黑翅土白蚁觅食行为学基础及诱杀系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑翅土白蚁是危害农林植物和水库堤坝的重要害虫。本文以黑翅土白蚁为研究对象,较系统地研究了黑翅土白蚁的觅食行为,在此基础上构建和应用了高效环保型的诱杀系统,其主要研究结果如下:
     1.黑翅土白蚁的掘道和觅食行为研究
     在室内条件下,利用平面沙盘装置比较研究了黑翅土白蚁和黑胸散白蚁的掘道行为差异,并探讨了砂粒直径对黑翅土白蚁掘道速度的影响。试验观察发现,黑翅土白蚁的工蚁在沙盘中很快便开始掘道,掘道速度较快,而且是从圆心处向沙盘四周构筑辐射状的主蚁道;而黑胸散白蚁的工蚁在圆心处滞留时间较长,仅从沙盘的少数几个方向开始掘道,且掘道速度较慢。研究结果表明,黑翅土白蚁的主蚁道数和主蚁道宽度均显著大于黑胸散白蚁的,但前者的主蚁道间夹角、主蚁道分支数和蚁道相交率均显著低于后者的。研究结果还表明,黑翅土白蚁工蚁的掘道速度受到砂粒直径的显著影响,且在掘道时对砂粒大小有选择性。
     室内实验表明,黑翅土白蚁觅食和掘道行为试验的主蚁道数间无显著差异,但前者的主蚁道和2次蚁道的分支数均显著小于后者的。觅食行为试验表明,取食点的蚁道宽度显著大于原点的,过取食点的主蚁道数显著高于过取食点的次蚁道数。此外,近60%被发现的取食点周围拥有取食环,且平均拥有数为2。
     2.黑翅土白蚁诱食信息素研究
     超微结构观察发现,黑翅土白蚁工蚁下唇腺的腺泡呈扁圆形,相互堆积的腺泡由腺泡管相连;此外,黑翅土白蚁工、兵蚁和有翅成虫的腺泡细胞在构造上有显著差异。研究结果表明,黑翅土白蚁工蚁下唇腺水提液对工蚁有显著的诱食效果,但其下唇腺甲醇提取液和正己烷提取液对工蚁均无显著的诱食效果。研究结果还表明,兵蚁下唇腺水提液对工蚁有明显的驱避作用;而有翅成虫下唇腺水提液对工蚁既无显著的诱食效果,也无明显的驱避作用。
     经气相色谱-质谱联用(GC-MS)分析,在黑翅土白蚁的工蚁下唇腺和虫体水提液中均不含对苯二酚;所测2种样品共有14种可能的诱食组分,其中丙氨酸、L-缬氨酸、尿素、4-甲氧基苯酚、3,5-二羟基甲苯、苹果酸和癸二酸等7种化合物是2种样品都含有的组分。研究结果表明,1μg/g和10μg/g对苯二酚对黑翅土白蚁工蚁无显著诱食效果,而50μg/g和100μg/g对苯二酚对工蚁却有明显的驱避作用。
     3.黑翅土白蚁取食和交哺行为的品级差异性
     利用Rubidium(Rb)作为示踪元素,测定了黑翅土白蚁在取食和交哺方面的品级差异性。取食测定试验表明,工蚁可以直接取食RbCl处理过的滤纸;3龄幼蚁具有一定的取食能力;5~6龄若蚁虽然获得了标记水平的Rb吸收值,但其取食能力很弱;而兵蚁无法取食RbCl处理过的滤纸。交哺测定试验表明,与8000μg/ml Rb传食工蚁配对的受食工蚁、兵蚁和5~6龄若蚁的Rb吸收值均显著高于与对照传食工蚁配对的受食工蚁、兵蚁和5~6龄若蚁的Rb吸收值,与8000μg/ml Rb传食工蚁配对的3龄幼蚁的Rb吸收值未显著高于与对照传食工蚁配对的3龄幼蚁的Rb吸收值。此外,本研究中4个交哺组合的传递效率均较低。
     4.黑翅土白蚁诱杀系统的构建
     毒力测定结果表明,0.025μg/ml~0.4μg/ml氟虫腈和吡虫啉分别在药后3 d和5 d对黑翅土白蚁表现出明显的毒杀效果,氟虫腈和吡虫啉药后1 d的LC_(50)分别为药后5 d的509倍和63.8倍,2种药剂对黑翅土白蚁的毒杀效果均比较缓慢。驱避作用试验表明,50μg/ml氟虫腈对黑翅土白蚁无明显的驱避作用,而50μg/ml吡虫啉对黑翅土白蚁表现出了明显的驱避作用。
     氟虫腈在黑翅土白蚁中的传递性试验表明,5.0μg/g氟虫腈毒沙对应的受毒工蚁死亡率显著高于0μg/g、1.0μg/g和10.0μg/g氟虫腈毒沙的。当传毒工蚁在1.0μg/g氟虫腈毒沙中染毒1 h、6 h和12 h时,仅6 h对应的受毒工蚁死亡率在各观测时间均显著高于对照的。当在1.0μg/g氟虫腈毒沙中的传毒白蚁数为5、15和20头时,在6 d、9 d和12 d后,仅15和20头传毒白蚁数对应的受毒工蚁死亡率显著高于对照的。此外,传毒工蚁不能将致死剂量的氟虫腈传递给受毒兵蚁和幼蚁。
     黑翅土白蚁的食物选择性试验表明:在6种纯饵料中,小米粉的被食率、泥被面积及泥被覆盖率均最高,其泥被出现时间仅长于松木粉的,但两者间无显著差异。在5种添加物中,15%香菇、10%松花粉、10%白砂糖、15%蜂蜜都能显著提高小米粉对黑翅土白蚁的诱食效果,其中又以10%白砂糖的增效作用最明显。野外试验表明,小米粉+10%白砂糖诱饵对黑翅土白蚁的诱食效果优于小米粉诱饵的。因此,小米粉+10%白砂糖适合作为黑翅土白蚁毒饵中的饵料组分。
     比较了8种供试防霉剂对小米粉的防霉效果,结果表明:2‰山梨酸钾和0.75‰百菌清对小米粉的防霉效果较好,两者都能使野外试验坑中的小米粉样品8 d后不发霉。室内试验表明,2‰山梨酸钾不影响黑翅土白蚁对小米粉的取食量;而0.75‰百菌清显著降低了黑翅土白蚁对小米粉的取食量。野外试验进一步表明,投饵8 d后,小米粉诱饵、小米粉+2‰山梨酸钾诱饵、小米粉+0.75‰百菌清诱饵的发霉率分别为100%、20%和30%,而三者的被食率分别为27.67%、53.70%和19.15%。可见,2‰山梨酸钾适合作为白蚁诱饵的防霉剂。
     利用手工成型器进行的白蚁诱饵剂成型工艺试验表明,饵料粒度是影响诱饵剂成型状况的主要因子。甘蔗粉诱饵剂的最佳成型条件是:甘蔗粉粒度为细水平,粘着剂用量为10%,挤压时间为5 s,用水量为200%;而松木屑诱饵剂的最佳成型条件是:松木屑粒度为细水平,粘着剂用量为10%,挤压时间为5 s,用水量为100%。参考手工成型器筛选出的最佳成型条件,在自行改装的电动成型机中可生产出成型状况良好的白蚁诱饵剂。
     5.黑翅土白蚁诱杀系统的应用
     毒剂用量确定试验表明,0.008%氟虫腈诱饵条会引起黑翅土白蚁工蚁的快速死亡,而0.002%和0.004%氟虫腈诱饵条不会引起工蚁的快速死亡,且两者的被食量基本相等,因此确定野外施药技术试验中使用0.004%氟虫腈白蚁诱饵条。野外施药技术试验表明,地面蚁路法和枯枝内藏法对应小区的氟虫腈诱饵条被食总量高于诱杀坑法、地表暴露法、树干粘贴法对应小区的。施药结束后1个月,地面蚁路法和枯枝内藏法对应小区的树木蚁害率分别比药前减少了53.57%和43.24%,且地面无新鲜白蚁泥被;而诱杀坑法、地表暴露法和树干粘贴法对应小区的树木蚁害率分别比药前增加了16.66%、17.65%和2.5%,且地面均布满了新鲜白蚁泥被。施药结束后7个月,地面蚁路法和枯枝内藏法对应小区的2个黑翅土白蚁巢体均死亡;而诱杀坑法、地表暴露法和树干粘贴法对应小区的3个黑翅土白蚁巢体均正常。
     采用“三次标记—再捕法”估计了4个黑翅土白蚁巢体的觅食种群数量和觅食范围;利用白蚁监测管中的工蚁数量和马粪纸被食量评价了每个黑翅土白蚁巢体的觅食活性,并测定了每个试验点所消耗的氟虫腈诱饵管中纸质诱饵的重量。结果表明,消耗3 mg~5 mg氟虫腈便可抑制觅食种群数量为4.0×10~5~7.0×10~5的黑翅土白蚁巢体的觅食活性。
Odontotermes formosanus (Shiraki) is an important pest of agronomic crops, plantations and forestry, and badly destroys earthen dikes and dams in China. The foraging behavior of O. formosanus was studied totally in the thesis. Furthermore, the high effective and environmentally friendly baiting system against O. formosanus was constructed and applied. The major results are summarized as following: 1. Study on the tunneling and foraging behavior of O. formosanusIn the laboratory, the differences of tunneling behavior between O. formosanus and Reticulitermes chinensis were studied by the planar sand plate. Furthermore, the effect of sand diameter on the tunneling rate of O. formosanus was also studied. We found that the worker of O. formosanus in the origin quickly started to tunnel in higher speed, and the radiate primary tunnels were constructed around the sand plate. However, the workers of R. chinensis resorted in the origin for a longer time, and the non-radiate primary tunnels were constructed in lower speed in the sand plate. The results showed that the number and width of primary tunnels of O. formosanus was significantly more than that of R. chinensis, but the angle between two primary tunnels, branching number of primary tunnels and intersecting ratio of tunnels were significantly less than those of R. chinensis. In addition, the results showed that the tunneling rate of O. formosanus was affected significantly by sand diameter, and there was choice for sand size during the tunneling behavior in O. formosanus.In the laboratory, the results showed that there was no significant difference for the number of primary tunnels between the two behaviors, but the branching numbers of primary and secondary tunnels of the foraging behavior were significantly less than those of the tunneling behavior. The results of the foraging behavior test showed that the tunnel width about feeding site was significantly bigger than that about origin. In addition, number of primary tunnels across feeding sites was significantly more than that of subaltern tunnels across feeding sites. Furthermore, there were 2 feeding loops around 60 % of feeding sites found by foraging workers.
     2. Study on phagostimulating pheromone in O. formosanus
     We observed that cumulate acini forming labial gland were oblate in the shape, which were joined by acinar ducts. In addition, there was significant difference in the structures of acinar cells of labial gland among workers, soldiers and alates in O. formosanus. The results showed that there was significant phagostimulating effect on workers for distilled water extracts of worker's labial glands in O. formosanus, but there was no significant phagostimulating effect on workers for methanol and hexane extracts of worker's labial glands in O. formosanus. Moreover, the results showed that there was significant repellent effect on workers for distilled water extracts of soldier's labial glands in O. formosanus, and there was neither significant phagostimulating effect nor significant repellent effect on workers for alate's labial glands in O. formosanus.
     By GC-MS, the results showed that there was no hydroquinone in the distilled water extracts of labial glands and bodies of workers. Furthermore, there were 14 possible phagostimulationg components in the two samples by GC-MS, in which 7 components were contained by the above two samples together, including alanine, L-valine, urea, 4-methoxyphenol, 3,5-dihydroxytoluene, malic acid and sebacic acid. In addition, there was no significant phagostimulating effect on workers of O. formosanus for 1μg/g and 10μg/g hydroquinone; however, there was significant repellent effect on workers of O. formosanus for 50μg/g and 100μg/g hydroquinone.
     3. Study on feeding and trophallaxis in O. formosanus, using rubidium chloride
     Differences in feeding and trophallaxis among castes of O. formosanus were analyzed using Rubidium (Rb)as a tracer. In the feeding study, workers fed directly on Rb-treated filter paper, and 3rd-instar larvae held the limited feeding ability. Though 5th- and 6th-instar nymphs acquired the marked level of Rb, the feeding ability of the caste was poor. However, Soldiers did not feed on Rb-treated filter paper. In the trophallaxis study, Rb content of worker, soldier and 5th- and 6th-instar nymphal recipients paired with Rb-fed worker donors was significantly higher than that of them paired with control donors respectively. But, Rb content of 3rd-instar larval recipient paired with Rb-fed worker donors wasn't significantly higher than that of it paired with control donors. Moreover, transfer efficiency from the 4 trophallactic combinations was all low.
     4. Constructing baiting system against O. formosanus
     The toxicity results showed that 0.025μg/ml~.4μg/ml fipronil and imidacloprid achieved obvious insecticidal efficacy after O. formosanus were treated for 3 d and 5 d respectively. LC_(50) of fipronil and imidacloprid for 1 d after treatment were 509 times and 63.8 times as that for 5 d after treatment respectively, indicating that the efficacy of the two pesticides against O. formosanus was slow. The repellent test showed that 50μg/ml fipronil had no obvious repellent effect against O. formosanus, but 50μg/ml imidacloprid had obvious repellent effect.
     The results of the test on transfer of fipronil among nestmates of O. formosanus showed that mean recipient mortality for 5.0μg/g was significantly than that for 0, 1 or 10μg/g. When donors were treated with 1μg/g fipronil for 1, 6 or 12 h, only mean recipient mortality for 6 h of exposure duration was significantly greater than that of the control during the total test. In addition, mean recipient mortality was evaluated after exposure of 5, 15 or 20 donors to 1μg/g fipronil for 3 h, and the results showed that mean recipient mortality for both 15 and 20 donors were significantly greater than that for the control at 6, 9, and 12 d. Finally, the results indicated that donor workers could not transfer a lethal concentration of fipronil to soldier or larval recipients.
     The results of the food choice test on O. formosanus showed that in the six diets, the consumption rate, mud sheet area and mud sheet covering rate of the millet powder were maximal. The mud sheet appearing time of the millet powder was only longer than that of the pine powder, but difference between the two diets was not significant. Among the five additives, except for 15% Auricularia auricula, 15% Lentinula edodes, 10% masson pine pollen, 10% white sugar and 15% honey could observably improve the phagostimulating effect of the millet powder on O. formosanus, and the synergistic effect of 10% white sugar was the most distinct in them. The results of the field trial showed that the phagostimulating effect of the baits made of the millet powder+10% white sugar on O. formosanus was better than that of the baits made of the millet powder. To sum up, the millet powder+10% white sugar can be as the diet ingredient of the bait against O. formosanus.
     Antiseptic effects of 8 mould inhibitors on the millet powder as the preferred diet of O. formosanus were compared. The better mould inhibitors were 0.2% potassium sorbate and 0.075% chlorolthalonil 8 days after treatment in the field. Laboratory experiments showed that 0.2% potassium sorbate had no significant effect on the consumption of the millet powder by O. formosanus, but 0.075% chlorolthalonil significantly reduced the consumption of the millet powder by O. formosanus. Further field results showed that the rate of the bait mould in the CK and bait plus 0.2% potassium sorbate or plus 0.075% chlorolthalonil was 100%, 20% and 30%, respectively, and the rate of bait consumption was 27.67%, 53.70% and 19.15%, respectively, 8 days after the baits were applied. So, 0.2% potassium sorbate can be as mould inhibitor for termite baits.
     The shaping craft of the termite bait was studied by the handmade molding instrument, and the results showed that bait granularity was the major factor influencing molding status of baits. The best shaping craft of the termite bait of the cane powder was: the thin cane powder, 10% adhesive, 5 s of crush time and 200% water; while the best shaping craft of the termite bait of the pine fritter was: the thin pine fritter, 10% adhesive, 5 s of crush time and 100% water. Termite baits with good molding can be produced by the refitted molding machine, referring to the best molding condition for the handmade molding instrument.
