气凝胶型木材的制备及环境学特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气凝胶结构具有一定的轻质特性和特殊的声、光、热学性质,如若能和木质材料的建筑物理以及环境学特性结合起来,无疑能创新其使用功能和使用范围。本文基于气凝胶的结构特征,结合轻质木材的天然构造特性,提出基于木材主要成份并仿木材细胞构造而生的气凝胶型材料(简称“气凝胶型木材”)制备思想,并力图充分发掘其环境学特性,尝试推出一种具有新的环境学性质和特殊功能效果的木质基材料。
     选用天然轻质木材(山黄麻Trema orientalis)的加工剩余物作为纤维素原料,对其用离子液体溶解处理后,再经超临界干燥过程得到气凝胶型木材。论文首先对这种新型材料的微观结构、化学组分结构、晶型、密度等物理性质进行了表征和分析,既而又重点从视觉、触觉、声学、环境稳定性角度分析了它的环境学特性。主要包括从视觉物理、视觉心理、视觉生理等方面分析视觉环境学特性,从触觉粗糙度、接触摩擦性、导热性质、软硬性质、滑动性能和步行感等方面评价触觉环境学特性,从吸声降噪特性角度分析了其构建新型气凝胶型木质吸声板的效果及应用前景,从表面复合无机纳米晶相以获得超疏水效果的角度来分析改善其环境稳定性和获得自洁性表面的技术方案。
     主要结果和结论如下:
     (1)选用1-丙烯基-3-甲基咪唑离子液体和超临界干燥工艺制备得到的气凝胶型木材,溶解后重新形成的纤维素纤维束作为支撑骨架构成了不闭合的三维交联网络,具有与轻质木材相近的微观结构以及稳定的化学、物理性质,绝干密度为0.221g/cm3,孔隙率超过87%。
     (2)气凝胶型木材的明度值L*分布在80.22~84.16之间,饱和度C*值分布在15.90~20.19之间,米制红绿轴色品指数a*在3.51~5.18之间,米制黄蓝轴色品指数b*在15.51~19.64之间,光泽度值仅为4.1%。采用气凝胶型木材装饰室内空间可以呈现“自然”、“舒适”、“素雅”和“明快”的视觉心理印象。视觉生理方面对人眼的刺激作用较小,不会引起视觉疲劳、烦躁和不舒服。
     (3)气凝胶型木材的导热系数值为0.054W/(m·K),导温系数为444×10-10m2/s,可以作为保温隔热材料使用;气凝胶型木材内部腔室的最大直径为364gm,平均直径为285.5μm,表面粗糙度的轮廓算术平均偏差(的Ra)测试值为12.06μm,接触时的心率变异、动态血压等生理指标变化幅度较小,与云杉木材相近或略低,给人以适宜的刺激,可应用于室内与人体密切接触的部位。
     (4)气凝胶型木材地板上行走时的步态动力学分析结果表明,气凝胶型木材显示出与天然木材的相似性,网络结构对人体踩踏具有很强的支撑作用,并具有一定的弹性作用,能够吸收冲击缓解膝盖疲劳,静摩擦系数与动摩擦系数之差几乎为零,对人体造成的生理负荷较小。
     (5)气凝胶型木材的驻波管法平均吸声率为43.50%,在中高频1000Hz和2000Hz的吸声系数分别为82.7%和71.2%,属于良好的吸声降噪特性。以气凝胶型木材为芯层构成木质吸音板后,平均吸声率提高到57.6%,降噪系数为0.64,可达到Ⅱ级降噪吸音板的要求。
     (6)通过低温水热结晶工艺,在气凝胶型木材表面原位复合YiO2纳米晶层之后,对气凝胶型木材进行接触角测试、霉菌抑制分析、甲醛释放量测试。结果表明,这种处理赋予了气凝胶型木材良好的表面自清洁性、环境稳定性、耐久性,并具有对空气有机污染物的净化作用。
     综合而言,本研究所制备的气凝胶型木材具有与天然木材相近或更优的室内微环境学特性,应用于特定场合能够为人们提供更优的室内环境质量。同时,这种绿色化学加工得到的新型木质基材料可以将树木生长吸存的碳继续固定和储存,在低碳、环保方面也具有一定的意义。
Aerogel has a light structure and with special sound, particularly optical and thermal properties. If the special structure with functional properties can be applied to wood material with architecturally physical and environmental characteristics, there will be no doubt to create new functions for wood materials and develop their practice range. Thus, this article proposes a novel idea of targeting wood-based material with new environmental characteristics and special functions by imitating wood cell structure with wood main components to create aerogel-based materials ("Aerogel type wood" for short).
