高铁综合客运枢纽客流安全预警关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国高速铁路步入迅速发展阶段,与高铁相配套的现代化综合客运枢纽的新建和改扩建工程项目也大量开展,高铁综合客运枢纽逐步发展成为高速铁路、航空、公路、水运与城市轨道交通、公共交通、小汽车、出租车等多种交通方式立体交叉衔接为主要特征的综合客运枢纽。作为综合客运网络的重要节点,高铁综合客运枢纽是多种客运交通方式和大规模客流的集散场所,枢纽的旅客集散量将会随着高速铁路运营里程的不断增加持续急剧增长,这对高铁综合客运枢纽客流安全预警提出了更高的要求。
     目前铁路客运枢纽的视频监控系统功能比较单一,对视频图像的监视和分析主要依靠工作人员持续地监视屏幕,人为解读视频信息,做出相应的决策。当监控点增多、监控强度加大时,人工操作容易产生失误,不能及时发现客流安全隐患,导致铁路客运枢纽客流安全应急响应处置只能被动回应,并未充分发挥枢纽视频监控系统的主动性。鉴于高铁综合客运枢纽安全预警的需求和当前铁路客运枢纽视频监控系统的不足,本文依托国家高技术研究发展计划“高速铁路综合客运枢纽集散服务网络行人安全状态识别技术”项目,开展对高速铁路综合客运枢纽客流安全预警关键技术的研究。通过合理布设视频监控采集点,快速、准确提取客流参数实时信息,精确预测瓶颈点客流参数信息,有效把握客流状态变化趋势,达到及早发现客流安全隐患,及时发布预警信息的目的。
     本文首先从信息采集、信息处理和信息融合三个角度对高铁综合客运枢纽客流安全预警的需求进行了分析,根据需求设计了高铁综合客运枢纽客流安全预警系统结构和预警流程,指出了高铁综合客运枢纽客流安全预警的关键技术。
     根据高铁综合客运枢纽安全预警对信息采集的需求,提出高铁综合客运枢纽视频监控采集点分级布设策略,分析了采集点分级布设流程,针对无障碍和有障碍功能区域分别提出基于正六边形区域剖分的视频监控采集点布设模型和基于集合覆盖的视频监控采集点布设模型。并运用该策略对北京南站地下一层进行了实例布设。
     根据高铁综合客运枢纽安全预警对信息处理的需求,结合高铁综合客运枢纽的客流图像特征,提出基于证据推理的均值背景模型。在对经过背景处理后的客流前景图像的识别研究中,提出基于标记自动获取的改进分水岭算法和基于客流图像连通域特征的识别算法,并利用基于相关模型和算法建立的客流人数识别系统对北京南站某检票口的客流图像进行了识别。
     根据高铁综合客运枢纽安全预警对信息融合的需求,结合高铁综合客运枢纽视频监控采集点的关联结构,通过对枢纽视频监控采集点间的关联度和客流参数预测方法的研究,提出基于空间的客流参数预测算法和基于时空的客流参数预测模型。利用提供的预测信息,获取瓶颈点的客流状态安全等级,发布有效的预警处理指示。并利用北京南站某检票点及其空间相连的视频监控采集点的客流密度及客流速度数据对算法和模型进行了验证。
     通过本文对高铁综合客运枢纽客流安全预警关键技术的研究,能够为预警处理提供正确的判断信息,发布及时有效的预警指示,提高枢纽客流安全预警的速度、准度和精度,确保高速铁路综合客运枢纽的客流高效安全集散,降低事故的发生率和严重性,对提升高速铁路客运安全保障能力具有指导意义和参考价值。
With the rapid development of high-speed railway in China, the rebuilding and extension of modern comprehensive passenger transport hubs which are built for matching with high-speed railway have been implemented largely. The high-speed railway comprehensive passenger transport hub has become the crossing and interface of multi-transportation which includes high-speed railway, civil aviation, highway, waterway, urban rail transit, public transport, motor vehicle and taxi. As the vital node of passenger transport net, the high-speed railway comprehensive passenger transport hub is the important distribution place of various passenger transportations and massive passenger flow. With the increase of high-speed railway operation mileage, the distribution quantity of passengers will be sustained to increase sharply. So there is a higher demand for security forewarning of passenger flow in high-speed railway comprehensive passenger transport hub.