     5. Application of baiting system against O. formosanus
     The results of the field test on decision of toxicant dosage showed that 0.008% fipronil baits induced foraging workers of O. formosanus to die quickly. But 0.002% and 0.004% fipronil baits did not induced foraging workers of O. formosanus to die quickly, and they had the same consumption. So, 0.004% fipronil baits would be used in the test about employing technique of termite baits in the field. Furthermore, the results in the field showed that in the two trial sections of the ground termite gallery means and deadwood-hiding means, the total consumption of fipronil baits was higher than that in the three trial sections of the trapping pit means, means of exposure on the earth's surface and trunk-sticking means. 1 month after the end of applying baits, in the two trial sections of the ground termite gallery means and deadwood-hiding means, the damaged rate of trees reduced 53.57% and 43.24% than that before the treatment respectively, and there were no fresh termite mud sheets in the ground; however, in the three trial sections of the trapping pit means, means of exposure on the earth's surface and trunk-sticking means, the damaged rate of trees increased 16.66%, 17.65% and 2.5% than that before the treatment respectively, and there were many fresh termite mud sheets in the ground. 7 months after the end of applying baits, in the two trial sections of the ground termite gallery means and deadwood-hiding means, the 2 nests of O. formosanus were dead; whereas, in the three trial sections of the trapping pit means, means of exposure on the earth's surface and trunk-sticking means, the 3 nests of O. formosanus were healthy.
     Triple mark-capture was used to estimate foraging populations and to delineate foraging territories of 4 O. formosanus colonies. Termite activity was monitored by number of termite workers and straw board consumption in underground monitoring stations. Consumptions of bait matrix and fipronil in bait tubes were estimated for each testing site. The results showed that approximately 3~5 mg of fipronil could suppress foraging populations of O. formosanus containing 0.4~0.7 million foragers per colony.
引文
1.蔡新辉,王传雷,严国璋等.白蚁隐患探测仪的研制及应用实例.见:程家安,莫建初,毛伟光主编,城市害虫综合治理进展——全国第七届城市昆虫学术研讨会论文集.杭州:浙江大学出版社,2005,42-48
    2.曹云.武当山古建筑群白蚁危害防治方案研究.见:程家安,莫建初,毛伟光主编,城市害虫综合治理进展——全国第七届城市昆虫学术研讨会论文集.杭州:浙江大学出版社,2005,95-100
    3.柴一秋.12株虫生真菌对家白蚁致病性的初步研究中国生物防治.中国生物防治,1995,11(2):68-69
    4.陈博尧,张艺.中国林木白蚁危害及其防治技术.白蚁科技,1993,10(2):1-5
    5.陈红梅.绿僵菌与白僵菌对黑翅土白蚁的室内毒力测定.华东昆虫学报,1999,8(1):107-109
    6.陈少波,陈瑞英,陈雪霞等.华东昆虫学报,2002,11(1):91-94
    7.陈永儿,王光洲.萧山房屋建筑白蚁危害的新动态分析及防治商讨.见:程家安,莫建初,毛伟光主编,城市害虫综合治理进展——全国第七届城市昆虫学术研讨会论文集.杭州:浙江大学出版社,2005,76-83
    8.程冬保.安徽省皖南地区古建筑白蚁危害及防治对策探讨.白蚁防治,2004,3:37-38
    9.程冬保.国外白蚁防治技术综述.中国媒介生物学及控制杂志,2004,15(2):156-158
    10.程冬保.有害生物综合防治(IPM)在白蚁防治上的应用.安徽农业科学,2001,29(1):51-53
    11.戴自荣,陈振耀.白蚁防治教程.广州:中山大学出版社,2002,180-183
    12.邓晓军,张珈敏,胡建芳等.白蚁信息素研究进展.昆虫学报,2002a,45(5):666-672
    13.邓晓军,张珈敏,胡建芳,杨娟,胡远扬,郑穹.合成黑翅土白蚁踪迹信息素类似物的生物活性.昆虫学报,2002b,45(6):739-742
    14.杜桐源,罗钧泽,汤敏玲等.黑翅土白蚁的跟踪信息素.昆虫学报,1982,25(2):172-177
    15.盖钧镒.试验统计方法.北京:中国农业出版社,2000,83-88
    16.龚国淑,张世熔.鸡丛菌的生态调查及其分离培养.四川农业大学学报,1996,14(3):382-386
    17.郭建强,龚跃刚,雷阿桂.伊维菌素对台湾乳白蚁和黄胸散白蚁的毒效观察.中国媒介生物学及控制杂志,2005,16(4):284-286
    18.郭建强,雷阿桂,陈新年.生物农药——克蚁星灭治白蚁野外试验.白蚁科技,2000,17(2):11-14
    19.郭义.诸暨市经济林白蚁危害现状及其防治对策.浙江林业科技,2005,25(3):39-41
    20.韩美贞,严峰.白蚁踪迹信息素及其类似物的活性比较试验初报.昆虫学报,1980,25(2):172-177
    21.何复梅,戴自荣,梁锦英.家白蚁踪迹信息素类似物及其利用研究.昆虫天敌,1997,19(2):70-74
    22.贺新生,梁福,贾继东等.粗柄鸡丛菌菌丝体培养和无性繁殖过程研究初报.微生物学杂志,1996,16(3):26-31
    23.胡剑,钟俊鸿,郭明昉.物理屏障预防白蚁技术的研究及应用.昆虫知识,2006,43(1):27-32
    24.黄复生,朱世模,平正明等.中国动物志·昆虫纲·第十七卷·等翅目.北京:科学出版社,2000
    25.黄求应,薛东,雷朝亮.白蚁诱食信息素研究进展.昆虫学报,2005,48(4):616-621
    26.黄蔚蓉.我国白蚁主要危害种类及其对经济的影响.安徽农业科学,2004,32(2):252-253
    27.黄晓光.声频探测器的原理及其在白蚁探测中的应用.中华卫生杀虫药械,2005,11(5):355
    28.黄远达.中国白蚁学概论.武汉:湖北科学技术出版社,2001
    29.嵇保中,刘曙雯,居峰等.白蚁防治药剂述评.林业科技开发,2002,16(4):3-6
    30.雷朝亮,黄博严,薛东等.几种昆虫生长调节剂对家白蚁的毒效试验.昆虫知识,1996,33(2):96-99
    31.李德成,李忠佩,张桃林等.白蚁活动与土壤环境之间的相互作用.土壤,2003,2:98-103
    32.李栋.白蚁的营养与消化.白蚁科技,1997,14(1):16-26
    33.李栋,何拱华,高道蓉等.利用放射性同位素~(131)Ⅰ标记法对家白蚁活动规律的初步研究.昆虫学报,1976,19(1):32-37
    34.李栋,饶绮珍,张建华.白蚁监察与防治技术及其发展.昆虫知识,1995,32(4):251-253
    35.李栋,饶绮珍,张建华等.埋地C_(90)型塑板汽化氯丹土壤预防家白蚁的效果测试.白蚁科技,1994,11(2):13-18
    36.李栋,田伟金,黎明等.白蚁的生态防治方法与技术.昆虫知识,2001,38(5):380-382
    37.李栋,田伟金,黎明等.谈白蚁与人类的相互关系.昆虫知识,2004,41(5):487-494
    38.李栋,徐海清,李荣春.蚁巢热水浸提物对鸡丛菌丝生长的影响.中国食用菌,2003,22(3):23-24
    39.李栋,赵元,石锦祥等.利用放射性同位素~(131)Ⅰ标记法研究黑翅土白蚁的取食活动.昆虫学报,1981,24(1):113-114
    40.李栋,赵元,石锦祥等.利用低放射性强度~(131)Ⅰ与~(198)Au标记家白蚁的试验.昆虫学报,1982,25(3):284-288
    41.李栋,庄天勇,田伟金等.白蚁管漏的成因及其治理.昆虫知识,2001,38(3):182-185
    42.李栋.堤坝白蚁.成都:四川科学技术出版社,1989
    43.李凯,姜勇,吴国华等.武汉市园林白蚁的主要种类及危害.华中农业大学学报,2001,20(6).547-549
    44.李小鹰,高道蓉,徐卫英.美国的白蚁及其防治概况.白蚁科技,1998,15(1):1-17
    45.李小鹰.白蚁控制IPM策略的发展及对药剂的要求.中华卫生杀虫药械,2004,10(6):354-358
    46.李小鹰.房屋白蚁控制IPM策略运用中的关键技术及现实意义.中国卫生杀虫药械,2005,11(1):7-11
    47.李雄生,李永忠,王学问等.家白蚁虫霉病研究.白蚁科技,2000,17(2):1-3
    48.李雄生,李永忠,王学问等.家白蚁对氨基酸及维生素的取食试验.见:张广学,李典谟主编,走向二十一世纪的中国昆虫学.北京:中国科技出版社,2000,224-225
    49.李雄生,李永忠,王学问等.家白蚁高效诱饵的研制及诱效试验.中南林学院学报,2001,21(2):75-77
    50.李耀华.白蚁研究.武汉:武汉大学出版社,1993,209-210
    51.李印平.土栖白蚁防治施药技术研究.江西林业科技,2003,2:13-14
    52.林树青.中草药诱饵剂灭治白蚁的研究.白蚁科技,1993,10(1):11-17
    53.刘显钧,李为众.钻孔设饵法防治房屋建筑散白蚁的研究.昆虫知识,1997,34(1):22-24
    54.刘晓燕,钟国华.白蚁防治剂的现状和未来.农药学学报,2002,4(2):14-22
    55.刘源智,江涌,苏祥云等.中国白蚁生物学及防治.成都:成都科技大学出版社,1998,1-2
    56.刘源智,唐国清,潘演征等.黑翅土白蚁初单腔巢群建立的观察.昆虫学报,1981,24(2):361-366
    57.刘源智,唐国清,潘演征等.黑翅土白蚁生殖级幼蚁龄期划分及幼蚁发育与有翅成虫分飞的观察.昆虫学报,1985,28(1):111-114
    58.刘自力,黄雷,易俊骥等.氟铃脲在家白蚁诱饵中最适量的室内外试验.中南林学院学报,2004,24(1):74-77
    59.刘自力,黄雷,易俊骥等.氟铃脲纸片实地诱杀乳白蚁试验.中国森林病虫,2005,4:44
    60.卢川川,韦昌华,陈国强等.吡虫啉对台湾乳白蚁的毒效试验.白蚁科技,1999,16(3):1-4
    61.卢川川,钟浩泉.白蚁研究.广东:广东人民出版社,1997,18-24
    62.罗钧泽,何复梅,吕筠等.白蚁踪迹信息素类似物的利用(Ⅰ):黑翅土白蚁对踪迹信息素及其类似物的行为反应.昆虫天敌,1988a,10(4):205-203
    63.罗钧泽,何复梅,吕筠等.白蚁踪迹信息素类似物的利用(Ⅱ):诱杀堤坝白蚁和林木白蚁.昆虫天敌,1988b,10(4):214-221
    64.毛伟光,郦志平,吕成君等.一种新型土栖白蚁毒饵管应用技术的研究.中国卫 生杀虫药械,2003,9(2):26-29
    65.毛伟光,叶天降,刘光胜.BY-Ⅱ型白蚁隐患探测仪用于堤坝白蚁探测的初步研究.见:程家安,莫建初,毛伟光主编,城市害虫综合治理进展——全国第七届城市昆虫学术研讨会论文集.杭州:浙江大学出版社,2005,35-41
    66.毛伟光,叶天降,周烈等.木材保护剂在古建筑和仿古建筑虫害预防上的应用.见:程家安,莫建初,毛伟光主编,城市害虫综合治理进展——全国第七届城市昆虫学术研讨会论文集.杭州:浙江大学出版社,2005,72-75
    67.毛伟光,赵琪祥,吕成君等.诸暨市堤坝白蚁综合防治技术研究.浙江水利科技,2002,3:73-74
    68.莫建初,石勇,宋晓钢等.中国房屋建筑白蚁防治IPM策略研究及应用现状.城市害虫防治,2004.3-14
    69.莫建初,吴峻,庄佩君等.安全有效的白蚁防治方法——物理屏障法.世界农药,2003,25(2):40-44
    70.佘春仁,潘蓉英,谢学梅等.白蚁乳白蚁踪迹信息素粗提物与活性研究.昆虫知识,1999,36(2):91-94
    71.宋晓钢,阮冠华,林树青等.白蚁防治新药剂对白蚁的药效研究.浙江林学院学报,2000,17(3):244-247
    72.宋晓钢.白蚁诱饵剂饵料的筛选试验.白蚁科技,1993,10(2):11-15
    73.宋晓钢.我国堤坝白蚁治理研究现状及展望.见:程家安,莫建初,毛伟光主编,城市害虫综合治理进展——全国第七届城市昆虫学术研讨会论文集.杭州:浙江大学出版社,2005,3-11
    74.谭速进,谭晓宏,杜林方等.一种菊酯类复合剂对黑胸散白蚁体内CarEs和 Ca-ATPase活性的影响.昆虫学报,2002,45(4):441-446
    75.谭速进,张大羽,何俊华等.白蚁防治中引诱技术的应用.昆虫知识,1999,36(4):229-232
    76.田伟金.香菇蚁害及其防治.白蚁科技,1996,13(1):25-30
    77.王缉健.速生桉白蚁及其防治技术.广西植保,2002,15(3):21-22
    78.吴诗宝,刘翅发,李有余等.中国穿山甲的食性与觅食行为初步观察.自然资源学报,2005,11(3):337-341
    79.谢鸣荣 谢保国,胡远杨,张加敏.林木白蚁病毒复合制剂研究初报.江苏林业 科技,1998,25(1):38-39
    80.熊斌,江小兰,江超平等.园林树家白蚁的诱杀.广西农业科学,2001,4:185-186
    81.徐吉民.正交设计的应用.北京:人民教育出版社,1975,80-83
    82.徐兴新,吴晋,吴相安等.探地雷达探测堤坝白蚁巢研究.昆虫学报,1996,39(1):46-50
    83.薛德均,李云秋.黑翅土白蚁营养成分分析.中国现代应用药学杂志,2002,19(6):472-473
    84.薛东,黄求应,王满困等.白蚁诱饵剂成型工艺的研究.林业科学,2005,41(2):201-203
    85.杨天赐.黑翅土白蚁内切-β-1,4-葡聚糖酶分离纯化及其特性研究.[博士学位论文].杭州:浙江大学图书馆,2004
    86.袁克,朱宏斌.国外白蚁危害及防治简介.植物检疫,2002,16(1):57-58
    87.张大羽,宋晓剐,程家安.探测及防治白蚁技术的进展.白蚁科技,2000,17(1):23-26
    88.张大羽,王国华,刘文军等.防治白蚁药剂的发展概况.白蚁科技,1998,15(1):28-31
    89.张华庭,张再福,朱建华等.15种药剂毒杀黑翅土白蚁的室内药效试验.林业科技开发,2000,14(3):16-18
    90.张建华,李文健,陈丽玲,庄天勇,蒙启枝.台湾乳白蚁行为多型的研究.昆虫学报,2003a,46(3):333-338
    91.张建华,李文健,陈丽玲,庄天勇,蒙启枝.家白蚁交哺行为分析.北华大学学报,2003b,4(2):113-115
    92.张建华,张曼,黄文等.蔗糖、甜蜜素与白酒对白蚁引诱效应的分析.湖南文理学院学报,2004,16(4):56-58
    93.张良,邓建海,王问学.吡虫啉驱避作用的再测试.农药,2005,44(3):138-139
    94.张再福,朱建华,陈红梅等.几种杀白蚁药剂或混配剂对黑翅土白蚁的室内毒力测定.森林病虫通讯,2000,5:24-28
    95.张贞华,董兆梁.黑翅土白蚁及菌圃的糖、蛋白质、维生素、氨基酸分析.科技通报,1993,9(1):41-43
    96.张贞华,郦培尧.黑翅土白蚁巢外天敌的调查.昆虫学报,1982,25(2):227-230
    97.张贞华.黑翅土白蚁和黄翅大白蚁主巢土壤的物理和化学特性研究.杭州大学学报,1987,14(1):80-90
    98.钟登庆,黄顺明,姚达长.堤坝白蚁防治方法比较研究.华南农业大学学报,1998,19(4):41-44
    99.钟平生,张颂声,李静美等.氟虫胺诱饵剂防治白蚁的药效试验.中国媒介生物学及控制杂志,2005,16(2):110-111
    100.周志伯.加强堤坝白蚁防治确保水库运行安全.白蚁防治,2005,2:23-24
    101.朱建华.应用昆虫病原线虫防治按树白蚁的研究.福建林学院学报,2002,22(4):366-370
    102.朱世模,杨兵,黄复生.白蚁研究与进展概述.动物学研究,1992,13(4):397-402
    103.朱勇.锐劲特对家白蚁的室内毒力测定.白蚁科技,1999,16(3):8-10
    104.朱朝华,骆东林,杨学一.“8202—0”灭蚁灵诱饵剂防治林地土栖白蚁试验研究.浙江林业科技,1996,16(3):37-40
    105. Abe T. Evolution of life types in termites. In: Kawano S, Connell J H, Hidaka T eds., Evolution, Coadaon and Biotic Communities. Tokyo: University of Tokyo Press, 1987. 128-148
    106. Acda M N, Ong H B. Use of volcanic debris as physical barrier against the Philippine milk termite (Isoptera: Rhinotermitidae). Sociobiology, 2005, 46:117-129
    107. Afzal M. Radioisotope studies of trophallaxis in the drywood termite Bifiditermes beesoni (Gardner) (Isoptera). Mat. und Org., 1983, 18:51-63
    108. Ahmad S A, Hokins T L. β-glucosylation of plant phenolics by phenol-β-glucosyltransferase in larval tissues of the tobacco hornworm Manduca sexta (L.). Insect Biochem. Mol. Biol., 1993, 23 : 581-589
    109. Alibert J. Innervation de I'appareil salivaire du termite Kalotemnes flavicollis Fabr. Histologie et ultrastructure: Relation des axones avec les cells de la glande et du reservoir. Arch. Anat. Microsc., 1983, 72 : 133-162
    110. Almeida J E M, Alves S B, Pereira R M. Selection of Beauveria spp isolates for control of the termite Heterotermes tenuis (Hagen, 1858). Z. Angew. Entomol., 1997, 121:539-543
    111.Arab A, Costa-Leonardo A M, Casarin F E, Guaraldo A C, Chaves R C. Foraging activity and demographic patterns of two termite species (Isoptera: Rhinotermitidae) living in urban landscapes in southeastern Brazil. European Journal of Entomology, 2005,102: 691-697
    112.Arab A, Costa-Leonardo A M. Effect of biotic and abiotic factors on the tunneling behavior of Coptotermes gestroi and Heterotermes tenuis (Isoptera: Rhinotermitidae). Behavioural Processes, 2005, 70: 32-40
    113.Badertscher S, Gerber C, Leuthold R H. Polyethism in food supply and processing in termite colonies of Macrotermes subhyalinus (Isoptera). Behav. Ecol. Sociobiol, 1983,12:115-119
    114.Bao L L, Yendol W G. Infection of the eastern subterranean termite, Reticulitermes flavipes (Kollar) with the fungus Beauveria bassiana (Balsamo) Vuill. Entomophaga, 1971,16: 343-352
    115.Bardunias P, Su N Y. Comparison of tunnel geometry of subterranean termites (Isoptera: Rhinotermitidae) in "two-dimensional" and "three- dimensional" arenas. Sociobiology, 2005,45: 679-685
    116.Bhatakar A P, Kloft W J. Evidence, using radioactive phosphorus, of interspecific food exchange in ants. Nature, 1977, 265:140-142
    117.Billen J, Joye L, Leuthold R H. Fine structure of the labial gland in Macrotermes bellicosus (Isoptera, Termitidae). Acta Zool., 1989, 70: 37-45
    118.Bordereau C, Robert A, Tuyen V V, Peppuy A. Suicidal defensive behavior by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insectes Soc, 1997,44: 289-296
    119.Brian M V. Social Insects, Ecology and Behavioral Biology. London: Chapman and Hall, 1983
    120.Brich A J, Brow W V, Corrie J E T, Moore B P. Neocembrene A, a termite trail pheromone. J. Chem. Soc, 1972,1: 2653-2658
    