     This research used residues of natural light wood (Trema orientalis) as cellulose material, and dissolved them by ionic liquid, followed by supercritical drying process to prepare aerogel-type wood. The physical properties of the novel material including micro structure, chemical components structure, crystalline form and density were first characterized and tested, and then its environmental characteristics were further analyzed from angles of vision, tactile, phonics and environmental stability. These researches mainly involved the following four points: analysis of the visual environment characteristics on the basis of visual physics, visual psychology, and visual physiology; evaluation of the tactile environment characteristics from tactile roughness, contact friction, thermal properties, hard and soft nature, sliding properties and walking sense; analysis of the effect and prospect of the new formed aerogel-based wooden acoustic panels from angles of sound absorption and noise reduction; analysis of technical ways by which to improve its environmental stability and self-cleaning surfaces from angles of studying surface inorganic nanocrystalline forms to obtain superhydrophobic effect.
     The main research results and conclusions are as follows:
     (1) First, the aerogel-type wood is prepared under crafts of dissolution of wood materials by 1-propenyl-3-methylimidazolium ionic liquid and followed supercritical drying process. And then, cellulose fibers as supporting frame with incomplete three-dimensional cross-linked network are reformed after dissolution of aerogel-based timber. The reformed cellulose fibers possess microstructure that similar with light wood, stable chemical and physical properties, dry density of 0.221 g/cm3 and porosity over 87%.
     (2) The lightness L* of aerogel-type wood is between 80.22-84.16, and the color saturation C* is between 15.90-20.19, and the color commodity index of metric red-green axis a* is between 3.51~5.18, and the he color commodity index of metric yellow-blue axis b* is between 15.51~19.64, and the gloss value is only 4.1%. The interior decoration from aerogel-based timber shows visual and psychological impression of "nature", "comfort", "elegance" and "brightness". And in visual physiology, the stimulation of aerogel-type wood on human eye is small without causing visual fatigue, irritability and discomfort.
     (3) The thermal conductivity of aerogel-type wood is 0.054W/(m·K), and its thermal diffusivity is 444×10-10m2/s, indicating aerogel-type wood capable of being used as thermo-protective and heat-resistant material. The maximum diameter of the internal chamber of aerogel-based timber is 364μm, with mean diameter of 285.5p.m. The contours arithmetic mean deviation (Ra) of the surface roughness is 12.06μm. And the physiological index such as touching heart rate variability, ambulatory blood pressure shows relatively smooth change, and is similar with that of spruce wood, which provides appropriate stimulation for people, capable of being used indoors closely contacting with body parts.
     (4) The analysis results of the gait dynamics for people walking on the aerogel-type wood show that there is similarity for the value between aerogel-based timber and natural timber. The network structure shows strong supporting function for human body's trample, and also a degree of flexibility, capable of easing knees and absorbing the impact of fatigue. The difference value between static friction coefficient and dynamic friction coefficient is almost zero, which rarely results in physiological load on human body.
     (5) The mean absorption rate tested by standing wave tube method for the aerogel-type wood is 43.50%. And the sound absorption coefficient respectively reaches 82.7%in medium frequency of 1000Hz and 71.2% in high frequency of 2000Hz, showing favorable characteristics of sound absorption and noise reduction. The mean absorption rate of aerogel-based timber after being made into wooden sound-absorbing panels as core layer is increased to 57.6%, and the noise reduction coefficient reaches 0.64, achieved gradeⅡboard requirements.
     (6) The surface of the aerogel-based timber was in-situ covered by TiO2 nanocrystalline layer through hydrothermal crystallization process under lower temperature. And the contact angle, inhibition of mold and formaldehyde emission for the TiO2 modified aerogel-based timber were also tested and analyzed. The results indicate that this treatment endows the aerogel-type wood with good surface self-cleaning, environmental stability, durability, and a degree of air purification for organic pollutants.
     In conclusion, the aerogel-type wood prepared in this research possesses similar or even better indoor micro environmental characteristics, compared to natural wood. And it can provide even better indoor environments for people when it is applied in special situations. Additionally, the novel wood-based material achieved by green chemical treatment can continue to fix and store carbon absorbed during the growth stage of trees, and will also play a certain significance in areas of low-carbon and environmental protection.