     As the video surveillance system functions of railway passenger hubs are relatively simple, the surveillance and analysis mainly depend on monitoring the screen continuously, interpreting the video information and making relevant decisions artificially. When the quantity of monitor points and the strength of monitor increase, manual operations make mistakes easily and can not find the security risks of passenger flow immediately. It leads to the passive response of railway passenger hub emergency handling and underplaying initiative of video surveillance systems. For the demand of security forewarning of passenger flow in high-speed railway comprehensive passenger transport hub, and the disadvantages of video surveillance system in railway passenger hubs, this paper focuses on the key technologies study of passenger flow safety forewarning in high-speed railway comprehensive passenger transport hub based on Hi-Tech Researcher and Development Program of China "Passenger Security Status Recognition of High-speed Railway Comprehensive Passenger Transport Hub Distribution Network." By the rational layout of video monitor point, rapidly and precisely abstracting information of passenger flow, exactly forecasting parameters of passenger flow parameters and effectively grasping the variation tendency of passenger flow status, achieves to detect the security risks of passenger flow and releases the information of security forewarning promptly.
     Firstly, we analyze the demand of passenger flow security forewarning in high-speed railway comprehensive passenger transport hub from information acquisition, information processing and information fusion. According to the demand, we design the architecture of passenger flow security forewarning, describe the procedure of security forewarning and present key technologies of passenger flow safety forewarning in high-speed railway comprehensive passenger transport hub.
     Secondly, according to the information acquisition demand of safety forewarning in high-speed railway comprehensive passenger transport hub, we present the hierarchical layout strategy of video monitor points, analyze the hierarchical layout procedure of monitor points. For the function areas with or without obstacle, we respectively present different layout model. By using the layout strategy, we take Beijing south railway station for example to implement layout.
     Thirdly, according to the information processing demand of safety forewarning and the characteristics of passenger flow image in high-speed railway comprehensive passenger transport hub, we present the average background model bases on the Dempster-Shafer theory for building background image. After the subtraction of background image, we present the improved watershed algorithm based on marker automatic acquisition and recognition algorithm based on the connected domain characteristic of passenger flow image. We take one ticket entrance of Beijing south railway station for example to recognize the quantity of passenger flow by the passenger quantity recognizing system based on the algorithms mentioned above.
     Finally, according to the information fusion demand of safety forewarning and association structure among video monitor points in high-speed railway comprehensive passenger transport hub, by the studies of association degree among video monitor points and the forecast mode of passenger flow parameters, we present the passenger flow parameter forecast algorithm based on space and passenger flow parameter forecast model base on space-time. By the forecast information, to get the passenger status security level of choke point and release the order of security forewarning. We test the algorithm and model by the passenger flow density and velocity from the ticket entrance and association points in Beijing south railway station.
     Through the key technologies study of passenger flow safety forewarning in high-speed railway comprehensive passenger transport hub, we can improve the speed and precision of safety forewarning, ensure the efficient and safe distribution of passenger flow and reduce the incidence rate and severity of accidents. The study in this paper has the guidance and reference for improving the security capabilities of railway passenger transport.
引文
[1]宋元征.智能视频监控系统研究[D].上海:复旦大学,2009.
    [2]吕金刚,杨建全,文代明等.智能视频监控技术的应用与发展[J].安防科技,2006,12:11-14.
    [3]A. Iketani, A. Nagai, Y. Kuno and Y. Shirai. Real-Time Surveillance System Detecting Persons in Complex Scenes[J]. Real-time Imaging,2001, vol.7:433-446.
    [4]I. Haritaoglu, D. Harwood and L. Davis. W4:who?when?where?what?a real time system for detecting and tracking people[C]. Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition,1998:222-227.
    [5]刘国翌.基于视频的人体运动跟踪技术研究[D].北京:中科院研究生院,2005.
    [6]J. Alan and H. Lipton. Moving target classification and tracking from real-time video[C]. Proceedings of IEEE Workshop Application of Computer Vision,1998:8-14.
    [7]B. Coifman, D. Beymer and J. Malik. A real-time computer vision system for vehicle tracking and traffic surveillance[J]. Transport Research: Part C,1998, vol.6 (4):271-288.
    [8]孙状,宋正河,毛恩荣,吕安涛.高清视频车辆检测及跟踪系统的设计与实现[J].中国农业大学学报,2009,14(6):97-102.
    [9]P. Antonakaki, D. Kosmopoulos and S. J. Perantonis. Detecting abnormal human behavior using multiple cameras[J]. Signal Processing,2009, vol.89:1723-1738.
    [10]X. Tao and G. Shaogang. Incremental and adaptive abnormal behavior detection[J]. Computer Vision and Image Understanding,2008, vol.111:59-73.