    121.Brooks S E, Oi F M, Koehler P G. Ability of canine termite detectors to locate live termites and discriminate them from non-termite material. J. Econ. Entomol, 2003, 96 (4): 1259-1266
    122.Cabrera B J, Rust M K. Caste differences in feeding and trophallaxis in the western drywood termite, Incisitermes minor (Hagen) (Isoptera, Kalotermitidae). Insectes Soc, 1999, 46: 244-249
    123.Campora C E, Grace J K. Tunnel orientation and search pattern sequence of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ Entomol, 2001, 94:1193-1199
    124.Carvalho J F, Pestwich G D. Synthesis of ω-tritiated and ω-fluorinated analogues of the trail-pheromone of subterranean termites. J. Org. Chem., 1984, 49:1251-1258
    125.Casarin F E, Arab A, Costa-Leonardo A M. Influence of the labial gland's semiochemicals on the feeding behavior of Coptotermes havilandi (Isoptera: Rhinotermitidae). Sociobiology, 2003, 42: 485-493
    126.Chen J, Henderson G. Determination of feeding preference of Formosan subterranean termite (Coptotermes formosanus Shiraki) for some amino acid additives. J. Chem. Ecol, 1996, 22: 2359-2369
    127.Chen J, Henderson G, Grimm C C, Lloyd S W, Laine R A. Naphthalene in Formosan subterranean termite carton nests. J. Agric. Food Chem., 1998, 46: 2337-2339
    128.Chen J, Henderson G. Marking Formosan subterranean termites, Coptotermes formosanus, with rubidium (Isoptera: Rhinotermitidae). Sociobiology, 1994, 24: 17-26
    129.Cole L M, Nicholson R A, Casida J E. Action of phenyl pyrazole insecticides at the GABA-gated chloride channel. Pestic. Biochem. Physiol, 1993, 46: 47-54
    130.Collins M S. Physical factors affecting termite distribution. Sociobiology, 1991, 19: 283-286
    131.Cornelius M L, Bland J M. Trail-following behavior of C. formosanus and R. flavipes (Isoptera: Rhinotermitidae): is there a species-specific response? Environ. Entomol, 2001, 30: 457-465
    
