by 133μg/kg GLP-1 displayed a marked increase at 30 min after the injection compared with the untreated GK rats(P<0.05),whereas the increase in the rats treated by 56μg/kg GLP-1 did not reach significance(P=0.09).
     Effect of GLP-1 on the level of amylin in pancreatic islets
     Immunostaining for amylin showed conclusive positivity in many cells of the pancreatic islets in the Wistar rats.Few scattered cells were immunopositive for amylin in the untreated GK rats.However,the GLP-1-treated GK rats showed more rich amylin-positive cells compared to the untreated GK rats,although the positively-stained cells were still less than those of the Wistar rats.This result was coincidence with the change of amylin in serum.
     Effect of GLP-1 on the histology and number of islets
     In contrast to the findings in the Wistar control rats,the islets of the GK rats usually had a very irregular shape,and the islets sometimes had a broken appearance. The boundary between the islets and exocrine pancreas was irregular.Some islet cells seemed degenerate and swollen.In many sections,a few islets were also found that displayed a rounded,clear-cut shape like the normal ones seen in the Wistar control rats. The number of islets was markedly decreased in the GK rats compared to the Wistar control rats(P<0.01).No differences were found in the number of islets between the GLP-1 treated rats and untreated GK rats.However,the treatment with GLP-1 showed slight histological amelioration.
     Effect of GLP-1 on the amylin and insulin mRNA levels
     In the untreated GK rats,the levels of amylin and insulin mRNA were significantly reduced(P<0.01).However,there was a more pronounced reduction in the levels of insulin mRNA than amylin mRNA.The GLP-1 56,133μg/kg treated rats both showed marked increases of amylin and insulin mRNA compared with the untreated GK rats.The amylin to insulin mRNA ratio of the untreated GK rats was significantly higher than that of the Wistar rats(P<0.05,164.51%±43.86%vs 63.25%±13.76%).The ratio in the GK/GL and GK/GH rats was elevated with the GLP-1 treatment compared to the untreated GK rats(P<0.05).
     Conclusion:
     GLP-1 stimulates the secretion and expression of amylin,which doesn't change the effectiveness of GLP-1 on hypoglycemia and improvement in islet histology.It may be contributed to a beneficial effect on the ratio of amylin to insulin mRNA.These findings suggest that GLP-1 and GLP-1 analogs are ideal candidates for the treatment of type 2 diabetes.
     (一) The whole conclusions
     1.The effectiveness of Glibenclamide on fasting hypoglycemia was weaken by a 5 weeks long-term treatment with 3.6mg/kg b.i.d dose in normal mice.However,it doesn't significantly correlate with the level of amylin.
     2.Amylin 80μg/kg had a hypoglycemic role in normal mice,which was in coordination with Glibenclamide in hypoglycemic action.However,amylin significantly inhibited restrain the insulinotropin of sulfonylurea(SU).These findings indicated that hypoglycemia of amylin was independence on the release of insulin.
     3.GLP-1 showed significantly lower postprandial blood glucose levels and improvement the glucose tolerance in GK rats.Toleration of GLP-1 was not observed during 8 weeks treatment.
     4.The treatment with GLP-1 showed slight histological amelioration and an increase of amylin secretion and content in islet cell.These findings suggeste that increase of amylin secretion stimulated by GLP-1 doesn't change the effectiveness of GLP-1 on hypoglycemia and improvement in islet histology.
     5.GLP-1 increased the levels of amylin and insulin mRNA and reduced the ratio of amylin to insulin mRNA.The data showed that the amylin and insulin mRNA was negative correlation on the blood glucose level,nevertheless the ratio of amylin to insulin mRNA was positive correlation on the blood glucose level.It may be contributed to a beneficial effect on the ratio of amylin to insulin mRNA.
     (二) New ideas
     1.That is the first study that the effectiveness of Glibenclamide on fasting hypoglycemia was weaken by a 5 weeks long-term treatment with 3.6mg/kg b.i.d dose in normal mice and it doesn't significantly correlate with the level of amylin.
     2.Amylin was in coordination with Glibenclamide in hypoglycemic action,which indicated amylin hypoglycemia is independence on SU hypoglycemic action.
     3.GLP-1 increased amylin secretion and did not induce toleration in a long-term therapy in the GK rat,a type 2 diabetes model.
     4.GLP-1 increased the levels of amylin and insulin mRNA simultaneously and reduced the ratio of amylin to insulin mRNA.GLP-1 reverse the changes of the amylin and insulin mRNA in diabetes model,which provided theory evidence for clinical application of GLP-1.
     5.The study showed that the ratio of amylin to insulin mRNA was positive correlation on the blood glucose level.The result suggest that the reduction in the ratio of amylin to insulin mRNA possibly is an important mechanism of some hypoglycemia,which provided a new route to exploit and screen a new pattern hypoglycemic drugs.
     6.The difference effect of SU and GLP-1 on amylin secretion indicated that amylin possibly was concerned with toleration of SU.At the same time,our result supported the academic concept.
引文
1. Wild S, Roglic G, Green A, Sicree R, & King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Car. 2004, 27 :1047 -1053.
    2. UK Prospective Diabetes Study Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in subjects with type 2 diabetes (UKPDS 33). Lancet. 1998, 352:837-853,
    3. UK Prospective Diabetes Study Group: UK Prospective Diabetes Study 28. A randomized trial of efficacy of early addition of metformin in sulfonylurea-treated type 2 diabetes. Diabetes Care. 1998,21:87-92.
    4. Koro CM, Bowlin SJ, Bourgeois N, Fedder DO: Glycemic control from 1988 to 2000 among U.S. adults diganosed with type 2 diabetes. Diabetes Care. 2004, 27:17-20.
    5. Rhodes CJ. Type 2 diabetes-a matter of β-cell life and death. Science, 2005, 307: 380-384.
    6. Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry. 2004, 279 : 42351-42354.
    7. Kaiser N., Leibowitz G., & Nesher R. Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. Journal of Pediatric Endocrinology and Metabolism. 2003, 16 : 5-22.
    8. Prentki M., Joly E., El-Assaad W., & Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: Role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes. 2002, 51(Suppl. 3): S405-S413.
    9. Buteau J., El-Assaad W., Rhodes CJ., Rosenberg L., Joly E., & Prentki M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia. 2004, 47: 806-815.
    10. Lelliot C., & Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. International Journal of Obesity. 2004, 28(Suppl.4): S22-S28.
    11. Schaffer JE. Lipotoxicity: When tissues overeat. Current Opinion in Lipidology. 2003, 14: 281-287.
    12. Jaikaran ET., Clark A. Islet amyloid and Type 2 diabetes: from molecular misfolding to islet pathology. Biochim. Biophys. Acta. 2001,1537: 179-203.
    13. Kahn SE., Andrikopoulos S., Verchere CB. Islet amyloid: a longrecognized but underappreciated pathological feature of type 2 diabetes. Diabetes. 1999,48: 241-253.
    14. Westermark P. Amyloid and polypeptide hormones: what is their interrelationship? Amyloid. 1994, 1:47-58.
