铝合金环保型钝化技术及其与涂层的配套性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金具有密度小、比强度高、耐蚀性和成型性好、成本低等优点,目前已成为飞机机体结构的主要用材,其用量高达60%~80%。然而,因多种因素导致其耐腐蚀性较差,为此大多航空铝合金部件需要钝化处理,以提高其耐蚀性能。传统的六价铬酸盐钝化具有高危害性和致癌性,必须开发六价铬钝化的替代工艺。三价铬毒性很低,与六价铬性能相似,是最有可能的替代技术。以2024、6061和7075三种铝合金为试验材料,研制出一种环保型的铝合金三价铬化学转化处理液,并对转化膜的性能及转化膜与漆膜的配套性进行了研究。
     本文以硫酸铬为主成膜物质,稀土金属盐为辅助成膜物质,通过单因素试验和正交试验,对化学转化液的主要成分及工艺条件进行了筛选,最终得到三价铬钝化液的最佳配方和工艺条件如下:硫酸铬0.010mol/L,稀土盐0.020mol/L,络合剂0.010mol/L,缓蚀剂0.025g/L;温度30~35℃,时间5min,pH值3.8~3.9。按照上述配方配置而成的钝化液为绿色透明液体,转化膜外观为均匀的浅蓝色。
     制备的三价铬化学转化膜各项性能优异,主要表现在:耐盐雾性能达到168h,耐蚀性远优于锆钛类无铬钝化膜,膜层表面连续完整,较Alodine1200处理得到的钝化膜更致密,电化学测试表明该三价铬钝化膜有着与六价铬钝化膜相当的耐蚀性,在三种铝合金上钝化膜膜重约在3~6mg/dm2之间,在此膜重范围内钝化膜与漆膜附着力良好,三价铬钝化膜对基材疲劳性能影响小,与Alodine1200钝化膜对比发现,对于2024铝合金,两种化学转化处理工艺的疲劳试验结果非常接近;对于7075铝合金,三价铬钝化膜的疲劳强度略高于Alodine1200工艺,二者在中、长寿命区的疲劳强度相差约8.5%。
     在转化膜表面喷涂航空底漆和面漆后,对其进行附着力、耐水性、耐油性、耐盐雾性能和耐湿热性能试验后表明,化学转化膜与漆膜配套性能优良。
Aluminum alloy has many advantages, such as low density, high specific strength,good corrosion resistance and formability, low cost, etc. Nowadays it becomes the mainstructure materials of airframe, the amounts of it are up to60%~80%.However, due to avariety of factors, it has poor corrosion resistance, so most aerospace aluminum alloyparts need passivation to improve its corrosion resistance. Traditional hexavalentchromate passivation, has highly hazardous and carcinogenic, so it must develop analternative process to replace hexavalent chromium passivation. The toxicity of trivalentchromium is very low, and its performance is similar to hexavalent chromium, it isconsidered the most likely alternative technology. Using2024,6061and7075aluminumalloys as the test materials, it develops an environmentally friendly trivalent chromiumpassivator, and studies the performance of the film and its overcoatability with paint.
     This paper uses chromicsulfate as the main film-forming substances, the rare earthmetal salt as the auxiliary film-forming substances, through Single factor test andOrthogonal test, selecting the main ingredients and process conditions of chemicalconversion solution, finally the best formulations and process conditions of trivalentchromium passivation solution are as follows: chromicsulfate0.010mol/L, rare earthmetal salt0.020mol/L, complexing agent0.010mol/L, inhibitor0.025g/L, temperature30~35℃, time5min, pH value3.8~3.9.The passivation solution in accordance withthe above formulation is the green transparent liquid, the appearance of the conversionfilm is of uniform light blue.
     The trivalent chromium chemical conversion film has excellent performance,mainly in these areas: it can reach168h salt spray resistance, The corrosion resistance isfar superior to chrome-free passivation film of zirconium titanium class, the surface ofthe film is continuous complete and more dense than the passive film dealed withAlodine1200, electrochemical tests shows that the corrosion resistance of the trivalentchromium passivation film is equivalent to hexavalent chromium passivation film, theweight of the passivation film is about3~6mg/dm2in three kinds of aluminum alloys,within this scope of film weight, the passivation film has good adhesive force with paint,the trivalent chromium passivation film has little influence to the fatigue performance ofthe substrate, constrast to the passivation film prepared by Alodine1200, it shows that,the fatigue test results of two kinds of chemical conversion process are very close for2024aluminum alloy, for7075aluminum alloy, the fatigue strength of trivalent chromium passivation film is slightly above the passivation film of Alodine1200,between the two processes the difference of fatigue strength is about8.5%in themedium and long-life.