    132.Cornelius M L, Daigle D J, Connick W J, Parker A, Wunch K. Response of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) to three types of wood rot fungi cultured on different substrates. J. Econ. Entomol, 2002,95:121-128
    133.Cornelius M L. Effect of particle size of different sands on the tunneling behavior of the Formosanus Subterranean termite (Isoptera: Rhinotermitidae). Sociobiology, 2005, 45:175-184
    134.Cornelius M L. Evaluation of semiochemicals as feeding stimulants for the Formosan subterranean termite (Isoptera: Rhinotermitidae). Sociobiology, 2003, 41: 583-591
    135.Coraelius M L, Lax A R. Effect of summon preferred food source on feeding, tunneling, and bait station discovery by the formosan subterranean termite (Isoptera: Rhinotermitidae).J. Econ Entomol., 2005, 98: 502-508
    136.Cornelius M L, Osbrink W L A. Tunneling behavior, foraging tenacity and wood consumption rates of Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae) in laboratory bioassays. Sociobiology, 2001, 37: 79-94
    137.Costa-Leonardo A M. Secretion of salivary glands of the Brazilian termite Serritermes serrifer Hagen and Bates (Isoptera: Serritermitidae). Annales de la Societe Entomologique de France, 1997, 33 : 29-37
    
    138.Costa-Leonardo A M, Cruz-Landim C. Morphology of the salivary gland acini in Grigiotermes bequaerti (Isoptera: Termitidae: Apicotermitinae). Entomol. Gen., 1991, 16 : 13-21
    