    15. de Koning EJP., Bodkin NL., Hansen BC., Clark A. Diabetes mellitus in Macaca mulatta monkeys is characterised by islet amyloidosis and reduction in beta-cell population. Diabetologia. 1993, 36 : 378-384.
    16. Mosselman S., H"oppener JWM., Zandberg J., VanMansfeld ADM., Geurts van Kessel AHM. Lips CJM., et al. Islet amyloid polypeptide: Identification and chromosomal localization of the human gene. FEBS Letters, 1988, 239:227-232.
    17. Westermark P.,Wernstedt C.,Wilander E., Hayden DW., O'Brien TD., & Johnson K H.. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proceedings of the National Academy of Sciences USA. 1987, 84: 3881-3885.
    18. Cooper GJS., Willis AC., Clark A., Turner RC., Sim RB., & Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proceedings of the National Academy of Sciences USA. 1987, 84: 8628-8632.
    19. Cluck MW., Chan CY., & Adrian TE.. The regulation of amylin and insulin gene expression and secretion. Pancreas. 2005, 30: 1-14.
    20. German MS, Moss LG, Wang J, & Rutter WJ. The insulin and islet amyloid polypeptide genes contain similar cellspecific promoter elements that bind identical beta-cell nuclear complexes. Molecular and Cellular Biology. 1992, 12: 1777-1788.
    21. H'oppener JWM, Oosterwijk C, Nieuwenhuis MG, Posthuma G., Thijssen JHH., Vroom ThM., et al. Extensive islet amyloid formation is induced by development of type II diabetes mellitus and contributes to its progression: Pathogenesis of diabetes in a transgenic mouse model.Diabetologia.1999,42:427-434.
    22.Lukinius A,Wilander E,Westermark GT,et al.Colocalization of islet amyloid polypeptide and insulin in the B-cell secretory granules of the human pancreatic islets.Diabetologia 1998,32:240-251
    23.Clark A,Leiwis CE,Willis AC.et al.Islet amyloid formed from diabetes associated peptide may be pathogenic in type Ⅱ diabetes.Lancet.1993,43:91
    24.Weste rmark P,Wilanr E.The infulence of amyloid deposits on the islet volume in maturity onset diabetes mellitus,Diabetologia 1988,15:417-423
    25.Steine DF,Is amyloid polypeptide a significant factor in pathogenesis or pathophysiology of diabetes? Diabetes.1991,40:305-321
    26.Coldsbury C,Coldie K,Pellaud J.Amyloid fibril formation from full-length and fragments of amylin.Stru Biol.2000,130:352-62
    27.Sinclair AJ.Diagnosis and early management of type 2 diabetes in the elderly:a 1990s perspective.Care of the Elderly,1993,5:69-72
    28.张慧英,方娟娟.口服降糖药的药物利用调查.中国药学杂志.2002,37(4):315
    29.王锦秋,相利,等.口服降糖药的利用研究.西北药学杂志.2002,17(6):273
    30.汤文露,王永铭,等.上海市口服降糖药用药5年动态分析.中国医院药学杂志.2002,22(8):493
    31.Zapecka-Dubno B,Czyzyk A,Dworak A,Bak MI.Effect of oral antidiabetic agents on plasma amylin level in patients with non-insulin-dependent diabetes mellitus(type 2).Arzneimittelforschung.1999,49(4):330-4.
    32.J,Payne MJ,Levy JC,Barrow BA,Holman RR,Turner RC.Changes in amylin and amylin-like peptide concentrations and beta-cell function in response to sulfonylurea or insulin therapy in NIDDM.Diabetes Care.1998 May;21(5):810-6.
    33.朱铁虹,尹潍,高淑伟.磺脲类降糖药继发性失效的2型糖尿病患者血浆胰淀素水平.中华内分泌代谢杂志.2003,19(1):29
    34.Syiem D,Syngai G,Khup PZ,et al..Hypoglycemic effects of Potentilla fulgens L.in normal and alloxan-induced diabetic mice[J].J.Ethnopharmacol.2002,83(1):55
    35.Kurihara H,Fukami H,Kusumoto A,et al.Hypoglycemic action of cyclocarya paliurua(Batal) in normal and diabetic mice[J].Biosci.Biotechnol.Biochem.2003,67(4):877
    36.Bonora E,Targher G,Alberiche M.et al.Homeostasis model assessment of insulin sensitivity:studies in subjects with various degrees of glucose tolerance and insulin sensitivity[J].Diabetes Care.2000,23(1):57-63
    37.李光伟.对胰岛β细胞功能评估的再认识.国外医学内分泌分册.2005,25(3):164-166
    38.Takasu N,Komiya,et al.Streptozocin-and allxon-induced H_2O_2 generating and H_2O_2 as mediator for DNA fragmentation in pancreatic islets.Diabetes.1991,40:1141-5
    39.Reaven GM,Sageman WS,Swenson RS.Development of insulin resistance in normal dogs following alloxan-induced insulin deficiency Diabetologia.1977,13(5):459-62
    40.Defronzo RA.Pharmacologic therapy for type 2 diabetes mellitus.Ann Intern Med 1999,131:281-303
    41.Kirpichnikov D,Mcfarlane SI,Sowers JR.Metformin:an update.Ann Intern Med 2002,137:25-33.
    42.Nathan DM.Initial managementof glycemia in type diabetes mellitus.N Engl J Med.2002,1342-1349.
    43.Satoh J,Takahashi K,Takizawa Y,Ishihara H,Hirai M,Katagiri H,Hinokio Y,Suzuki S,Tsuji I,Oka Y.Secondary sulfonylurea failure:comparison of period until insulin treatment between diabetic patients treated with gliclazide and glibenclamide.Diabetes Res Clin Pract.2005,70(3):291-7.
    44.Gonzalez-Ortiz M,Martinez-Abundis E;Grupo para el Tratamiento de la Diabetes Mellitus con Combinaciones.Efficacy and safety of glimepiride plus metformin in a single presentation,as combined therapy,in patients with type 2 diabetes mellitus and secondary failure to glibenclamide,as monotherapy.Rev Invest Clin.2004,56(3):327-33.
    45.Genuth S.Management of the adult onset diabetic with sulfonylurea drug failure.Endocrinol Metab Clin North Am.1992,21:351
    46.Groop LC.Sulfonylureas in NIDDM.Diabetes Care.1992,15:737-54
    47.Zimmerman BR.Sulfonylureas.Endocrinol Metab Clin North Am.1997,26(3):511-22.
    48.Del Prato S,Pulizzi N.The place of sulfonylureas in the therapy for type 2 diabetes mellitus.Metabolism.2006,55(5 Suppl 1):S20-7.
    49.Jonsson A,Hallengren B,Rydberg T.Effects and serum levels of glibenclamide and its active metabolites in patients with type 2 diabetes.Diabetes,Obesity ang Metabilism.2001,3:403-409.
    50.Simonson DC,Ferrannini E,Bevilacqua S,Smith D,Barrett E,Carlson R,DeFronzo RA.Mechanism of improvement in glucose metabolism after chronic glyburide therapy.Diabetes.1984,33(9):838-45.
    51.Leighton B,Foot E.The effects of amylin on carbohydrate metabolism in skeletal muscle in vitro and in vivo.Biochem J.1990,269:19
    52.Hothersall KH,et al.The effects of amylin and calcitonin gene-ralated peptide on insulin-stimulated glucose transport in the diaphragm.Biochem Biophys Res Commun.1990,169:19
    53.Simonson DC,Kourides IA,Feinglos M,Shamoon H,Fischette CT.Efficacy,safety,and dose-response characteristics of glipizide gastrointestinal therapeutic system on glycemic control and insulin secretion in NIDDM.Results of two multicenter,randomized,placebo-controlled clinical trials.The Glipizide Gastrointestinal Therapeutic System Study Group.Diabetes Care.1997,20(4):597-606.
    54.杨文英(执笔)磺脲类药物应用专家共识[J].国外医学·内分泌学分册,2004,24(4):255-258.
    55.Hong J,Gu WQ,Zhang YF,Guo Y,Chen HM,Zhang LZ,Zhao YJ,Ning G.A study of the degrees of insulin resistance and first-phase insulin secretion of beta-cells in metabolic syndrome patients with different glucose tolerance.Zhonghua Yi Xue Za Zhi.2003,83(22):1952-6.
    56.Bruce DG,Chisholm DJ,Storlien LH,Kraegen EW:Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes.Dia betes.1988,37:736-744.
    57.Mitrakou A,Kelley D,Mokan M,Veneman T,Pangburn T,Reilly J,Gerich J:Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance.N Engl J Med.1992,326:22-29.
    58.Weyer C,Bogardus C,Mott DM,Pratley RE.The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of Type 2 diabetes mellitus. J Clin Invest. 1999, 104:787-794.
    