     After spraying aviation primer and topcoat in the surface of the conversion film, itshows that chemical conversion film has excellent matching capability with paint afterperformance tests about Adhesion, water resistance, oil resistance, salt spray resistanceand resistance to heat.
引文
[1]杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005,19(2):76~80.
    [2]朱祖芳.铝合金化学转化处理技术的进展及工业应用[J].材料保护,2003,36(3):1~4.
    [3]孙宝德,李克.铝及铝合金防腐蚀表面处理技术的研究现状与发展[J].腐蚀与防护,1998,19(5):195~198.
    [4]余美琼.铝及铝合金表面处理技术新进展[J].化学工程与装备,2008(6):84~88.
    [5]刘烈炜,林恒,赵洲.三价铬钝化的研究进展[J].材料保护,2006,39(9):46~48.
    [6]敖中华.高性能的铝合金三价铬处理工艺[C].首届全国电镀与精饰四新推广应用会暨化学镀技术交流会资料汇编,2009,38~39.
    [7]陈小平,潘剑锋,赵栋梁,等.不同Cr(Ⅲ)配合物对三价铬钝化液性能的影响[J].材料保护,2008,41(5):33~35.
    [8]李鑫庆,陈迪勤,余静勤.化学转化膜技术与应用[M].北京:机械工业出版社,2005.
    [9]余会成.6063铝合金三价铬化学转化膜的制备及性能研究[D].长沙:中南大学,2009.
    [10]董首山.化学转化膜[J].腐蚀科学与防护技术,1990,2(1):47~49.
    [11]于元春,李宁,胡会利,等.无铬钝化与三价铬钝化的研究进展[J].表面技术,2005,34(5):6~9.
    [12]彭敬东,邓传跃,石燕,等.铝合金铸件三价铬本色钝化工艺[J].铸造,2011,60(2):147~149.
    [13]王雷,张东.镀锌层三价铬钝化研究进展[J].电镀与精饰,2008,30(5):15-19.
    [14]潘瑞丽,伍明华.三价铬钝化国内外专利技术进展[J].化工时刊,2008,22(6):55-57.
    [15] Wei Kun Chen, Ching Yuan Bai, Chung Ming Liu, etc. The effect of chromicsulfate concentration and immersion time on the structures and anticorrosiveperformance of the Cr(Ⅲ) conversion coating on aluminum alloys[J]. AppliedSurface Science,2010,256(16):4924~4929.
    [16] Huicheng Yu, Baizhen Chen, Xichang Shi, etc. Investigation of thetrivalent-chrome coating on6063aluminum alloy[J]. Materials Letters,2008,62(17~18):2828~2831.
    [17] Huicheng Yu, Baizhen Chen, Haiying Wu, etc. Improved electrochemicalperformance of trivalent-chrome coating on Al6063alloy via urea and thioureaaddition[J]. Electrochimica Acta,2008,54(2):720~726.
    [18] Niann Tsyr Wen, Chao Sung Lin, Ching Yuan Bai, etc. Structures andcharacteristics of Cr(Ⅲ)-based conversion coatings on electrogalvanized steels[J].Surface and coating Technology,2008,203(3~4):317~323.
    [19]蒲海丽,王建华,蒋雄.三价铬钝化的探讨[J].电镀与环保,2004,24(2):25~26.
    [20]余祖孝,梁鹏飞,孙贤,等.添加剂对镀锌层三价铬钝化膜耐蚀性能的影响[J].腐蚀与防护,2008,29(6):319~321.
    [21] Craig Matzdorf, Michael Kane, James Green.Corrosion resistant coatings foraluminum and aluminum alloys[P]. US Pat:6375726,2002-04-23.
    [22]韩哲,熊金平,左禹.铝合金表面化学氧化工艺的研究进展[J].电镀与精饰,2008,30(11):14~18.
    [23]赵予川.铝合金三价铬钝化[J].电镀与环保,2010,30(2):47.
    [24]丁红波,郑辅养,温国谋.铝合金的保护层[J].表面技术,1998,27(1):1~5.
    [25]付蓉.金属铬酸盐化学转化处理的替代技术[J].汽车工艺材料,2004,(7):71~73.
    [26]唐维学,张小琴,杨改霞.环境友好型铝合金表面钝化技术进展[J].腐蚀与防护,2010,31(4):272~275.