    [11]E. B. Ermis, V. Saligrame, P. M. Jodoin and J. Konrad. Abnormal behavior detection and behavior matching for networked cameras[C]. Proceedings of Second ACM/IEEE International Conference on Distributed Smart Cameras,2008:1-10.
    [12]崔国庆.视频中的行人检测与异常行为检测方法研究[D].上海:上海交通大学,2010.
    [13]杜鉴豪.监控视频中的人体异常行为检测研究[D].杭州:浙江大学,2010.
    [14]王辉麟,徐力,韩激扬等.火车站视频监控与防盗报警系统的设计与实现[J].铁路计算机应用,2008,17(10):27-30.
    [15]M. J. Leotta and J. L. Mundy. Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model[C]. Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence,2011: 1457-1469.
    [16]G S. K. Fung, N. H. C. Yung and G K. H. Pang. Vehicle shape approximation from motion for visual traffic surveillance[J]. Proceedings of Intelligent Transportation Systems,2011:608-613.
    [17]楚瀛.智能视频监控中的多特征融合问题研究[D].武汉:华中科技大学,2008.
    [18]A. N. Marana, C. L. D. Fontoura, R. A. Lotufo and S. A. Velastin. Estimating crowd density with Minkowski fractal dimension[C]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing,1999, vol.6:3521-3524.
    [19]杨晓明.基于计算机视觉的地铁线网客流实时监控系统研究[D].北京:北京交通大学,2010.
    [20]A.N. Marana, S.A. Velastin, L.F. Costa and R.A. Lotufo. Automatic estimation of crowd density using texture[J]. Safety Science,1998, vol.28:165-175.
    [21]D. Y. Chen and P. C. Huang. Motion-based unusual event detection in human crowds[J]. Journal of Visual Communication and Image Representation,2011, vol.22:178-186.
    [22]贾冬冬AutoScope视频车辆检测系统高速公路监控系统中的应用[J].公路交通科技,2003,Vol.20(6):48-51.
    [23]佟守愚.基于视频技术的交通违章检测与识别理论及方法研究[D].长春:吉林大学,2006.
    [24]陈梅.视频监控技术在铁路系统的应用和发展[J].铁路通信信号工程技术,2009,Vo1.6(5):1-5.
    [25]R.T. Collins, A. J. Lipton and T. Kanade. Introduction to the special section on video surveillance[C]. Proceedings of Pattern Analysis and Machine Intelligence,2000, vol.22:745-746.
    [26]"ioimageVTDTM智能视觉监控系统技术白皮书”,http://www.ioimage.com.cn.
    [27]贾俊理GE VisioWave数字视频监控平台[J].智能建筑与城市信息,2006,vol.9:35-38.
    [28]伯格(M. D. Berg)等著.邓俊辉译.计算几何算法与应用[M].北京:清华大学出版社,2009.
    [29]德贝尔赫(M. Berg)等著.邓俊辉译.计算集合算法与应用[M].北京:清华大学出版社,2005.
    [30]周培德.计算几何算法设计与分析[M].北京:清华大学出版社,2008.
    [31]A. Aggarwal. The Art Gallery Theorem: Its Variations, Applications, and Algorithmic Aspects[D]. Baltimore: Johns Hopkins University,1984.
    [32]V. Chvatal. A combinatorial theorem in plane geometry[J]. J. Combin. Theory Ser. B,1975, vol.18:39-41.
    [33]S.Fisk. A short proof of Chvatal's watchmen theorem[J]. J. Combin. Theory Ser. B,1978, vol.24:374.
    [34]D. Avis and G. T. Toussaint. An efficient algorithm for decomposing a polygon into star-shaped polygons[J]. Pattern Recogn,1981:395-398.
    [35]B. Chazelle. A theorem on polygon cutting with applications[C]. Proceedings of Found Computational Sci,1982:339-349.
    [36]D. Lee and A. Lin. Computational complexity of art gallery peoblem[J]. Inform. Theory, vol.32:276-282.
    [37]J. I. Doh and K. Y. Chwa. An algorithm for determine visibility of a simple polygon from an internal line segment[J].J. Algorithms,1993, vol.14:139-168.
    [38]Y. Ke. Detecting the weak visibility of a simple polygon and related problems[D]. Baltimore: Johns Hopkins University,1987.
    [39]J. O. Rourke. Art Gallery Theorems and Algorithms[M]. New York:Oxford University Press, 1987.