    59. Hong J, Gu WQ, Zhang YF, Yang YS, Shen CF, Xu M, Li XY, Wang WQ, Ning G. . The interplay of insulin resistance and beta-cell dysfunction involves the development of type 2 diabetes in Chinese obeses. Endocrine. 2007, 31(2):93-9.
    
    60. Hirose H, Maruyama H, Seto Y et al. Effects of D-phenylalanine-derivative hypoglycemic agent A-4166 on pancreatic alpha- and beta-cells: comparative study with glibenclamide. Pharmacology. 1995, 50:175-181.
    
    61. Seto Y, Fujita H, Dan K, Fujita T, Kato R. Stimulating activity of A-4166 on insulin release in in situ hamster pancreatic perfusion. Pharmacology. 1995, 51:245-253.
    
    62. Sato Y, Nishikawa M, Shinkai H, Sukegawa E Possibility of ideal blood glucose control by a new oral hypoglycemic agent, N-[(trans-4-isopropylcyclohexyl) -carbonyl]-D-phenylalanine (A-4166), and its stimulatory effect on insulin secretion in animals. Diabetes Res Clin Pract. 1991,12:53-59.
    
    63. U.K. Prospective Diabetes Study Group : U.K. Prospective Diabetes Study 16: ove rview of 6 years' therapy of type II diabetes: a progressive disease. Diabetes. 1995, 44:1249-1258.
    
    64. Geisler JG,Zawalich W,Zawalich K, et al. Estrogen can prevent or reverse obesity and diabetes in mice expressing human islet amyloid polypeptide. Diabetes. 2002 ,51(7) :2158-2169.
    
    65. Wang F , Hull RL , Vidal J , et al . Islet amyloid develops diffusely throughout the pancreas before becoming severe and replacing endocrine cells[J]. Diabetes. 2001 , 50(11):2514-2520.
    
    66. Marzban L, Park K, Verchere CB, et al. Islet amyloid polypeptide and type 2 diabetes. Exp Gerontol. 2003, 38(4):347-351
    
    67. Yong AA, Gedulin BR, Rink TJ. Dose-response for the slowing of gastric emptying in a rodent model by glucagons-like peptide (7-36)NH2, amylin, cholcystokinin, and other possible regulation of nutrient uptake. Metabolism. 1996, 45(1):1-3.
    