    139.Costa-Leonardo A M, Soares H X. Degenerative structures in the salivary glands of the termite Heterotermes tenuis (Isoptera; Rhinotermitidae). Biociencias, 1996, 4 : 145-153
    140.Culliney T W, Grace J K. Prospects for the biological control of subterranean termite (Isoptera: Rhinotermitidae), with special reference to Coptotermes. Bull. Entomol. Res., 2000, 90: 9-21
    141.Czolij R T, Slaytor M. Morphology of the salivary glands of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae). Int. J. Insect Morphol.& Embryol, 1988,17 : 207-220
    
    142.Delaplane K S, La Fage J P. Preference of the Formosan subterranean termite (Isoptera: Rhinotermitidae) for wood damaged by conspecifics. J. Econ. Entomol, 1989, 82(5) : 1363-1366
    
    143.Delaplane K S, Saxton A M, La Fage J P. Foraging phenology of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in Louisiana. Am. Midl. Nat., 1991, 25: 222-230
    144.Delate K M, Grace J K. Susceptibility of neem to attack by the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J. Appl. Entomol, 1995,119: 93-95
    145.De Marco R J, Farina W M. Trophallaxis in forager honeybees ( Apis mellifera): resource uncertainty enhances begging contacts? J. Comp. Physiol. A, 2003, 189: 125-134
    146.Ebeling W, Pence R J. Relation of particle size on the penetration of subterranean termites through barriers of sand or cinders. J. Econ. Entomol, 1957, 50: 690-692
    147.Esenther G R, Beal R H. Termite control: decayed wood bait. Sociobiology, 1979, 4: 215-320
    148.Evans T A. Foraging and building in subterranean termites: Task switchers or reserve labourers? Insectes Sociaux, 2006, 53: 56-64
    149.Evans T A. Fast marking of termites (Isoptera: Rhinotermitidae). Sociobiology, 2000, 35: 517-523
    150.Faragalla A A, Badawi A I, Dabbour A I. Field evaluation of the effects of the juvenile hormone analogs (JHA's) and diflubenzuron (Dimilin) on termites of the genus Microcerotermes (Isoptera: Termitidae) in the central region of Saudi Arabia. Sociobiology, 1985,11: 29-37
    151.Ferster B, Scheffrahn R H, Thoms E M, Scherer P N. Transfer of toxicants from exposed nymphs of the drywood termite Incisitermes snyderi (Isoptera: Kalotermitidae) to unexposed nestmates. J. Econ. Entomol, 2001, 94: 215-222
    152.Forschler B, Henderson G. Subterranean termite behavioral reaction to water and survival of inundation: implications for field populations. Environ. Entomol, 1995, 24:1592-1597
    153.Forschler B T. Baiting Reticulitermes (Isoptera: Rhinotermitidae) field colonies with Abamectin and zinc borate-treated cellulose in Georgia. Sociobiology, 1996, 28: 459-484
    154.Forschler B T. Incidence of feeding by the eastern subterranean termite (Isoptera: Rhinotermitidae) in laboratory bioassays. Sociobiology, 1996, 28: 265-273
    155.Forschler B T, Jenkins T M. Subterranean termites in the urban landscape: Understanding their social structure is the key to successfully implementing population management using bait technology. Urban Ecosystems, 2000, 4: 231-251
    156.Forschler B T, Ryder J C. Subterranean termite, Reticulitermes spp. (Isoptera: Rhinotermitidae), colony response to baiting with hexaflumuron using a prototype commercial termite baiting system. J. Entomol. Sci., 1996, 31: 143-151
    157.Forschler B T. Survivorship and tunneling activity of Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae) in response to termiticide soil barriers with and without gaps of untreated soil. J. Entomol. Sci., 1994, 29: 43-54
    158.French J R J. Baits and foraging behavior of Australian species of Coptotermes. Sociobiology, 1991,19: 171-186
    159.Fujii J K. Effects of an entomogenous nematode, Neoaplectana carpocapsae Weiser, on the Formosan subterranean termite, Coptotermes formosanus Shiraki, with ecological and biological studies on C formosanus, PhD Thesis, University of Hawaii. 1975
    160.Gallagher N T, Jones S C. Effects of resource availability on search tunnel construction by the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology, 2005, 45: 553-564
    161.Gessner S, Leuthold R H. Caste-specificity of pheromone trails in the termite Macrotermes bellicosus. Insectes Soc, 2001, 48: 238-244
    162.Gonzalez de la Rosa, Puntonet C G, Lloret I. An application of the independent component analysis to monitor acoustic emission signals generated by termite acivity in wood. Measurement, 2005, 37: 63-67
    
    163.Grace J K, Aihara-Sasaki M, Yates J R. Differences in tunneling behavior of Coptotermes vastator and Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology, 2003, 42: 153-158
    164.Grace J K. Biological-control strategies for suppression of termites. J. Agric. Entomol, 1997,14: 281-289
    165.Grace J K, Ewart D M. Recombinant cells of Pseudomonas fluorescens: a highly palatable encapsulation for delivery of genetically engineered toxins to subterranean termites (Isoptera: Rhinotermitidae). Lett. Appl. Microbiol, 1996, 23:183-186
    166.Grace J K, Su N Y. Evidence supporting the use of termite baiting systems for long-term structural protection (Isoptera). Sociobiology, 2001, 37: 301-310
    167.Grace J K, Tome C H M, Shelton T G, Ohsiro R J, Yates J R. Baiting studies and considerations with Coptotermes formosanus (Isoptera: Rhinotermitidae) in Hawaii. Sociobiology, 1996, 28: 511-520
    168.Grace J K, Wood D L, Kim M. Behavior and chemical investigation of trail pheromone from termite Reticulitermes hesperus Banks (Isoptera: Rhinotermitidae). J.Appl. Entomol., 1995,119: 501-505
    169.Grace J K, Yates J R, Tamishiro M, Yamamoto R T. Persistence of organochlorine insecticides for Formosan subterranean termite (Isoptera: Rhinotermitidae) control in Hawaii. J. Econ. Entomol., 1993, 86: 761-766
    170.Grace J K, Yates J R, Tome C H M, Oshiro R J. Termite-resistant construction: use of a stainless steel mesh to exclude Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology, 1996, 28: 365-372
    
    171.Grasse P P. Termitologia. Vol. 1. Paris : Masson, 1982
    
    172.Green J M, Scharf M E, Bennett G W. Impacts of soil moisture level on consumption and movement three sympatric subterranean termites (Isoptera: Rhinotermitidae) in a laboratory assay. J. Econ Entomol., 2005, 98: 933-937
    
    173.Grube S, Rudolph D. The labial gland reservoirs (water sacs) in Reticulitermes santonensis (Isoptera: Rhinotermitidae): studies of the functional aspects during microclimatic moisture regulation and individual water balance. Sociobiology, 1999a 33 : 307-323
    