引文
[1]GVDardel et al. European Patent Specification 0018955131,1982
    [2]J. Gross et al. Proceedings of the 2nd Internationals Symposium on Aerogels, 1989:185-190
    [3]Straweridge I, James P. Thin silica film Prepared by dip coating. J.Non-Cryst.Solids.1986, 82:366-372
    [4]Guglielmi M, Zenezini S. The thickness of Sol-gel silica coatings obtained by dipping, J.Non-Cryst. Solids,1990,121:303-309
    [5]Medonagh C. Characterization of Sol-gel derived silica films, J. Noll-Cryst. Solids. 1996,194:72-77
    [6]李坚,邱坚等著.气凝胶型木材的形成与分析.北京:科学出版社,2010:3-5
    [7]Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R E. Science,1998,279: 717-720
    [8]熊键,叶君,梁文芷,彭纪南.绿色革命中纤维素科学的战略地位.大自然探索,1998,17(2):14-17
    [9]Przemyslaw Kubisa. Progress in Polymer Science,2009,34:1333-1347
    [10]Swatloski R P, Spear S K, Holbrey J D, Roger R D. J. Am. Chem. Soc.,2002,124:4974-4975
    [11]Zhu S D, Wu Y X, Chen Q M, Yu Z N, Wang C W, Jin S W, Ding Y G, Wu G. Green. Chem.,2006,8:325-327
    [12]ElSeoud O A, Koschella A, Fidale L C, Dorn S, Heinze T., Biomacromolecules,2007,8: 2629-2647
    [13]胡雪生,余江,夏寒松,等.离子液体的绿色合成及环境性质.化学通报,2005,12:906-910
    [14]Zhao H,Xia S Q,Ma P S.Use of ionic liquids as'green'solvents for extractions.Journal of Chemical Technology and Biotechnology,2005,80:1089-1096
    [15]Selvakumar K,Zapf A,Beller M.New Palladium Carbene Catalysts for the Heck Reaction of Aryl Chlorides in Ionic Liquids.Organic letters,2002,4(18):3031-3033
    [16]Jain N,Kumar A,Chauhan S and Chauhan S M S.Chemical and biochemical transformations in ionic liquids.Tetrahedron,2005,61:1015-1060
    [17]Kubisa P.Application of Ionic Liquids as Solvents for Polymerization Processes.Progress in Polymer Science,2004,29(1):3-12
    [18]Weuster-Botz D,Process intensification of whole-cell biocatalysis with ionic liquids.Chemical Record,2007,7(6):334-340
    [19]Kragl U,Eckstein M,Kaftzik N.Enzyme catalysis in ionic liquids.Current Opinion in Biotechnology,2002,13:565-571
    [20]Sheldon R A,Lau R M,Sorgedrager M J,Rantwijk F and Seddon K R.Biocatalysis in Ionic Liquids.Green Chemistry,2002,4:147-151
    [21]Nakashima K,Kubota F,Maruyama T and Goto M.Ionic Liquids as a Novel Solvent for Lanthanide Extraction Analytical Sciences.Analytical Sciences,2003,19(8):1097-1098
    [22]Visser A E,Swatloski R P,Griffin S T,Hartman D H,Rogers R D.Liquid-liquid extraction of metal ions in room-temperature ionic liquids. Separation Science and Technology,2001,36(5-6):785-804
    [23]Zein El-Abedin S,Endres F.Electrodeposition of Metals and Semiconductors in Air-and Water-Stable Ionic Liquids.Chemphyschem,2006,7(1):58-61
    [24]Lu X B, Hu J Q,Yao X,Wang Z P, Li J H.Composite System Based on Chitosan and Room-Temperature Ionic Liquid:Direct Electrochemistry and Electrocatalysis of Hemoglobin. Biomacromolecules,2006,7(3):975-980