    68. Schmitz O, Nyholm B, Juhl CB, et al. Aspects of secretion and actions of aylin: interplay between amylin and other hormonones. J Endocrinol Invest. 1999, 22(Suppl 5):33-36
    69. Silvestre RA, Peiro E, D0gano P, Miralles P, Marco J. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat p. ancreas. Regul Pept. 1990, 31: 23-31
    70. Kogire M, Ishizuka J, Thompson JC, Greeley GH Jr. Inhibitory action of islet amyloid polypeptide and Calcitonin gene-related peptide on release of insulin from the isolated perfused rat pancreas. Pancreas. 1991, 6: 459-463
    71. Ohsawa H, Kanatsuka A, Yamaguchi T, Makino H, Yoshida S. Islet amyloid polypeptide inhibits glucose-stimulated insulin secretion from isolated rat pancreatic islets. Biochem Biophys Res Commun . 1989, 160: 961-967
    72. Ar'Rajab A, Ahr0n B. Effects of amidated rat islet amyloid polypeptide on glucose-stimulated insulin secretion in vivo and in vitro in rats. Eur J Pharmacol. 1991,192: 443-445
    73. Wagoner PK, Chen C, Worley JF, Dukes ID, Oxford GS. Amylin modulates beta-cell glucose sensing via effects on stimulus-secretion coupling. Proc Natl Acad Sci USA. 1993, 90: 9145-9149
    74. Nagamatsu S. Lack of islet amyloid polypeptide regulation of insulin bioynthesis or secretion in normal rat islets. Diabete. 1990,39:871
    75. Young A. Amylin's physiology and its role in diabetes. Curr. Opin. Endocrinol. Diabetes. 1997,4: 282-290.
    76. Bretherton-Watt D, Gilbey SG, Ghatei MA, Beacham J, Macrae AD, Bloom SR Very high concentrations of islet amyloid polypeptide are necessary to alter the insulin response to intravenous glucose in man. J Clin Endocrinol Metab. 1992, 74:1032-1035
    77. Nakazato M, Asai J, Kangawa K, Matsukura S, Matsuo H. Establishment of radioimmunoassay for human islet amyloid polypeptide and its tissue content and plasma concentration. Biochem Biophys Res Commun. 1989,164: 394-399
    78. Mather KJ, Paradisi G, Learning R, Hook G, Steinberg HO, Fineberg N, Hanley R, Baron AD. Role of amylin in insulin secretion and action in humans: antagonist studies across the spectrum of insulin sensitivity. Diabetes Metab Res Rev. 2002, 18(2): 118-26.
    79. Wang ZL, Bennet WM, Ghatei MA, Byfield PG, Smith DM, Bloom SR. Influence of islet amyloid polypeptide and the 8-37 fragment of islet amyloid polypeptide on insulin release from perifused rat islets. Diabetes. 1993, 42: 330-335
    80. Young AA, Carlo P, Rink TJ, Wang MW. 8-37 hCGRP, an amylin receptor antagonist, enhances the insulin response and perturbs the glucose response to infused arginine in anesthetized rats. Mol Cell Endocrinol. 1992 ,84: R1-R5
    81. Bennet WM, Beis CS, Ghatei MA, Byfield PG, Bloom SR. Amylin tonally regulates arginine-stimulated insulin secretion in rats. Diabetologia . 1994, 37: 436-438
    82. Wang F, Adrian TE, Westermark GT, Ding X, Gasslander T. Permert J. Islet amyloid polypeptide tonally inhibits beta-, alpha-, and delta-cell secretion in isolated rat pancreatic islets. Am J Physiol. 1999, 276 : E19-E24
    83. Drucker DJ. Glucagon-like peptides. Diabetes. 1998, 47:159-169
    84. Kieffer TJ. Habener JF. The glucagon-like peptides. Endocr Rev. 1999, 20:876-913
    85. Drucker DJ. Minireview: the glucagon-like peptides. Endocrinology. 2001, 142: 521-527.
    86. Dhanvantari S, Izzo A, Jansen E, Brubaker PL. Coregulation of glucagon-like peptide-1 synthesis with proglucagon and prohormone convertase 1 gene expression in enteroendocrine GLUTag cells. Endocrinology. 2001, 142: 37-42.
    87. Vilsb0ll T, Krarup T, Deacon CF, Madsbad S, Hoist JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001, 50: 609-13.
    88. Nauck, MA, Heimesaat MM, Behle K, Hoist JJ, Nauck MS, Ritzel R, Hufner M, Schmiegel WH. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J. Clin. Endocrinol. Metab. 2002, 87: 1239-1246
    89. Brubaker PL, Drucker DJ. Mini review: glucagon-like peptides regulate cell prolix feration and apoptosis in the pancreas, gut, and central nervous system. Endocrinol ogy. 2004, 145 : 2653-9.
    90. Zander M, Madsbad S, Madsen JL, Hoist JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002, 359: 824-30.
    91. Kjems LL, Hoist JJ, V0lund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on P-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003, 52: 380-6.
    92. Schirra J, Leicht P, Hildebrand P, Beglinger C, Arnold R, Goke B, Katschinski M. Mechanisms of the antidiabetic action of subcutaneous glucagon-like peptide-1 (7-36) amide in non-insulin dependent diabetes mellitus. J. Endocrinol. 1998,156: 177-186
    93. Kjems LL, Hoist JJ, Volund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes. 2003, 52 : 380-386
    94. Vilsboll T, Krarup T, Madsbad S, Hoist JJ. Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia. 2002,45: 1111-1119
    95. Ritzel R, Schulte M, Porksen N, Nauck MS, Hoist JJ, Juhl C, Marz W, Schmitz O, Schmiegel WH, Nauck MA. Glucagon-like peptide 1 increases secretory burst mass of pulsatile insulin secretion in patients with type 2 diabetes and impaired glucose tolerance. Diabetes. 2001, 50 : 776-784
    96. Berthelier C, Kergoat M, Portha B: Lack of deterioration of insulin action with aging in the GK rat: a contrasted adaptation as compared with non-diabetic rats. Metabolism. 1997, 46 : 890-896
    97. Movassat J, Saulnier C, Portha B: Beta-cell mass depletion precedes the onset of hyperglycemia in the GK rat, a genetic model of non-insulindependent diabetes mellitus. Diabetes Metab. 1995, 21 : 365-370
    98. Portha B, Serradas P, Bailbe D, Suzuki K, Goto Y, Giroix M. p-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type I1 diabetes. 1991, 40:486-91.
    99. Ostenson C-G, Khan A, Abdel-Halim SM. Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia. 1993, 36:3-8.
    100.Rolin B, Larsen MO, Gotfredsen CF, Deacon CF, Carr RD, Wilken M, et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases β-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 2002, 283: E745-52.
    101.Wang Y,Perfetti R,Greig NH,Holloway HW,DeOre KA,Montrose-Rafizadeh C,et al.Glucagon-like peptide-1 can reverse the age-related decline in glucose tolerance in rats.J Clin Invest 1997,99:2883-9.
    102.Buse JB,Weyer C,Maggs DG.Amylin replacement with pramlintide in type 1 and type 2 diabetes:a physiological approach to overcome barriers with insulin therapy.Clin Diabetes 2002,20:137-44
    103.Rotondo F,Vidal S,Bell D,Horvath E,Kovacs K,Scheithauer BW,et al.Immunohistochemical localization of amylin in human pancreas,thyroid,pituitary and their tumors.Acta Histochem.2003,105:303-7.
    104.Leckstrom A,Ostenson CG,Efendic S,Arnelo U,Permert J,Lundquist I,et al.Increased storage and secretion of islet amyloid polypeptide relative to insulin in the spontaneously diabetic GK rat.Pancreas.1996,13:259-67.
    105.Ferrannini E.Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus:problems and prospects.Endocr Rev 1998,19:477-90.
    106.Kieffer TJ,Habener JF.The glucagon-like peptides.Endocr Rev 1999,20:876-913.
    107.Abdel-Halim SM,Guenifi A,Efendic S,Ostenson C-G.Both somatostatin and insulin responses to glucose are impaired in the perfused pancreas of the spontaneously noninsulinrat,dependent diabetic GK(Goto-Kakizaki) rats.Acta Physiol Scand.1993,1482 19-16.