    [40]T. C. Shermer. Recent results in art galleries[C]. Proceedings of IEEE,1992, vol.80: 1384-1399.
    [41]K. Chakrabarty, S. S. Iyengar, Q. H. Rong and C. Eungchun. Grid coverage for surveillance and target location in distributed sensor networks[C]. Proceedings of IEEE Transactions on Computers, 2002, vol.51:1448-1453.
    [42]N. Bulusu, J. Heidemann and D. Estrin. Adaptive beacon placement[C]. Proceedings of the 21th International Conference on Distributed Computing Systems,2001:489-498.
    [43]S. Meguerdichian, F. Koushanfar and G.Qu. Exposure in wireless Ad hoc sensor networks[C]. Proceedings of 7th Annual International Conference on mobile Computing and Networking,2001: 139-150.
    [44]K. Yabuta and H. Kitazawa. Optimum camera placement considering camera specification for security monitoring[C]. Proceedings of IEEE International Symposium on Circuits and Systems, 2008:2114-2117.
    [45]A. T. Murray, K. Y.Kim, J.W.Davis, R. Machiraju and R. Parent. Coverage optimization to support security monitoring[J]. Computers, Environment and Urban Systems,2007, vol.31:133-147.
    [46]U. M. Erem and S. Sclaroff. Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements[J]. Computer Vision and Image Understanding,2006, vol.103: 156-169.
    [47]D.Beymer, P. McLauchlan, B. Coifman and J. Malik. A real-time computer vision system for measuring traffic parameters [C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1997:495-501.
    [48]D.Beymer, P. M. Lauchlan, B. Coifman and J. Malik. A real-time computer vision system for vehicle tracking and traffic surveillance[J]. Transport Research:Part C,1998, vol.6:271-288.
    [49]张小虎.靶场图像运动目标检测与跟踪定位技术研究[D].长沙:国防科学技术大学,2006.
    [50]A. J. Lipton, H. Fujiyoshi and R. S. Patil. Moving Target Classification and Tracking from Real-time Video[C]. Proceedings of Applications of 4th IEEE Workshop on Computer Vision,1998: 8-14.
    [51]S. Murali and R. Girisha. Segmentation of motion objects from surveillance video sequences using partial correlation[C]. Proceedings of 16th IEEE International Conference on Image Processing,2009:1129-1132.
    [52]C. Anderson, P. Bert and G V. Wal. Change detection and tracking using pyramids transformation techniques[C]. Proceedings of the SPIE-Intelligent Robots and Computer Vision, 1985, Vol.579:72-78.
    [53]Y. Kameda, M. Minoh. A human motion estimation method using 3-successive video frames[C]. Proceedings of the International Conference on Virtual Systems and Multimedia,1996.
    [54]唐佳林,李熙莹,罗东华,佘永业,邓荣峰.一种基于帧差法的夜间车辆检测方法[J].计算机测量与控制,2008,vol.16(12):1811-1813.
    [55]张玲,陈丽敏,何伟,郭磊民.基于视频的改进帧差法在车流量检测中的应用[J].重庆大学学报(自然科学版),2004,vol.27(5):31-33,73.
    [56]J. L. Barron, D. J. Fleet, S. S. Beauchemin and T. A. Burkitt. Performance of Optical Flow Techniques[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1992:236-242.
    [57]D. Meyer, J. Denzler and H. Niemann. Model based extraction of articulated objects in image sequences for gait analysis[C]. Proceedings of the IEEE International Conference on Image Processing,1997:78-81.
    [58]A. Verri, S. Uras, E. DeMicheli. Motion segmentation from optical flow[C]. Proceedings of the 5th Alvey Vision Conference,1989:209-214.
    [59]H. A. Rowley, J. M. Rehg. Analyzing articulated motion using expectation-maximization[C]. Proceedings of the International Conference on Pattern Recognition,1997:935-941.
    [60]陶琳.基于光流技术的图像信息提取[D].武汉:华中科技大学,2005.
    [61]万文静.基于光流的图像目标跟踪方法研究[D].西安:西北工业大学,2006.
    [62]Y. H. Yang and M. D. Levine. The background primal sketch: an approach for tracking moving objects Mach[J]. Vision,1992:17-34.
    [63]Q. Zhou and J. Aggarwal. Tracking and classifying moving objects from videos[C]. Proceedings of IEEE Workshop on Performance Evaluation of Tracking and Surveillance,2001.