    [25]Swatloski R P,Spear S K,Holbrey J D,et al.Dissolution of cellulose with ionic liquids.Journal of the American Chemical Society,2002,124(18):4974-4795
    [26]Cuissinat C,Navard P,Heinze T.Swelling and dissolution of cellulose.Part IV:Free floating cotton and wood fibres in ionic liquids.Carbohydrate Polymers,2008,72:590-596
    [27]王久模,覃永黔.NR基高吸水材料的研究、应用及现状.弹性体,2004,14(6):74-78
    [28]刘建树,邹黎明.国外可生物降解高吸水材料的研究状况.合成技术及应用,2001,16(4):27-29
    [29]单军,刘占军.辐射合成PAM水凝胶吸附水状态研究.高分子材料科学与工程,1997,13(2):35-38
    [30]Swatloski R P,Spear S K,Holbrey J D,et al.Dissolution of cellulose with ionic liquids.Journal of the American Chemical Society,2002,124(18):4974-4795
    [31]郭明,虞哲良.咪唑类离子液体对微晶纤维素溶解性能的初步研究.生物质化学工程,2006,40(6):9-12
    [32]Zhang H,Wu J,Zhang J,He J S.1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose.Macromolecules,2005,38(20):8272-8277
    [33]罗慧谋,李毅群,周长忍.功能化离子液体对纤维素的溶解性能研究.高分子材料科学与工程,2005,21(2):233-235
    [34]Hardacre C,Holbrey J D,Katdare S P,Seddon K R.Alternating copolymerisation of styrene and carbon monoxide in ionic liquids.Green Chemistry,2002,4(2):143-146
    [35]Hardacre C,Holbrey J D,Katdare S P,Seddon K R.Alternating copolymerisation of styrene and carbon monoxide in ionic liquids.Green Chemistry,2002,4(2):143-146
    [36]Zhang J W,Hong K L,Mays J W.Synthesis of block copolymers of styrene and methyl methacrylate by conventional free radical polymerization in room temperature ionic liquids Macromolecules,2002,35(15):5738-5741
    [37]郭立颖.咪唑离子液体的合成、对纤维素、木粉的溶解性能和在高分子中的应用.合肥工业大学.博士学位论文.2009:20-24
    [38]王珏,周斌,等.硅气凝胶材料的研究进展.功能材料,1995,26(1):15-19
    [39]王宝和,于才渊,等.纳米多孔材料的超临界干燥新技术.化学工程,2005,33(2)13-17
    [40]N. Broman. Attitudes toward scots pine wood surfaces:a multivariate approach. Mokuzai Gakkaishi,1995,41(11):994-1005
    [41]N. Broman. Two methods for measuring people's preferences for scots pine wood surfaces: a comparative multivariate analysis. Mokuzai Gakkaishi,1996,42(2):130-139
    [42]Y. Tsunetsugu, Y. Miyazaki. Measurement of absolute hemoglobin concentrations of prefrontal region by near-infrared time resolved spectroscopy:examples of experiments and prospects. Journal of physiological anthropology and applied human science,2005, 24(4):469-472
    [43]高桥徹,铃木正治,中尾哲也编.木材科学讲座5—环境.日本大津:海青社,1995
    [44]刘一星,李坚,徐子才等.我国110个树种木材表面视觉物理量的综合统计分析.林业科学,1995,31(4):353-359
    [45]刘一星,李坚,王金满等.木材材色与森林地理分布的关系.东北林业大学学报,1993,21(4):41-46
    [46]伏谷贤美.木材の物理.日本东京:文永堂出版株式会社,1991
    [47]徐科峰主编.建筑环境学.北京:机械工业出版社,2003
    [48]刘一星,王金满,李坚等.木材表面粗糙度对材色的影响Journal of forestry research, 1995,6(1):66-70