    108.Ostenson C-G,Abdel-Halim SM,Rasschaert J,et al.Deficient activity of FAD-linked glycerophosphate dehydrogenase in islets of GK rats.Ditrhrtologiu.1993,36:7224.
    109.Deacon CF,Nauck MA,Toft-Nielsen M,Pridal L,Willms B,Holst JJ:Both subcutaneously and intravenously administered glucagon-like peptide Ⅰ are rapidly degraded from the NH_2-terminus in type Ⅱ diabetic patients and in healthy subjects.Diabetes 1995,44;1126-31.
    110.Ritzel R,Orskov C,Holst JJ,et al.Pharmacokinetic,insulinotropic and glucagonostatic properties of GLP-1(7-36 amide) after subcutaneous injection in healthy volunteers:Dose-response-relationships[J].Diabetologia,1995,38:720
    111.Nauck MA.Glucagon-like peptide 1(GLP-1) in the treatment of diabetes[J].Horm Metab Res,2004,36:852
    112.Zhao HL, Lai FM, Tong PC, Zhong DR, Yang D, TomlinsonB, et al. Prevalence and clinicopathological characteristics of islet amyloid in Chinese patients with type 2 diabetes. Diabetes. 2003, 52:, 2759-2766.
    113.Lorenzo A., Razzabon B, Weir GC., Yankner B. A. Pancreatic islet cell toxicity of amylin associated with type 2 diabetes mellitus. Nature. 1994, 368: 756-760.
    114.Butler AE, Janson J, Soeller, WC, & Butler PC. Increased β-cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes. Evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes. 2003b, 52:2304-2314.
    115.Kayed R, Head E, Thompson JL, Mclntyre TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003, 300: 486-489.
    116.JACK L, LEAHY, MARK S, FINEMAN. Impaired phasic insulin and amylin secretion in diabetes rats. Am J Physiol Endocrinol Metab. 1998, 275;457-62
    117.Mrijerink J, Mandigers C, LochtL, et al. A novelmethod to compensate for different amp lification efficiencies between patient DNA samples in quantitative real-time PCR. J Mol Diag, 2001, 3: 55 - 61.
    118.Ramakers C, Ruijter JM, Dep rez RH, et al. Assumption free analysis of quantitative real-time polymerase chain reaction ( PCR) data. Neurosci Lett, 2003, 339(1): 62-66.
    119.Kudva YC, Mueske C, Butler PC, Eberhardt NL. A novel assay in vitro of human islet amyloid polypeptide amyloidogenesis and effects of insulin secretory vesicle peptides on amyloid formation. Biochem J. 1998, 331 (Pt 3):809-13.
    120.Westermark GT, Leckstrom A, Ma Z, Westermark P. Increased release of IAPP in response to long-term high fat intake in mice. Horm Metab Res. 1998, 30(5):256-8.
    121.Hothersall JS, Muirhead RP, Wimalawansa S. The effect of amylin and Calcitonin gene-related peptide on insulinstimulated glucose transport in the diaphragm. Biochem Biophys Res Commun. 1990, 169:451-4.
    122.Zierath JK, Galuska D, Engstrom A. et al. Human islet amyloid polypeptide at pharmacological levels inhibits insulin and phorbol esterstimulated glucose transport in vitro incubated human muscle strips. Diabetologia. 1992, 35:26-31.
    123.Frontoni S, Bong Choi S, Banduch D, Rossetti L. In vivo insulin resistance induced by amylin primarily through inhibition of insulin-stimulated glycogen synthesis in skeletal muscle. Diabetes. 1991, 40:568-73.
    124.Deems RO, Deacon RW. Young DA. Amylin activates glycogen phosphorylase and inactivates glycogen synthase via a cAMP-independent mechanism. Biochem Biophys Res Commun. 1991, 174:716-20.
    125.Blackard WG, Clore JN, Kellum JM. Amylin/insulin secretory ratios in morbidly obese man: inverse relationship with glucose disappearance rate. J Clin Endoc.rinol Mctuh. 1994, 78: 1257-60.
    126.Hiramatsu S, Inoue K, Sako Y , Umeda F, Nawata H. Insulin treatment improves relative hypersecretion of amylin to insulin in rats with noninsulin-dependent diabetes mellitus induced by neonatal sreptozocin injection. Metabolism. 1994, 43:766-70
    127.Cluck MW, Murphy LO, Olson J, Knezetic JA, Adrian TE. Amylin gene expression mediated by cAMP/PKA and transcription factors HNF-1 and NFY. Mol Cell Endocrinol. 2003, 210: 63-75.
    128.Gu Q, Gao X. Effect of recombined human glucagon-like peptide-1 on body weight, blood glucose metabolism and β cell function and mass in GK rat. Fudan Univ J Med Sci. 2007, 34: 111-5.
    129.Inoue K, Hisatomi A, Umeda F, Nawata H. Effects of glucagon-like peptide 1 (7-36) amide and glucagon on amylin release from perfused rat pancreas. Horm Metab Res. 1991, 23(9):407-9
    130.Gebre-Medhin S, Mulder H, Pekny M et al. Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem Biophys Res Commun. 1998, 250: 271-277
    131.AhrOn B, Oosterwijk C, Lips CJ, Hoppener JW. Transgenic overexpression of human islet amyloid polypeptide inhibits insulin secretion and glucose elimination after gastric glucose gavage in mice. Diabetologia. 1998, 41: 1374-1380
    132.Mulder H, Gebre-Medhin S, Betsholtz C, Sundler F, Ahr0n B. Islet amyloid polypeptide(amylin)-deficient mice develop a more severe form of alloxan-induced diabetes. Am J Physiol Endocrinol. 2000, 278: E684-E691
    [1]Nammi S,Boini MK,Lodagala SD,et al.The juice of fresh leaves of Catharanthus roseus Linn.reduces blood glucose in normal and alloxan diabetic rabbits[J].BMC Complement Altern Med.,2003,3(1):4-7
    [2]张慧英,方娟娟.口服降糖药的药物利用调查.中国药学杂志.2002,37(4):315-316
    [3]王锦秋,相利,等.口服降糖药的利用研究.西北药学杂志,2002,17(6):273-275
    [4]汤文露,王永铭,等.上海市口服降糖药用药5年动态分析.中国医院药学杂志,2002,22(8):493-496
    [5]Aldhahi W,Armstrong J,Bouche C,et al.Beta-cell insulin secretory response to oral hypoglyce-mic agents is blunted in humans in vivo during moderate hypoglycemia[J].J Clin Endocrinol Metab,2004,89(9):4553-4557
    [6]Schneider J,Chaikin P.Glimepiride safety:results of placebo-controlled,doseregimen,and active-controlled trials[J].Postgrad Med,1997,Special Report (6):33-44.
    [7]Dills DG,Schneider J,The Glimepiride/Glyburide StudyGroup.Clinical evaluation of glimepiri-de versus glyburied in NIDDM in a double-bline comparative study[J].Horm Metab Res,1996,28:426-430.
    [8]Clark CM,Goldberg RB.Glimepiride dosing and efficacy:results of placebo-controlled,dose-regimen and active-controlled trials[J].Postgrad Med,1997,Special Report(6):45-56.
    [9]University Group Diabetes Program.A study of the effects ofhypoglycemic agents on vascular complications in patients withadult2onset diabetes.V1.Supplementary report on nonfatal eventsin patients treated with tolbutamide[J].Diabetes,1976,25:1129-1153.
    [10]Leibowitz G,Cerasi E.Sulphonylurea treatment on NIDDM patients with cardiovascular disease : a mixed blessing ?[J] Diabetologia, 1996 ,39 :503-514.
    [11] Pogatsa G. Potassium channels in the cardiovascular system[J]. Diabetes Res Clin Pract, 1995 ,28 (Suppl) :S91-S98.
    [12] O' Keefe J H , Blackstone EH , Sergeant P , et al. The optimal modeof coronary revascularizati-on for diabetics : a risk2adjusted longtermstudy comparing coronary angioplasty and coronary bypass[J]. surgery.Eur Heart J , 1998 ,19 :1696-1703.
    [13] Grover GJ . Protective effects of ATP sensitive potassium channel openers in model of myocardi-al ischemia[J]. Cardiovasc Res , 1994 ,28 :778-782.
    [14] Smits P , Thien T. Cardiovascular effects of sulphonylureaderivatives[J]. Diabetologia, 1995,38: 1161-21.
    