    [27]贺春林,于文馨,王建明,等.2024铝合金阳极氧化膜的结构和耐蚀性能[J].材料保护,2006,39(2):45-48.
    [28]刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010,20(9):1705~1715.
    [29]王禹慧.铝合金表面耐蚀亲水性涂膜的制备及其性能研究[D].北京,北京化工大学,2005.
    [30]曹鹏军,仵海东,范培耕,等.铝合金的转化膜处理工艺研究[J].表面技术,2003,32(2):44~46.
    [31]陆文明,王李军,张荣伟,等.飞机蒙皮表面预处理的研究进展[J].上海涂料,2006,44(12):16~20.
    [32] Harish Bhatt, Alp Mannavbasi, Danielle Rosenquist. Trivalent chromium forenhanced corrosion protection on aluminum surfaces[J]. Metal Finishing,2009,107(6):39~47.
    [33] Nabil Zaki. Trivalent Chrome Conversion Coating For Zinc and Zinc Alloys[J].Metal Finishing,2006,104(7~8):432~442.
    [34] X.Zhang, C.van den Bos, W.G.Sloof, etc. Comparision of the morphology andcorrosion performance of Cr(Ⅵ) and Cr(Ⅲ)-based conversion coatings on zinc[J].Surface and Coatings Technology,2005,199(1):92~104.
    [35]王菊荣,王培蕾,邹莎.铝及铝合金环保型化学转化膜工艺研究[C].2007年全国腐蚀研究与表面工程技术研讨会,2007,44~46.
    [36] ZHAO Dan, SUN Jie, ZHANG Lili, etc. Corrosion behavior of rare earth ceriumbased conversion coating on aluminum alloy[J]. JOURNAL OF RARE EARTHS,2010,28:371~374.
    [37] CHEN Dongchu, LI Wenfang, GONG Weihui, etc. Microstructure and formationmechanism of Ce-based chemical conversion coating on6063Al alloy[J]. Trans.Nonferrous Met.Soc.China,2009,19:592~600.
    [38] Masazumi OKIDO, Ryoichi ICHINO, Seong Jong KIM, etc. Surface characteristicsof chemical conversion coating for Mg-Al alloy[J]. Trans.Nonferrous Met.Soc.China,2009,19:892~897.
    [39] MIKE BARNSTEAD, CHRISSY BIELER, MACDERMID, etc. Trivalentchromium for a new generation[J]. metalfinishing,2009,1:27~33.
    [40] A.K.Golder, A.N.Samanta, S. Ray. Removal of trivalent chromium by electro-coagulation[J]. Separation Purification Technology,2007,53:33~41.
    [41]曹献龙,邓洪达.三价铬钝化成膜的步骤与机理[C].第六届表面工程技术学术论坛,2008,127~131.
    [42]王佳,曹楚南,陈家坚.缓蚀剂理论与研究方法的进展[J].腐蚀科学与防护技术,1992,4(2):79~85.
    [43]谢发之,宣寒.多点位吸附咪唑啉季铵盐缓蚀剂的合成及其缓蚀性能[J].应用化学,2011,28(1):94~99.
    [44]张云霞,闫永贵,苏策,等.缓蚀剂对2024铝合金在海水中缝隙腐蚀行为的影响[J].腐蚀科学与防护技术,2010,22(1):57~60.
    [45]林海潮.缓蚀剂研究的进展[J].腐蚀科学与防护技术,1997,9(4):308~312.
    [46] R.Rosliza, W.B.Wan Nik, H.B Senin. The effect of inhibitor on the corrosion ofaluminum alloys in acidic solutions[J]. Materials Chemistry and physics,2008,107(2~3):281~288.
    [47] Ahmed Y.Musa, Abu Bakar Mohamad, Abdul Amir H.Kadhum, etc. Inhibition ofaluminum alloy2024corrosion by4-Amino-5-Phenyl-4H-1,2,4-Trizole-3-Thiol inhighly sulfuric acid solution[J]. Advanced Materials Reasesrch,2010,93~94:354~357.
    [48] John Sinko, Mequon, WI. Corrosion inhibitor composition applicable foraluminum and steel protection and procedure[P]. US Pat:7662241B2,2010-2-16.
    [49] K.A.Yasakau, M.L.Zheludkevich, O.V.Karavai, etc. Influence of inhibitor additionon the corrosion protection performance of Sol-Gel coatings on AA2024[J].Progress in Organic Coatings,2008,63(3):352~361.
    [50] K.A.Yasakau, Mikhail L, Zheludkevich, etc. Study of the corrosion mechanism andcorrosion inhibition of2024aluminum alloy by SKPFM technique[J]. MaterialsScience Forum,2008,587~588:405~409.