    [64]林洪文,涂丹,李国辉.基于统计背景模型的运动目标检测方法[J].计算机工程,2003,29(16):97-99.
    [65]K. P. Karmann. Moving object recognition using an adaptive background memory[J]. Image Processing and Moving Object Recognition,1990:289-307.
    [66]M. Kilger. A shadow handler in a video-based real-time traffic monitoring system[C]. Proceedings of IEEE Workshop on Applications of Computer Vision,1992:1060-1066.
    [67]W. Qin and W. Yaonan. Background subtraction based on adaptive non-parametric model[C]. Proceedings of 7th World Congress on Intelligent Control and Automation,2008:5960-5965.
    [68]A. Elgammal, D. Harwood and L. S. David. Nonparametric background model for background subtraction, Proceedings of the 6th European Conference on Computer Vision,2000.
    [69]C. Stauffer and W. Grimson. Learning patterns of activity using real-time tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, vol.22 (8):747-757.
    [70]J. Rittscher, J. Kato, S. Joga, et al. A probabilistic background model for tracking [C]. Proceedings of European Conference on Computer Vision,2000, vol.2:336-350.
    [71]K. Kyungnam, T. H. Chalidabhongse, D. Harwood and L. Davis. Background modeling and subtraction by codebook construction[C]. Proceedings of International Conference on Image Processing,2004, vol.5:3061-3064.
    [72]S. J. McKenna, et al. Tracking groups of people[J]. Computer Vision Image Understanding, 2000, vol. 80(1):42-56.
    [73]Z. Y. Xie, B. T. Dong, Y. Chen and Q. Li. Comparative Study on Moving Object Detection Method in the High-speed Railway Transport Hub Video Surveillance System[J]. Key Engineering Materials,2011, vol.467:503-508.
    [74]代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,vol.11(7):919-927.
    [75]李得伟,韩宝明.铁路客运专线车站乘客集散微观仿真模型[J].交通运输工程学报,2009,vol.9(1):83-86.
    [76]李乾.综合客运枢纽集散服务网络分析与建模[D].北京:北京交通大学,2011.
    [77]D. Helbing and P. Molnar. Social force model for pedestrian dynamics[J]. Phys Rev E,1995, vol.51(5):4282-4285.
    [78]胡清梅,方卫宁,贾玉泉,邓野.人群拥挤及群集行为特性的仿真研究[J].中国科学(E辑:技术科学),2009,vol.39(5):1034-1038.
    [79]邢云磊.大型客运站应急疏散客流组织动态仿真方法的研究[D].北京:北京交通大学,2010.
    [80]杨雪.大型铁路客运枢纽站应急疏散评价模型与方法研究[D].北京:北京交通大学,2011.
    [81]黄洪超.铁路综合客运枢纽客流安全状态评价研究[D].北京:北京交通大学,2011.
    [82]张瑜.铁路客运站旅客安全预警管理系统研究[D].北京:北京交通大学,2008.
    [83]J.J. Fruin. Pedestrian planning and design[M]. New York:Metropolitan Association of Urban Designers and Environmental Planners Inc,1971.
    [84]张琦.城市轨道交通枢纽乘客与环境交互理论[D].北京:北京交通大学,2009.
    [85]辞海编辑委员会.辞海[M].上海:上海辞书出版社,1999.
    [86]李得伟.城市轨道交通枢纽乘客集散模型及微观仿真理论[D].北京:北京交通大学,2007.
    [87]崔华伟,贾俊芳.铁路客运综合交通枢纽流线特点及组织研究[J].铁道运输与经济,2007,vol.29(5):26-29.
    [88]张振利.适应中国高速铁路客流特性的售票组织策略优化研究[J].铁道经济研究,2010,Vol.6:43-50.
    [89]K. Toyama, J. Krumm, B. Brumitt and B. Meyers. Wallflower: principles and practice of background maintenance[C]. Proceedings of the 7th IEEE International Conference on Computer Vision,1999:255-261.
    [90]A. P. Dempster. Upper and lower probabilities induced by a multi-valued mapping[J]. Annals of Mathematical Statistics,1976, vol.38:325-339.
    [91]G Shafer. A Mathematical Theory of Evidence[M]. New Jersey: Princeton University Press, 1976.
    [92]W. Edward and L. James. Multi-sensor Data Fusion[M]. Boston:A rtech House,1995.
    [93]江四厚,王汉功,阳能军.基于熵的Mass函数算法及在液压泵故障诊断中的应用[J].机床与液压,2007,vol.35(12):185-187.