    [15] Garratt KN , Brady PA , Hassinger NL , et al. Sulfonylurea drugsincrease early mortality in patients with diabetes mellitus afterdirect angioplasty for acute myocardial infarction[J]. J Am Cardiol, 1999 ,33 :119-124.
    [16] Turner R, Cull C , Holman R (United Kingdom ProspectiveDiabetes Study Group). United Kingdom Prospective DiabetesStudy 17 :a 9 year update of a randomized, controlled trial on theeffect of improved metabolic control on complications in non2insulin2dependent diabetes mellitus[J]. Ann Intern Med , 1996,124:136-145.
    [17] Efrusy ME. Chlorpropamide hepatotoxicity: report of a case and review of the literature[J]. Am J Gastroenterol, 1984,79(9):721-724
    [18] Kaminski Pharm D CA, Angueira MD E. Chlorpropamide-induced cholestatic liver failure resul-ting in death[J].Endocr Pract, 1996,2(3):191-192
    [19] Loludice TA, Lang JA. Tolazamide-induced hepatic dysfunction[J]. Am J Gastroenterol, 1978, 69(1): 81-83.
    
    [20] Chan KA, Truman A, Gurwitz JH, et al. A cohort study of the incidence of serious acute liver injury in diabetic patients treated with hypoglycemic agents[J].Arch Intern Med, 2003, 163(6): 728-734
    [21] Goodman RC, Dean PJ, Radparvar A, et al. Glyburide-induced hepatitis[J]. Ann Intern Med, 1987,(6):837-839.
    [22] Klein W. Sulfonylurea-metformin-combination versus sulfonylurea-insulin -combination in seco-ndary failures of sulfonylurea monotherapy. Results of a prospective randomized study in 50 patients [J]. Diabete Metab, 1991, 17(1):23 5 -240.
    [23]Genuth S.Management of the adult onset diabetic with sulfonylurea drug failure.Endocrinol[J]Metab Clin North Am,1992,21:3513-3560
    [24]Pontiroli AE,Calderara A,Pacchioni M,et al.Weight loss reverses secondary failure of oral hypog-lycaemic agents in obese non-insulin-dependent diabetic patients independently of the duration of the disease[J].Diabete Metab,1993,19(1):30-35.
    [25]Donnelly R,Morris AD.Drugs and insulin resistance:clinical methods of evaluation and new pharmacological approaches to metabolism[J].Br J Clin Pharmacol,1994,37(4):311-320.
    [26]Gomez-Zubeldia MA,Ropero F,Sanchez-Casas P,et al.The effect of acarbose on the intestinal metabolism of glucose in vitro[J].Acta Diabetol,1993,30(2):85-88.
    [27]Muller G,Wied S.The sulfonylurea drug,glimepiride,stimulates glucose transport,glucose trans-porter translocation,and dephosphorylation in insulin-resistant rat adipocytes in vitro[J].Diabetes,1993,42(12):1852-1867.
    [28]Karlander SG,Gutniak MK,Efendic S.Effects of combination therapy with glyburide and insulin on serum lipid levels in NIDDM patients with secondary sulfonylurea failure[J].Diabetes Care,1991,14(11):963-967.
    1.Wild S,Roglic G,Green A,Sicree R,King H.Global prevalence of diabetes:Estimates for the year 2000 and projections for 2030.Diabetes Care,2004,27:1047-1053.
    2.Pardes H,Manton KG.,Lander ES,Tolley HD,Ullian AD,Palmer H.Effects of medical research on health care and economy.Science,1999,283:36-37.
    3.Zimmet P.The burden of type 2 diabetes:Are we doing enough? Diabetes and Metabolism,2003,29:6S9-6S18.
    4.Sorkin JD,Muller DC,Fleg JL,AndresR.The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality:Data from the Baltimore Longitudinal Study of Aging with a critical review of the literature.Diabetes Care,2005,28:2626-2632.
    5.Costa A,Conget I,Gomis R.Impaired glucose tolerance Is there a case for pharmacologic intervention? Treatments in Endocrinology,2002,1:205-210.
    6.Kahn BB.Type 2 diabetes:When insulin secretion fails to compensate for insulin resistance.Cell,1998,92:593-596.
    7.Larsson H,Ahr'en B.Failure to adequately adapt reduced insulin sensitivity with increased insulin secretion in women with impaired glucose tolerance. Diabetologia, 1996, 9: 1099-1107.
    
    8. Rhodes CJ. Type 2 diabetes-a matter of β-cell life and death.Science, 2005, 307: 380-384.
    
    9. Tsakiris D, Ioannou K. An underdiagnosed type of diabetes: The MODY syndromes. Pathophysiology, clinical presentation and renal disease progression. Journal of Nephrology, 2004, 17: 637-641.
    
    10. Barroso I. Genetics of type 2 diabetes. Diabetic Medicine, 2005, 22: 517-535.
    
    11. Stumvoll M, Goldstein BJ, Van Haeften TW. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet, 2005, 365: 1333-1346.
    
    12. O'Brien TD. Pathogenesis of feline diabetes mellitus. Molecular and Cellular Endocrinology, 2002, 197: 213-219.
    
    13. Wagner JD, Cline JM, Shadoan MK, Bullock BC, Rankin SE, Cefalu WT. Naturally occurring and experimental diabetes in cynomolgus monkeys: A comparison of carbohydrate and lipid metabolism and islet pathology. Toxicologic Pathology, 2001, 29: 142-148.
    
    14. Kim JH, Nishina PM, Naggert JK. Genetic models for non insulin dependent diabetes mellitus in rodents. Journal of Basic and Clinical Physiology and Pharmacology, 1998, 9: 325-345.
    
    15. Roth J, Qiang X, Marban SL, Redelt H, Lowell BC. The obesity pandemic: Where have we been and where are we going? Obesity Research, 2004, 12:88S-101S.
    
    16. Wolf G. Insulin resistance and obesity: Resistin, a hormone secreted by adipose tissue. Nutrition Reviews, 2004, 62: 389-394.
    