    [51]陆峰,W.J.van Ooij.稀土化合物缓蚀剂对Al2024铝合金防护的研究[J].材料工程,1988,3(7):9~11.
    [52]王菊琳,许淳淳,于淼.已锈蚀青铜在大气环境中的腐蚀发展及其保护研究[J].腐蚀科学与防护技术,2005,17(5):324~327.
    [53]王成,江峰,林海潮,等.油酸钠对铝合金在3.5%氯化钠溶液中的缓蚀作用[J].材料保护,2001,34(1):8~9.
    [54]王成,江峰,王福会.有机胺对铝合金在3.5%氯化钠溶液中的缓蚀作用[J].腐蚀与防护,2003,24(4):139~141.
    [55]范文学,何向明,刘殷.锌酸盐镀锌和三价铬钝化的管理与维护[J].电镀与环保,2009,29(1):44~46.
    [56]张晓明,徐金来,胡耀红,等.三价铬钝化工艺及其维护[J].电镀与涂饰,2008,27(11):32~34.
    [57]梁锦荣,李协成.三价铬钝化在生产中的应用[J].电镀与涂饰,2009,31(12):30~32.
    [58]赵军,朱建龙,薛花娟,等.阳极氧化对7075铝合金疲劳性能的影响[J].南京航空航天大学学报,2008,40(3):412~416.
    [59] Sarah E, Galyon Dorman, Yongwon Lee. Effect of chromate primer on corrosionfatigue in aluminum7075[J]. Procedia Engineering,2011,10:1220~1225.
    [60]李金华,周谊.金属表面前处理与粉末涂料配套性[C].2005年中国粉末涂料与涂装年会会刊,2005,87~89.
    [61]刘翔,丁鹤雁.磷化底漆在军用飞机蒙皮涂层修补中的应用研究[J].材料工程,1999,4(10):1~5.
    [62]赵春英,张志仁.铝材磷酸-铬酸盐转化膜与聚偏二氟乙烯涂料的研究[J].电镀与精饰,2009,31(3):35~37.
    [63]杨超英.铝合金表面化学覆膜与电泳漆、粉末涂料的配套性研究[J].材料保护,2005,38(3):31~34.
    [64] M.Oki, T.K.Oki, E.Charles. Chromate and chromate-phosphate conversioncoatings on aluminum[J]. Arabian journal for science and engineering,2012,37(1):59~64.
    [65] Naritomi, Masanori, Ando, etc. Aluminum alloy composite and method of bondingtherefore[P]. European Pat: EP2127865,2009-02-12.
    [66] Daimon K Heller, William G. Fahrenholtz, Matthew J.O’Keefe. The effect of post-treatment time and temperature on cerium based conversion coatings on Al2024-T3[J]. Corrosion Science,2010,52(2):360~368.
    [67] Barriau, Emilie, Farrell, etc. Metal to polymer bonding using an adhesive based onepoxides[P]. US Pat:20110297318,2011-08-12.
    [68] Xuecheng Dong, Peng Wang, Sandip Argekar, etc. Structure and composition oftrivalent chromium process films on Al alloy[J]. Langmuir,2010,26(13):10833~10841.
    [69] Jiang.Y F, Yang.F Z, Tian. Z Q, etc. Effects of ion contents on composition,morphology, structure and properties of chromium coatings electrodeposited fromnovel trivalent chromium sulphate electrolyte[J]. Transactions of the institute ofmetal finishing,2012,90(2):86~91.
    [70]王立军,赵春英,管秀荣.铝合金磷化与喷涂氟碳涂料配套性研究[J].表面技术,2006,35(5):23~25.
    [71]赵春英,张志仁,高虹,等.铝及其合金化学氧化与阴极电泳工艺的配套性[J].表面技术,2004,33(4):48~49.
    [72]游玉萍,唐维学,罗顺.铝合金无铬化学转化处理粉末喷涂膜的性能评价[J].材料研究与应用,2011,5(3):236~238.
    [73]龚伟慧,陈东初,李文芳,等.环境友好型铝合金化学转化表面处理技术的发展概况[J].材料研究与应用,2009,3(1):1~4.
    [74]杨超英.汽车镁合金部件前处理与涂料配套性研究[J].材料保护,2008,41(12):41~44.
    [75]程凤宏,张阳.双组分环氧底漆与丙烯酸聚氨酯面漆中涂漆配套性分析[J].涂料工业,2008,38(2):28~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700