    [50]J. Ito, M. Nakamura, M. Masuda. The influence of colors on the psychological image of the wooden interior:Application of the image analysis in consideration of the accent color. Journal of the Society of Materials Science,2006,55(4):373-377
    [51]#12
    [53]于海鹏,刘一星,刘镇波.2003.应用心理生理学方法研究木质环境对人体的影响.东北林业大学学报,31(6):70-72
    [54]刘一星著.木材视觉环境学.哈尔滨:东北林业大学出版社,1994
    [55]刘一星,李坚,郭明辉等.中国110树种木材表面视觉物理量的分布特征.东北林业大学学报,1995,23(1):52-57
    [56]刘一星,李坚,徐子才等.我国110个树种木材表面视觉物理量的综合统计分析.林业科学,1995,31(4):353-359
    [57]刘一星,李坚,王矛棣.木材表面视觉环境学特性分析(Ⅰ)—木材表面视觉物理量与视觉心理量的关系.木材工业,1995,9(2):14-17
    [58]李坚,刘一星,方桂珍.木材表面视觉环境学特性分析(Ⅱ)—视觉心理量的解析.木材工业,1995,9(3):20-23
    [59]段新芳 李坚,刘一星等.PU漆阔叶树材透明涂饰过程中色度学特征的变化.四川农业大学学报,1998,16(1):79-84
    [60]段新芳,常德龙.木材颜色调控技术.北京:中国林业出版社,2002
    [61]罗金洪,曹金珍,赵广杰.木质室内装饰材料对环境湿度的调节功能Ⅰ.林业科学,1998,34(5):103-111
    [62]曹金珍,赵广杰,罗金洪.木质室内装饰材料的环境湿度的调节功能Ⅱ.林业科学,1999,35(5):87-93
    [63]曹金珍,赵广杰.木质室内装饰材料的环境湿度的调节功能Ⅲ.林业科学,2000,36(4):55-58
    [64]王明枝,王洁瑛,李黎.木材表面粗糙度的分析.北京林业大学学报,2005,27(1):14-18
    [65]董君伟,于海鹏,刘一星.木材纹理物理量的分析与定义.中国林学会木材科学分会第十次学术研讨会.南宁:广西大学,2005.12
    [66]于海鹏,刘一星,刘镇波.木材纹理定量化算法探究.福建林学院学报2005,25(2):157-162
    [67]于海鹏,刘一星,张斌等.应用空间灰度共生矩阵定量分析木材表面纹理特征.林业科学,2004,40(6):121-129
    [68]于海鹏,刘一星,孙建平.基于小波的木材纹理分频信息提取与分析.林业科学,2005,41(2):100-105
    [69]Yu Haipeng, Liu Yixing, Liu Zhenbo. Auto detection of wood texture orientation by Radon transform. Journal of Forestry Research,2005,16(1):1-4
    [70]于海鹏,刘一星,刘镇波,张显权.基于改进的视觉物理量预测木材的环境学品质.东北林业大学学报,2004,32(6):39-41
    [71]陈瑞英.十种主要用材吸声性能的实验研究.福建林学院学报,1994,14(4):306-310
    [72]周晓燕,华毓坤.定向结构刨花板的吸声性能研究.林产工业,2000,27(3):27-28
    [73]周晓燕,李键,田海富.轻质麦秸板吸声性能的测定.林业科技开发,2001,15(6):23-24
    [74]蒋冬青,王仕.营造安静、舒适、文明的声环境——浅谈吸声材料的类型及应用.房材与应用,2005,33(3):34-36
    [75]李坚,赵荣军.木材与环境.哈尔滨:东北林业大学出版社,2002
    [76]赵荣军,李坚,刘一星等.木材对生物体调节特性的研究(Ⅰ)冬季条件下不同内装环境对小白鼠生长的影响.东北林业大学学报.2000,28(4):72-74
    [77]赵荣军,李坚,刘一星等.木材对生物体调节特性的研究(Ⅱ)春夏季条件下不同内装环境对小鼠生长的影响.东北林业大学学报,2002,30(3):24-28
    [78]赵荣军,刘一星,李坚等.木材对生物体调节特性的研究(Ⅲ)秋季条件下不同内装环境对小鼠生长的影响.东北林业大学学报,2003,31(6):9-12
    [79]赵荣军,李坚,方桂珍等.木材抽出物对哺乳动物生长的影响.木材工业,2002,16(3):19-21
    [80]赵荣军,李坚,刘一星.木质居室环境对哺乳动物一些生理指标的影响.林业科学,2004,40(3):198-203
    [91]于海鹏,刘一星,刘镇波.应用心理生理学方法研究木质环境对人体的影响.东北林业大学学报,2003,31(6):70-72
    [92]刘一星,于海鹏,张显权.木质环境的科学评价.华中农业大学学报2003,22(5):499-504
    [93]于海鹏,刘一星,肖向红等.基于心率变异指标研究木材良好接触感的生理机制.东北林业大学学报,2005,33(1):29-31
    [94]Haipeng Yu, Yixing Liu, Xianghong Xiao. Preliminary study on the characteristics of tactility of wood by physiological index HRV, Frontiers of Forestry in China, 2006,1(3):361-366
    [95]于海鹏,刘一星,刘镇波.建筑材料导热性能对人体生理影响的研究.建筑材料学报,2007,10(4):178-184
    [96]李坚,董玉库,刘一星.木材、人类与环境.家具,1991,62(4):10-11;(6):8-10
    [97]李坚,董玉库,刘一星.木材、人类与环境(续). 家具,1992,63(1):15-17;(2):14-17;(3):13-15;(4):13-14
    [98]刘一星,于海鹏,等.木质环境学[M].科学出版社.2007,167-176
    [99]李文彬,朱守林.建筑室内与家具设计人体工程学[M].中国林业出版社,2002,55-57