    17. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. Journal of Clinical Endocrinology and Metabolism, 2001,86:1930-1935
    
    18. Murphy JE., Zhou S, Giese K, Williams LT, Escobedo JA, Dwarki VJ. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin.Proceedings of the National Academy of Sciences USA, 1997,94: 13921-13926.
    
    19. H¨oppener JWM, Oosterwijk C, Nieuwenhuis MG., Posthuma G., Thijssen JHH, Vroom, ThM, et al. Extensive islet amyloid formation is induced by development of type II diabetes mellitus and contributes to its progression: Pathogenesis of diabetes in a transgenic mouse model. Diabetologia, 1999,42: 427-434.
    20. Lelliot C, Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. International Journal of Obesity, 2004, 28(Suppl. 4): S22-S28.
    21. Schaffer JE. Lipotoxicity: When tissues overeat. Current Opinion in Lipidology, 2003, 14 : 281-287.
    22. Kaiser N, Leibowitz G., Nesher R. Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. Journal of Pediatric Endocrinology and Metabolism, 2003,16: 5-22.
    23. Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry, 2004, 279: 42351-42354.
    24. Prentki M, Joly E, El-Assaad W, Rodui R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: Role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes, 2002, 51(Suppl.3): S405-S413.
    25. Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia, 2004, 47: 806-815.
    26. Butler AE., Janson J, Bonner-Weir, S, Ritzel R, Rizza RA, Butler, PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003a, 52: 102-110.
    27. Opie EL. The relation of diabetes mellitus to lesions of the pancreas. Hyaline degeneration of the islands of langerhans. Journal of Experimental Medicine, 1901, 5: 527-540.
    28. Rosenfeld L. Insulin: Discovery and controversy. Clinical Chemistry, 2002, 48: 2270-2288.
    29. Ancsin JB. Amyloidogenesis: Historical and modern observations point to heparin sulfate proteoglycans as a major culprit. Amyloid, 2003,10 : 67-79.
    30. Booth DR., Sunde M, Bellotti V, Robinson CV., Hutchinson WL., Fraser PE, et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature, 1997, 385: 787-793.
    31. Glenner GG.Amyloid deposits and amyloidosis: The fibrilloses. New England Journal of Medicine, 1980, 302 : 1283-1292.
    32. Gillmore JD, Hawkins PN, Pepys MB. Amyloidosis:A review of recent diagnostic and therapeutic developments. British Journal of Haematology, 1997, 99: 245-256.
    33. Westermark, P. Amyloid and polypeptide hormones: What is their relationship? Amyloid: The International Journal of Experimental and Clinical Investigation, 1994, 1:47-60.
    34. Zhao HL, Lai FM, Tong PC, Zhong DR,Yang D, Tomlinson B, et al. Prevalence and clinicopathological characteristics of islet amyloid in Chinese patients with type 2 diabetes. Diabetes, 2003, 52: 2759-2766.
    35. O'Brien TD, Wagner JD, Litwak KN, Carlson CS, Cefalu WT, Jordan K, et al. Islet amyloid and islet amyloid polypeptide in cynomolgus macaques (Macaca fascicularis): An animal model of human non-insulin-dependent diabetes mellitus. Veterinary Pathology, 1996, 33: 479-485.
    36. Rand J. Current understanding of feline diabetes. Part 1. Pathogenesis. Journal of Feline Medicine and Surgery, 1999, 1: 143-153.
    37. Westermark P, Wernstedt C, Wilander, E, Hayden DW., O'Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proceedings of the National Academy of Sciences USA, 1987, 84: 3881-3885.
    38. Coope, GJS, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proceedings of the National Academy of Sciences USA, 1987, 84: 8628-8632.
    39. Kahn SE, D'Alessio DA, Schwartz MW, FujimotoWY, Ensinck JW, Taborsky GJJr, Porte DJ, Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells. Diabetes, 1990, 39: 634-638.
    40. de Koning EJP, Morris ER, Hofhuis FMA, Posthuma G., Hoppener JWM, Morris JF, Capel PJA, Clark A, Verbeek JS. Intra- and extracellular amyloid fibrils are formed in cultured pancreatic islets of transgenic mice expressing human islet amyloid polypeptide.Proc. Natl Acad. Sci. USA, 1994, 91: 8467-8471.
    41. Westermark P, Eizirik DL, Pipeleers DG., Hellerstrom C, Andersson A. Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia, 1995, 38: 543-549.
    42. Westermark P, Engstr¨om U, Johnson KH, Westermark GT, Betsholtz C. Islet amyloid polypeptide: Pinpointing amino acid residues linked to amyloid fibril formation. Proceedings of the National Academy of Sciences USA, 1990, 87: 5036-5040.
    43. Jordan K, Murtaugh MP, O'Brien TD, Westermark P, Betsholtz C, Johnson KH. Canine IAPP cDNA sequence provides important clues regarding diabetogenesis and amyloidogenesis in type 2 diabetes. Biochemical Biophysical Research Communications, 1990, 169: 502-508.
    44. O'Brien TD,Westermark P, Johnson KH. Islet amyloid polypeptide and Calcitonin gene-related peptide immunoreactivity in amyloid and tumor cells of canine pancreatic endocrine tumors. Veterinary Pathology, 199, 27: 194-198.
    45. Leffert JD, Newgard CB, Okamoto H, Milburn JL, Luskey KL. Rat amylin: Cloning and tissue-specific expression in pancreatic islets. Proceedings of the National Academy of Sciences USA, 1989,86: 3127-3130.
    46. Rotondo F, Vidal S, Bell D, Horvath E, Kovacs K, Scheithauer BW, et al. Immunohistochemical localization of amylin in human pancreas, thyroid, pituitary and their tumors. Acta Histochemica, 2003, 105: 303-307.
    47. German MS, Moss LG., Wang J, Rutte WJ. The insulin and islet amyloid polypeptide genes contain similar cellspecific promoter elements that bind identical beta-cell nuclear complexes. Molecular and Cellular Biology, 1992, 12: 1777-1788.
    48. Cluck MW, Chan CY, Adrian TE. The regulation of amylin and insulin gene expression and secretion. Pancreas, 2005, 30: 1-14.
    49. Young A, Amylin's physiology and its role in diabetes. Curr. Opin. Endocrinol. Diabetes, 1997, 4: 282-290.
    50. Gebre-Medhin S, Olofsson C, Mulde H. Islet amyloid polypeptide in the islets of Langerhans: friend or foe? Diabetologia, 2000, 43: 687-695.
    51. Gebre-Medhin S, Mulder H, Pekny M, Westermark G., To¨rnell J, Westermark P, Sundler F, Ahren B, Betsholtz C. Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem. Biophys. Res. Commun, 1998, 250: 271-277.
    52. Zhang S, Liu J, Dragunow M, Cooper GJS. Fibrillogenic amylin evokes islet beta-cell apoptosis through linked activation of a caspase cascade and JNK1. Journal of Biological Chemistry, 2003, 278: 52810-52819.