    [94]王俊林,张剑云.基于统计证据的Mass函数和D-S证据理论的多传感器目标识别[J].传感技术学报,2006,vol.19(3):862-863.
    [95]杨阳.证据推理组合方法的分类评价准则及应用研究[D].西安:西北工业大学,2006.
    [96]杜文吉,谢维信.D-S证据理论中的证据组合[J].系统工程与电子技术,1999,vol.21(12):92-94.
    [97]R. C. Gonzalez and R. E. Woods著,李叔梁等泽.数字图象处理[M].北京:科学出版社,1982.
    [98]R. C. Gonzalez and R. E. Woods著,阮秋琦等译.数字图象处理(第二版)[M].北京:电子工业出版社,2007.
    [99]R. C. Gonzalez and R. E. Woods. Digital Image Processing(Third Edition)[M]. Beijing: Publishing House of Electronics Industry,2010.
    [100]阮秋琦.数字图像处理学[M].北京:电子工业出版社,2010.
    [101]韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002,vol.24(6):91-94.
    [102]章毓晋.图像分割[M].北京:科学出版社,2001.
    [103]B. sankur, A. T. Abak and U. Baris. Assessment of Thresholding Algorithms for Document Processing[C]. Proceedings of IEEE International Conference on Image Processing,1999, vol.(1): 580-584.
    [104]刁智华.大田小麦叶部病害智能诊断系统研究与应用[D].合肥:中国科学技术大学,2010.
    [105]张红亮.氧化铝回转窑火焰图像识别、检索与聚类研究[D].长沙:中南大学,2008.
    [106]H. Digabel and C. Lantuejoul. Iterative algorithms[C]. Proceedings of 2nd European Conference on Analysis of Microstructures in Material Science,1977.
    [107]L. Vincent and P. Soille. Watersheds in digital spaces:An efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991, vol.13(6):583-598.
    [108]D. S. Patrick and R. L. Pires. Implementation and Analysis of an Optimized Rain Falling Watershed Algorithm[C]. Proceedings of SPIE,2000:759-766.
    [109]尤鸿霞,须文波.基于分水岭算法的虹膜区域分割[J].微计算机信息,2005,vol.21(2):175-176.
    [110]E. N. Mortense and A. Barrentw. Toboggan-based inielligent scissors with a four-parameter edge model[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1999, vol.2:452-458.
    [111]Y. C. Lin, Y. P. Tsai and Y. P. Hung, et al. Comparison between immersion-based and toboggan-based watershed image segmentation[J]. .IEEE Transactions on Image Processing,2006, vol.15(3):632-640.
    [112]许殿元,丁树柏.遥感图像处理[M].北京:宇航出版社,1990.
    [113]S. J. Ko and Y. H. Lee. Center weighted median filters and their applications to image enhancement[J]. IEEE Trans on Circuits and Systems,1991, vol.88(9):984-993.
    [114]P. M. Narendra. Separable median filter for image noise smoothing[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1981, vol.3(l):20-29.
    [115]M. G. Sun, R. J. Sclabassi and C. C. Li, et al. Symmetrical wavelet transforms for edge localization[J]. Optical engineering,1994, vol.33(7):2272-2281.
    [116]R. C. Gonzalez and P. Wintz. Digital image processing[M]. Massachusetts,1977.
    [117]M. Stephane著,杨力华译.信号处理的小波导引[M].北京:机械工业出版社,2002.
    [118]赵荣椿,赵忠明,崔生.数字图像处理导论[M].西安:西北工业大学出版社,1996.
    [119]J. Moody, C. Darken. Fast leaning in networks of locally-tuned Processing units[J]. Neural Computation,1989:281-294.
    [120]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993.
    [121]徐秉铮,张百灵,韦岗.神经网络理论与应用[M].广州:华南理工大学出版社,1994.
    [122]王旭,王宏,王文辉.人工神经元网络原理与应用[M].沈阳:东北大学出版社,2000.
    [123]闫滨大坝安全监控及评价的智能神经网络模型研究[D].大连:大连理工大学,2006.
    [124]邓聚龙.灰色系统基本方法(第二版)[M].武汉:华中科技大学出版社,2005.
    [125]高永丽,薛文格.一种基于邓氏关联度的图像边缘检测新方法[J].计算机系统应用,2010,vol.19(2):50-53.
    [126]谭文英,王述洋.影响成品绵白糖色值因素的灰关联度矩阵分析[J].中国甜菜糖业,1994,vol.1:5-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700