    174.Grube S, Rudolph D. Water supply during building activities in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera: Rhinotermitidae). Insectes Soc, 1999b, 46: 192-193
    
    175.Grube S, Rudolph D, Zerbst-Boroffka I. Morphology, fine structure, and functional aspects of the labial gland reservoirs of the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera: Rhinotermitidae). Int. J. Insect Morphol. and Embryol, 1997,26 : 49-53
    
    176.Hatfield I. Research tests on soil-poisoning chemicals for the control of subterranean termites. Pests and Their Control, 1944,12: 10-14
    177.Hedlund J C, Henderson G. Effect of available food size on search tunnel formation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol., 1999, 92: 610-616
    178.Hewitt P H, Nel J J C, Schoeman I. Influence of group size on water imbibition by Hodotermes mossambicus alate termites. J. Insect Physiol, 1971,17 : 587-600
    
    179.Hewitt P H, Van Der Westhuizen M C, Van Der Linde T C K, Mitchell J. The dry matter, energy and nitrogen budget of the harvester termite Hodotermes mossambicus (Hagen). S. Afr. J. Sci., 1990, 86 : 30-34
    
    180.Hinze B, Crailsheim K, Leuthold R H. Polyethism in food processing and social orgnisation in the nest of Macrotermes bellicosus (Isoptera, Termitidae). Insectes Soc, 2002, 49: 31-37
    
    181.Hogan M, Veivers P C, Slaytor M, Czolij R T. The site of cellulose breakdown in higher termites (Nasutitermes walkeri and Nasutitermes exitiosus). J. Insect Physiol., 1988, 34 : 891-899
    
    182.Houseman R M, Gold R E. Factors that influence tunneling in the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Journal of Agricultural and Urban Entomology, 2003, 20: 69-81
    183.Howard R, Matsumur F, Coppel H C. Trail-following pheromone of the Rhinotermitidae: approaches to their authentication and specificity. J. Chem. Ecol.,1976, 2:147-166
    184.Hutzinger M W, Oehlschlager A C. Stereoselective synthesis of 1, 4-diene. Application to the preparation of insect pheromone (3Z , 6Z) -dodeca-3, 6-dien-1-ol and ( 4E , 7Z) -trideca-4 , 7-dieny-lacetate. J. Org. Chem., 1995, 60: 4595-4601
    185.Inoue T, Murashima K, Azuma J I, Sugimoto A, Slaytor M. Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J. Insect Physiol., 1997, 43: 235-242
    186.Itakura S, Tanaka H, Enoki A. Distribution of cellulases, glucose and related substances in the body of Coptotermes formosanus. Mater. Org., 1997, 31 : 17-29
    
    187.Jitunari F, Asakawa F, Takeda N, Suna S, Manabe Y. Chlordane compounds and metabolite residues in termite workers blood. Bull. Environ. Contam. Toxicol., 1995, 54: 855-862
    
    188 Jones S C. Evaluation of two insect growth regulators for the bait-block method of subterranean termite (Isoptera: Rhinotermitidae) control. J. Econ. Entomol., 1984, 77 : 1086-1091
    
    189. Jones S C. Field evaluation of fenoxycarb as a bait toxicant for subterranean termite control. Sociobiology, 1989,15: 33-41
    190.Jones S C. Field evaluation of boron as a bait toxicant for control of Heterotermes aureus (Isoptera: Rhinotermitidae). Sociobiology, 1991,19:187-209
    191.Jones S C, Trosset M W, Nutting W L. Biotic and abiotic influences on foraging of Heterotermes aureus (Snyder) (Isoptera: Rhinotermitidae). Environ. Entomol, 1987, 16: 791-795
    192.Jones W E, Grace J K, Tamashiro M. Virulence of seven isolates of Beauveria bassiana and Metarhizium anisopliae to Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ. Entomol, 1996, 25: 481-487
    193.Kard B. Termiticides: the Gulfport report. Pest Control, 1999, 67: 42-46
    194.Kaib M, Ziesmann J. The labial gland in the termite Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae): Morphology and function during communal food exploitation. Insectes Soc., 1992,39 : 373-384
    195.Kambhampati S. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proc. Natl. Acad. Sci. U.S.A., 1995, 92 : 2017-2020
    
    196.King E G, Jr., Spink W T. Foraging galleries of the Formosan subterranean termite, Coptotermes formosanus. Louisiana. Ann. Entomol. Soc. Am., 1969, 62: 536-542
    
    
    197.Kuriachan I, Gold R E. Evaluation of the ability of Reticulitermes flavipes Kollar, a subterranean termite (Isoptera: Rhinotermitidae), to differentiate between termiticide treated and untreated soils in laboratory tests. Sociobiology, 1998, 32: 151-166
    
    198.Lax A R, Osbrink W L. United States Department of Agriculture-Agriculture Research Service research on targeted management of the Formosan subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Pest Manag.Sci., 2003, 59: 788-800
    
    199.Lenz M, Runko S. Protection of buildings, other structures and materials in ground contact from attack by subterranean termites (Isoptera) with a physical barrier-a fine mesh of high grade stainless steel. Sociobiology, 1994, 24:1-16
    200.Lenz M, Watson J A L, Barrett R A, Runko S. The effectiveness of insecticidal soil barriers against subterranean termites in Australia. Sociobiology, 1990,17: 9-35
    
    201.Lewis D L. Environmental and health aspects of termite control chemicals. Sociobiology, 1980, 5:197-203
    202.Lewis V R, Fouche C F, Lemaster R L. Evaluationg of dog-assisted searches and electronic odor devices for detecting western subterranean termite. For. Prod. J., 1997,47: 79-84
    203.Lewis V R, Haverty M I, Carver D S, Fouche C. Field comparison of sand or insecticide barriers for control of Reticulitermes spp. (Isoptera: Rhinotermitidae) infestation in homes in northern California. Sociobiology, 1996, 28: 327-335
    204.Lewis V R, Haverty M I. Evaluation of six techniques for control of the western drywood termite (Isoptera: Kalotermitidae) in structures. J. Econ. Entomol., 1996, 89 : 922-934
    
    
    
    205.Long C E. A rapid marking technique for Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology, 2004, 44: 187-194
    206.Lund A E. Microbial control of termites (Reticulitermes, Insect control). In: Burges H D ed., Microbial control of insects and mites. New York: Academic Press, 1971. 385-386
    207.Lys J A, Leuthold R H. Task-specific distribution of the two worker castes in extranidal activities in Macrotermes bellicosus (Smeathman): Observation of behaviour during food acquisition. Insectes Soc, 1991, 38: 161-170
    208.Machida M, Kitade O, Miura T, Matsumoto T. Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insectes Soc, 2001, 48: 52-56
    209.Martin M M, Martin J S. Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: The role of acquired digestive enzymes. Science, 1978,119 : 1453-1455
    
    210.Mankin R W, Benshemesh J. Geophone detector of subterranean termite and ant activity. J. Econ. Entomol, 2006, 99 (1): 244-250
    211.Mankin R W, Osbrink W L, J Anderson. Acoustic detection of termite infestations in urban trees. J. Econ. Entomol., 2002, 95 (5): 981-988
    212.Maschwitz U, Tho Y P. Chinone als Wehrsubstanzen bei einigen orientalischen Macrotermitinen.Insectes Soc, 1974,21 : 231-234
    
    213.Matsumura F, Coppel H C, Tai A. Isolation and identification of termite trail-following pheromone. Nature, 1968, 219: 963-964
    214.Matsumoto T. The role of termites in an equatorial rain forest ecosystem of west Malaysia. Oecologia, 197622:153-178.
    215.Messenger M T, Su N Y, Husseneder C, Grace J K. Elimination and reinvasion studies with Coptotermes formosanus (Isoptera: Rhinotermitidae) in Louisiana. J. Econ. Entomol, 2005, 98: 916-929
    216.Mcdowell P G, Olloo G W. Isolation, identification, and biological activity of trail-following pheromone of termite Trinervitermes bettonianus (Sjostedt) (Termitidae: Nasutitermitidae). J. Chem. Ecol, 1984,10: 835-851
    217.Milner R J, Staples J A. Biological control of termites: results and experiences within a CSIRO project in Australia. Biocontrol Sci. Technol., 1996, 6: 3-9
    218.Milner, R J, Staples J A, Lutton G G. The selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for the control of termites in Australia. Biol. Control, 1998,11:240-247
    219.Milner R J, Staples J A, Lutton G G. The effect of humidity on germination and infection of termites by the hyphomycete, Metarhizium anisopliae. J. Invert. Pathol, 1997, 69:64-69
    
    220.Moore B P. Isolation of the scent-trail pheromone of an Australian termite. Nature, 1966, 211: 746-747
    221.Moore B P. Studies on the chemical composition and function of the cephalic gland secretion in Australian termites. J. Insect Physiol., 1968,14 : 33-39
    
    222.Morales-Ramos J A, Rojas M G. Nutritional ecology of the Formosanus subterranean termite (Isoptera: Rhinotermitidae): growth and survival of incipient colonies feeding on preferred wood species.J. Econ. Entomol., 2003, 96:106-116
    
    223.Mun H T, Whitford W G. Changes in the mass and chemistry of plants roots during long-term decomposition on a Chihuahuan Desert watershed. Biol. Fertil. Soils., 1998, 26:16-22
    