    53. Lorenzo A, Razzabon B, Weir GC, Yankner BA. Pancreatic islet cell toxicity of amylin associated with type 2 diabetes mellitus. Nature, 1994, 368: 756-760.
    54. Butle, AE., Janson J, Soeller WC, Butler PC. Increased β-cell apoptosis prevents adaptive increase in P-cell mass in mouse model of type 2 diabetes. Evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes, 2003b, 52:2304-2314.
    55. Kayed R, Head E, Thompson JL, McIntyre TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300: 486-489.
    56. Janson J, Ashley RH, Harrison D, Mclntyre S, Butler PC. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes, 1999, 48: 491-498.
    57. Kayed R, Sokolov Y, Edmonds B, Mclntyre TM, Milton SC, Hall JE, et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. Journal of Biological Chemistry, 2004, 279: 46363-46366.
    58. Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annual Reviews in Neurosciences, 2003, 26: 267-298.
    59. Mirzabekov TA, Lin MC, Kagan BL Pore formation by the cytotoxic islet amyloid peptide amylin. Journal of Biological Chemistry, 1996,.271: 1988-1992.
    60. Janciauskiene S, Ahr'en B. Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochemical and Biophysical Research Communications, 2000, 267: 619-625.
    61. Kahn SE, Andrikopoulos, S., Verchere, C.B., Islet amyloid: a longrecognized but underappreciated pathological feature of type 2 diabetes. Diabetes, 1999, 48: 241-253.
    62. Jaikaran ET, Higham CE, Serpell LC, Zurdo J, Gross M, Clark A, Fraser PE. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.J. Mol. Biol. 2001, 308: 515-525.
    63. Nilsson MR, Raleigh DP. Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. J. Mol. Biol. 1999, 94: 1375-1385.
    64. Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC. Diabetes due to a progressive defect in β-cell mass in rats transgenic for human islet amyloid polypeptide (HIP rat). Diabetes, 2004, 53: 1509-1516.
    65. Verchere CB, D'Alesssio DA., Palmiter RD, Weir GC, Bonner-Weir S, Baskin DG., et al. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proceedings of the National Academy of Sciences USA, 1996, 93:3492-3496.
    66. Sakagashira S, Sanke T, Hanabusa T, Shimomura H, Ohagi S, Kumagaye KY, Nakajima K, Nanjo K. Missense mutation of amylin gene (S20G) in Japanese NIDDM patients. Diabetes , 1996, 45: 1279-1281.
    67. Nishi M, Bell GI, Steine, DF. Islet amyloid polypeptide (amylin): no evidence of an abnormal precursor sequence in 25 type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1990, 33: 628-630.
    68. Westermark GT, Steine, DF, Gebre-Medhin S, Engstrom U, Westermark P. Pro islet amyloid polypeptide (ProIAPP) immunoreactivity in the islets of Langerhans. Upsala Journal of Medical Sciences, 2000, 105: 978-1006.
    69. Paulsson JF, Westermark GT. Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation. Diabetes, 2005, 54: 2117-2125.
    70. Higham CE, Hull RL, Lawrie L, Shennan KI, Morris JR, Birch NP, et al. Processing of synthetic pro-islet amyloid polypeptide (proIAPP) 'amylin' by recombinant prohormone convertase enzymes, PC2 and PC3, in vitro. European Journal of Biochemistry, 2000, 267: 4998-5004.
    71. Marzban L, Trigo-Gonzalez G., Zhu X, Rhodes CJ, Halban PA., Steiner DF., et al. Role of beta-cell prohormone convertase (PC) 1/3 in processing of pro-islet amyloid polypeptide. Diabetes, 2004, 53: 141-148.
    72. Wang J, Xu J, Finnerty J, Furuta M, Steiner DF, Verchere CB. The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. Diabetes, 2001 ,,50: 534-539.
    73. Ahr'en B. Type 2 diabetes, insulin secretion and beta-cell mass. Current Molecular Medicine, 2005, 5: 275-286.
    74. Park K, Verchere CB. Identification of a heparin binding domain in the N-terminal cleavage site of pro-islet amyloid polypeptide. Implications for islet amyloid formation. Journal of Biological Chemistry, 2001, 276,16611-16616.
    75. Hou X, Ling Z, Quartier E, Foriers A, Schuit F, Pipeleers D, Van Schravendijk C. Prolonged exposure of pancreatic beta cells to raised glucose concentrations results in increased cellular content of islet amyloid polypeptide precursors. Diabetologia, 1999,42:188-194.
    76. Furukawa H, Carroll RJ, Swift HH, Steiner DF. Long-term elevation of free fatty acids leads to delayed processing of proinsulin and prohormone convertases 2 and 3 in the pancreatic beta-cell line MIN6. Diabetes, 1999, 48: 1395-1401.
    77. Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC. Diabetes due to a progressive defect in β-cell mass in rats transgenic for human islet amyloid polypeptide (HIP rat). Diabetes, 2004, 53:1509-1516.
    78. H"oppener JWM, Ahr'en B, Lips CJM. Islet amyloid and type 2 diabetes mellitus. New England Journal of Medicine, 2000a, 343: 411-419.
    79. Hoenig M, Hall G., Ferguson D, Jordan K, Henson M, Johnson KH, et al. A feline model of experimentally induced islet amyloidosis. American Journal of Pathology, 2000,157:2143-2150.
    80. Hull RL, Andrikopoulos S, Verchere CB, Vidal J, Wang F, Cnop M, et al.. Increased dietary fat promotes islet amyloid formation and beta-cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes, 2003, 52: 372-379.
    81. Hull RL, Shen ZP, Watts MR, Kodama K, Carr DB, Utzschneider KM, et al. Long-term treatment with rosiglitazone and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes, 2005, 4: 2235-2244.
    82. Walter H, Lubben G.Potential role of oral thiazolidinedione therapy in preserving beta-cell function in type 2 diabetes mellitus. Drugs, 2005, 65: 1-13.
    83. Rijkers DT, H¨oppener JWM, Posthuma G., Lips CJM, Liskamp RM. Inhibition of amyloid fibril formation of human amylin by N-alkylated amino acid and alpha-hydroxy acid residue containing peptides. Chemistry, 2002, 8: 4285-4291.
    84. Kisilevsky R, Szarek WA, Ancsin J, Bhat S, Li Z, Marone S. Novel glycosaminoglycan precursors as anti-amyloid agents. Part III. Journal of Molecular Neuroscience, 2003, 20: 291-297.
    85.Pepys MB,Herbert J,Hutchinson WL,Tennent GA,Lachmann HJ,Gallimore JR,et al.Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis.Nature,2002,417:254-259.
    86.Morgan D,Diamond DM,Gottschall PE,Ugen KE,Dickey C,Hardy J,et al.A peptide vaccination prevents memory loss in an animal model of Alzheimer's disease.Nature,2000,408:82-985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700