    224.Nasir K, Bilto K K, Al-Shuraiki Y. Residues of chlorinated hydrocarbon insecticides in human milk of Jordanian women. Environ. Poll., 1998, 99: 141-148
    
    225 .Nelson L J, Cool L G, Forschler B T, Haverty M I. Correspondence of soldier defense secretion mixtures with cuticular hydrocarbon phenotypes for chemotaxonomy of the termite genus Reticulitermes in north America. J. Chem. Ecol, 2001, 27:1449-1479
    
    226.Noirot C. From wood- to humus-feeding: An important trend in termite evolution. In : Billen J ed., Biology and Evolution of Social Insects. Leuven : Leuven University Press, 1992.107-119
    227.Noirot C. Glands and secretions. In : Krishna K, Weesner F eds., Biology of the Termites. Vol. 1. New York : Academic Press, 1969. 89-123
    228.Olagbemiro T O, Lajide L, Sani K M, Staddon B W. 2-hydroxy-5-methyl-1,4-benzoquinone from the salivary gland of the soldier termites Odontotermes magdalenae. Experientia, 1988, 44 : 1022-1024
    
    229. Oliver A E, Hincha D K, Crowe L M, Crowe J H. Interactions of arbutin with dry and hydrated bilayers. Biochim. Biophys. Acta-Biomembranes, 1998,1370 : 87-97
    
    230.Olstaff D, Gray D E. Termite (Isoptera) suppression with toxic baits. Can. Entomol., 1975,107:1321-1325
    231.0sbrink W L A, Williams K S, Connick Jr, W J, Wright M S, Lax A R. Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA. Environ. Entomol., 2001, 30: 443-448
    232.Park H C. Influence of vegetation and soil types on the mound density and distribution of the wheatbelt termite in Western Australia: using a geographic information system (G.I.S.). Korean Journal of Applied Entomology, 1994, 33: 153-158
    233.Pawson B M, Gold R E. Evaluation of baits for termites (Isoptera: Rhinotermitidae) in Texas. Sociobiology, 1996, 28: 485-510
    234.Peters B C, Fitzgerald C J. Field Evaluation of the Bait Toxicant Chlorfluazuron in Eliminating Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae). J. Econ. Entomol, 2003, 96: 1828-1831
    235.Peters B C, Fitzgerald C J. Field evaluation of the effectiveness of three timber species as bait stakes and the bait toxicant hexaflumuron in eradicating Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae). Sociobiology, 1999, 33 : 227-238
    236.Potter M F, Eliason E A, Davis K, Bessin R T. Managing subterranean termites (Isoptera: Rhinotermitidae) in the Midwest with a hexaflumuron bait and placement considerations around structures. Sociobiology, 2001, 38: 565-584
    237.Potter M F, Hillery A E. Exterior-targeted liquid termiticides: an alternative approach to managing subterranean termites (Isoptera: Rhinotermitidae) in buildings. Sociobiology, 2001, 39: 373-405
    238.Puche H, Su N Y. Application of fractal analysis for tunnel systems of subterranean termites (Isoptera: Rhinotermitidae) under laboratory conditions. Environ. Entomol, 2001a, 30: 545-549
    
    239.Puche H, Su N Y. Tunnel formation by Reticulitermes flavipes and Coptotermes formosanus (Isoptera: Rhinotermitidae) in response to wood in sand. J. Econ. Entomol, 2001b, 94: 1398-1404
    240.Puche H, Su N Y. Tunnel activity of Reticulitermes flavipes and Coptotermes formosanus (Isoptera: Rhinotermitidae) in sand with moisture gradients. J. Econ. Entomol, 2003,96: 88-93
    241.Raina A K, Bland J M, Osbrink W. Hydroquinone is not phagostimulant for the Formosanus subterranean termite.J. Chem. Ecol, 2005, 31: 509-517
    242.Ramakrishnan R, Suiter D R, Nakatsu C H, Humber R A, Bennett G W. Imidacloprid-enhanced Reticulitermes flavipes (Isoptera: Rhinotermitidae) susceptibility to the entomopathogen Metarhizium anisopliae. J. Econ. Entomoi, 1999, 92:1125-1132
    243.Rath A C. The use of entomopathogenic fungi for control of termites. Biocontrol Sci. Technol, 2000,10:563-581
    244.Reinhard J, Hertel H, Kaib M. Feeding stimulating signal in labial gland secretion of the subterranean termite Reticulitermes santonensis. J. Chem. Ecol., 1997, 23 : 2371-2381
    245.Reinhard J, Kaib M. Interaction of pheromones during food exploitation by the termite Schedorhinotermes lamanianus. Physiol. Entomoi, 1995, 20 : 266-272
    
    246.Reinhard J, Kaib M. Trail communication during foraging and recruitment in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae).J. Insect Behav., 2001a, 14 : 157-171
    
    247.Reinhard J, Kaib M. Thin layer chromatography assessing feeding stimulation by labial gland secretion compared to synthetic chemicals in the subterranean termite Reticulitermes santonensis. J. Chem. Ecol., 2001b, 27 : 175-187
    248.Reinhard J, Kaib M. Food exploitation in termites: Indication for a general feeding stimulating signal in labial gland secretion of Isoptera. J. Chem. Ecol., 2001c, 27: 189-201
    249.Reinhard J, Lacey M J, Ibarra F, Schroeder F C, Kaib M, Lenz M. Hydroquinone: A general phagostimulating pheromone in termites. J. Chem. Ecol, 2002a, 28 : 1-14
    
    250.Reinhard J, Lacey M J, Lenz M. Application of the natural phagostimulant hydroquinone in bait systems for termite management (Isoptera). Sociobiology, 2002b, 39: 213-229
    251.Remmen L N, Su N Y. Time trends in mortality for thiamethoxam and fipronil against Formosan subterranean termites and eastern subterranean termites (Isoptera: Rhinotermitidae).J. Econ. Entomol, 2005, 98: 911-915
    252.Robertson A S, Su N Y. Discovery of an effective slow-acting insect growth regulator for controlling subterranean termites. Down to Earth., 1995, 50: 1-7
    253.Robson S K, Lesniak M G, Kothandapani R V, Traniello J F A, Thorne B L. Nonrandom search geometry in subterranean termites. Naturwissenschaften, 1995, 82: 526-528
    254.Rojas M G, Morales-Ramos J A. Bait matrix for delivery of chitin synthesis inhibitors to the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol, 2001, 94: 506-510
    255.Rojas M G, Morales-Ramos J A. Field evaluation of nutritionally-based bait matrix against subterranean termites (Isoptera: Rhinotermitidae). Sociobiology, 2003, 41: 81-90
    256.Rosengaus R B, Lefebvre M L, Traniello J F A. Inhibition of fungal conidial germination by Nasutitermes: evidence for a possible antiseptic role of soldier defensive secretions.J. Chem. Ecol, 2000, 26: 21-39
    257.Rudolph D, Glocke B, Rathenow S. On the role of different humidity parameters for the survival, distribution and ecology of various termite species. Sociobiology, 1990, 17:129-140
    
    
    258.Rust M K, Haagsma K, Nyugen J. Enhancing foraging of western subterranean termites (Isoptera: Rhinotermitidae) in arid environments. Sociobiology, 1996, 28: 275-286
    259.Rust M K, Smith J L. Toxicity and repellency of components in formulated termiticides against western subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol, 1993, 86: 1131-1135
    260.SAS Institute, Inc., 1999-2000. SAS user's guide, version 8.1. SAS Institute, Cary, North Carolina
    261.Scheffrahn R H, Robbins W P, Busey P, Su N Y, Mueller R K. Evaluation of a novel, hand-held, acoustic emission detector to monitor termites (Isoptera: Kalotermitidae, Rhinotermitidae) in wood. 7. Econ. EntomoL, 1993, 86: 1720-1729
    262.Shelton TG, Bell C D, Wagner T L. Lack of transfer of Permethrin among nestmates of Reticulitermes flavipes in laboratory trials (Isoptera: Rhinotermitidae). Sociobiology, 2005, 45: 69-75
    263.Shelton T G, Grace J K. Effects of Exposure Duration on Transfer of Nonrepellent Termiticides Among Workers of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae).J. Econ. EntomoL, 2003, 96: 456-460
    264.Slaytor M. Cellulose digestion in termites and cockroaches: What role do symbionts play? Comp. Biochem. Physiol., 1992,103B : 775-784
    
    265.Smith J L, Rust M K. Cellulose and clay in sand affect termiticide treatments. J. Econ. EntomoL, 1993, 86: 53-60
    266.Smith J L, Rust M K. Temperature preferences of the western subterranean termite, Reticulitermes hesperus Banks.J. Arid. Environ., 1994, 28: 313-323
    267.Smythe R V, Coppel H C. The susceptibility of Reticulitermes flavipes (Kollar) and other termite species to an experimental preparation of Bacillus thuringiensis Berliner. J. Invertebr. Pathol., 1965, 7: 423-426
    268.Spragg W T, Paton R. Tracing, trophallaxis and population measurement of colonies of subterranean termites (Isoptera) using a radioactive tracer. Ann. EntomoL Soc. Am., 1980, 73: 708-714
    
    269.SPSS Inc., 1989-2002. SPSS for Windows, Chicago, IL
    270.Sobotnik J, Weyda F. Ultrastructural ontogeny of the labial gland apparatus in termite Prorhinotermes simplex (Isoptera, Rhinotermitidae). Arthropod Structure & Development, 2003, 31 : 255-270
    
    271.Stansly P A, Su N Y, Conner J M. Management of subterranean termites, Reticulitermes spp. (Isoptera: Rhinotermitidae ) in a citrus orchard with hexaflumuron bait. Crop Protection, 2001, 20 : 199-206
    
    272.Staples J A, Milner R J. A laboratory evaluation of the repellency of Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera, Rhinotermitidae). Sociobiology, 2000, 36: 133-148
    273.Stevens M F, Ebell G F, Psailasavona P. Organochlorine pesticides in Western Australian nursing mothers. Med. J. Australia., 1993,158: 238-241
    274.Stimmann M W. Marking insects with rubidium: Imported cabbageworm marked in the field. Environ. Entomol, 191 A, 3: 327-329
    275.Strack B H, Myles T G. Behavioral responses of the eastern subterranean termite to falling temperatures (Isoptera: Rhinotermitidae). Proc. Entomol. Soc. Ont, 1997,128: 13-17
    276.Stuart A M. Mechanism of trail-laying in two species of termite. Nature, 1961, 189: 419-421
    277.Su N Y, Ban P M, Scheffrahn R H. Foraging populations and territories of the eastern subterranean termite (Isoptera: Rhinotermitidae) in southeastern Florida. Environ. Entomol, 1993,22: 1113-1117
    278.Su N Y. Field evaluation of hexaflumuron bait for population suppression of subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol, 1994, 87: 389-397
    279.Su N Y. Novel technologies for subterranean termite control. Sociobiology, 2002, 40: 95-101
    280.Su N Y, Puche H. Tunneling activity of subterranean termites (Isoptera: Rhinotermitidae) in sand with moisture gradients.J. Econ. Entomol, 2003, 96: 88-93
    
    281.Su N Y. Response of the Formosan subterranean termites (Isoptera: Rhinotermitidae) to baits or nonrepellent termiticides in extended foraging arenas. J. Econ. Entomol, 2005, 98:2143-2152
    282.Su N Y, Scheffrahn R H. A review of the evaluation criteria for bait-toxicant efficacy against field colonies of subterranean termites (Isoptera). Sociobiology, 1996, 28: 521-530
    283.Su N Y, Scheffrahn R H. A review of subterranean termite control practices and prospects for integrated pest management programmes. Integrated Pest Management Reviews, 1998, 3: 1-13
    284.Su N Y, Scheffrahn R H. Comparison of eleven soil termiticides against the Formosan subterranean termite and the eastern subterranean termite (Isoptera: Rhinotermitidae)..J. Econ. Entomol, 1990, 83: 1918-1924
    285.Su N Y, Scheffrahn R H. Laboratory evaluation of two slow-acting toxicants against Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). J. Econ. EntomoL, 1991, 84: 170-175
    286.Su N Y, Scheffrahn R H. Laboratory evaluation of two chitin synthesis inhibitors, hexaflumuron and diflubenzuron, as bait toxicants against the Formosan subterranean termite and eastern subterranean termite (Isoptera: Rhinotermitidae). J. Econ. EntomoL, 1993, 86: 1453-1457
    
    287.Su N Y, Scheffrahn R H. Penetration of sized-particle barriers by field populations of subterranean termites (Isoptera: Rhinotermitidae). J. Econ. EntomoL, 1992, 85: 2275-2278
    288.Su N Y, Scheffrahn R H. Toxicity and lethal time of N-ethyl perfluorooctane sulfonamide against two subterranean termite species (Isoptera: Rhinotermitidae). Florida EntomoL, 1988, 71: 73-78
    289.Su N Y, Stith B M, Puche H, Bardunias P. Characterization of tunneling geometry of subterranean termites (Isoptera: Rhinotermitidae). Sociobiology, 2004, 44: 471-483
    290.Su N -Y, Tamashiro M, Yates J R, Haverty M I. Effect of behavior on the evaluation of insecticides for prevention of or remedial control of the Formosan subterranean termite. J. Econ. EntomoL, 1982, 75:188-193
    291.Su N Y, Thomas E M, Ban P M, Scheffrahn R H. Monitoring baiting stations to detect and eliminate foraging populations of subterranean termites (Isoptera, Rhinotermitidae) near structures.J. Econ. Entomol., 1995, 88: 932-936
    292.Swoboda L E. Environmental influences on subterranean termite foraging behavior and bait acceptance. (Ph D dissertation). Virginia: Virginia Polytechnic Institute and State University, 2004
    293.Swoboda L E, Miller D M, Fell R J, Mullins D E. The effect of nutrient compounds (sugars and amino acids) on bait consumption by Reticulitermes spp. (Isoptera: Rhinotermitidae). Sociobiology, 2004, 44: 547-563
    294.Swoboda L E, Miller D M. Laboratory evaluation of subterranean termite (Isoptera: Rhinotermitidae) response to "thermal shadows" in an environment of homogenous temperature. Sociobiology, 2005, 45: 811-828
    295 .Terra W R. Physiology and biochemistry of insect digestion: an evolutionary perspective. Braz. J. Med. Biol. Res., 1988, 21 : 675-734
    
    296.Tokuda G, Watanabe H, Matsumoto T, Noda H. Cellulose digestion in the woodeating higher termite, Nasutitermes takasagoensis (Shiraki): Distribution of cellulases and properties of endo-β-1,4-glucanase. Zool. Sci., 1997,14 : 83-93
    
    297.Tokoro M, Takahashi M, Ymaoka R. Identification of trail pheromone precursors from subterranean termite, Coptotermes formsanus Shiraki (Isoptera: Rhinotermiidae). J. Chem. Ecol., 1992,18: 517-526
    298.Tucker C L, Koehler P G, Oi F M. Influence of soil compaction on tunnel network construction by the eastern subterranean termite (Isoptera: Rhinotermitidae). J. Econ Entomol., 2004,97: 89-94
    299.Tucker C L, Koehler P G, Oi F M. Tunnel formation by different numbers of eastern subterranean termites (Isoptera: Rhinotermitidae) in laboratory arenas. Sociobiology, 2005, 45: 731-744
    300.Van Steenwyk R A. The uses of elemental marking for insect dispersal and mating competitiveness studies: From the laboratory to the field. Southwest Entomol. Suppl., 1991,14:15-23
    
    
    301.Veivers P C, Muhlemann R, Slaytor M, Leuthold R H, Bignell D E. Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M tnichaelseni Sjodtedt. J. Insect Physiol, 1991, 37 : 675-682
    
    
    302.Verkerk R H J, Bravery A F. The UK termite eradication programme: justification and implementation. Sociobiology, 2001, 37: 351-360
    303.Wagner T, Mulrooney J, Peterson C, Shelton T. Reduced risk products steal spotlight. Pest Control. 2003. 71
    304.Waller D A, Curtis A D. Effects of sugar-treated foods on preference and nitrogen fixation in Reticulitermes flavipes (Kollar) and Reticulitermes virginicus (Banks) (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am., 2003, 96: 81-85
    305 .Wang C L, Powell J E. Cellulose bait improves the effectiveness of Metarhizium anisopliae as a microbial control of termites (Isoptera: Rhinotermitidae). Biological Control, 2004, 30: 523-529
    306.Watanabe T, Casida J E. Response of R. flavipes to fractions from fungus-infected wood and synthesis chemicals. J. Econ. Entomol, 1963, 56: 300-307
    307.Watson J A L, Hewitt P H, Nel J J C. The water sacs of Hodotermes mossambicus. J. Insect Physiol, 1971,17 : 1705-1709
    
    308.Whitford G G. Effects of habitat characteristics on the abundance and activity of subterranean tennites in arid southeastern New Mexico (Isoptera). Sociobiology, 1999, 34: 493-504
    309.Wobst B, Farine J P, Ginies C, Semon E, Robert A, Connetable S, Bordereau C, (Z , Z , E)-3, 6, 8-ddecadientrien-ol, a major component of trail-following pheromone in two sympatric termite species R. lucifugus grassei and R. santonensis. J. Chem. Ecol, 1999, 25:1305-1318
    310. Wood T G. Termites and the soil environment. Biology and Fertility of Soils, 1988, 6: 228-236
    311.Wright M S, Lax A R, Henderson G, Chen J. Growth response of Metarhizium anisopliae to two Formosan subterranean termite nest volatiles, naphthalene and fenchone. Mycologia, 2000, 92: 42-45
    312. Wright M S, Raina A K, Lax A R. A Strain of the Fungus Metarhizium anisopliae for controlling subterranean tennites. J. Econ. Entomol, 2005,98:1451-1458
    313.Wu H J, Wang Z N, Ou C F, Tsai R S, Chow Y S. Susceptibility of two Formosan termites to the entomogenous nematode, Steinernema feltiae Filipjev. Bull Inst. Zool. Academia Sinica, 1991, 30: 31-39
    314.Yang T C, Mo J C, Cheng J A. Purification and some properties of cellulose from Odontotermes formosanus (Isoptera: Termitidae). Entomologia Sinica, 2004,11:1-10
    315.Yendol W G, Paschke J D. Pathology of an entomophthora infection in the eastern subterranean termite, Reticulitermes flavipes (Kollar). J. Invertebr. Pathol. , 1965, 7: 414-422
    316.Yudina T G. Comparison of antibacterial activity of the parasporal bodies from various bacilli. J. A. N. Bio., 1996, 5: 535-541

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700