    [100]杨勇,沙发色彩与人的视觉感受性[硕士学位论文].南京林业大学,2007,12-17
    [101]李坚,木材科学,高等教育出版社,[M],294-297
    [102]谢力生.居室环境与木材气味.家具与室内装饰,2001,3:13-15
    [103]Richterk, Feistwc, Knaebemt. The effect of surface roughness on the performance of finishes.Part1·Roughness characterization and stain performance, [J].ForestProductsJournal,1995,45(7/8):91-97
    [104]Lemasterl, Beallfc. The use of an optical profilometer to measure surface roughness In medium density fiberboard [J].Forest Products Journal,1996,46(11/12):73-78
    [105]Kamdemd P, Zhang J. Characterization of check sand cracks on the surface of weather redwood [C].The 31st Annual Meeting,Kona,Hawaii,USA,2000
    [106]FAUSTTD,RICEJ T. Characterizing the roughness of southern pine veneer surfaces [JJ.Forest Products Journal,1986,36(11/12):75-81
    [107]HIZIROGL US. Surface roughness analysis of wood composite:A stylus method[J].ForestProductsJournal,1996,46(7/8):67-72
    [108]Kim K H, Bang S W and Kim S R.2004. Emotion recognition system using short-term monitoring of physiological signals. Medical Biological Engineering Computing, 42:419-427
    [109]Tsunetsugu Y. Sato H and Miyazaki Y.2001. Correlation among sensory evaluation, autonomic nervous activity, and central nervous activity in visual stimulation. Journal of physiological anthropology and applied human science,20 (5):302
    [110]李坚,董玉库,刘一星.木材、人类与环境(续)[J].家具,1992(1):15-17
    [111]陈仲庚.实验临床心理学.北京:北京大学出版社,1992:23-27
    [112]Mancia G, Grassi G. Mechanisms and clinical implications of blood pressure variability. J. Cardiovase Pharmacol,2000,35(4):15-19
    [113]Kikuya M., Hozawa A., Ohokuho T., et al. Prognostic significance of blood pressure and heart rate variabilities:the ohasama study. Hypertension,2000,36(5):901-906
    [114]Xiurong Li, Yixing Liu, Haipeng Yu, and Jian Li. Evaluation of the Surface Roughness of Wood-based Environmental Materials and its Impact on Human Psychology and Physiology, Advanced Materials Research Vols.113-114 (2010):932-937
    [115]戴克戎.步态分析及其应用[J].中国骨科杂志,1991.11:207
    [116]伍勰,等.健康老年人常速行走的步态分析[J].上海体育学报,2000,5:52-55
    [117]张潇,等.人体步态的分析及在临床骨科中应用的初步探讨.第四届全国生物力学会议,1992:43
    [118]钱竞光,宋雅伟,叶强等.步行动作的生物力学原理及其步态分析.南京体育学院学报(自然科学版)2006,Vol.5(4):1-7
    [119]Pan N F.2006. Evaluation of building performance using fussy FTA. Construction Management and Economies,24(12):1241-1252
    [120]叶玲,胡兴福.2006.工业建筑方案的模糊综合评价法.四川建筑科学研究,32(2):168-171
    [121]张宗元.1991.模糊数学入门和在建筑管理中的应用.北京:中国建筑工业出版社,173-201
    [122]车文.室内木质视环境对人体心理生理影响的研究与评价.东北林业大学硕士论文.2009:66-70
    [123]霍晓君,潘彦昭,张利雯,等.加权和分析法在生态城市发展中的协调度评价[J].干旱区资源与环境,2006,20(1):140-145
    [124]Friend R. D., Kinra V K.Particle Impact Damping. Journal of Sound and Vibration, 2000(1):93-118
    [125]Swift M.J., Bris P., Horoshenkov K.V. Acoustic absorption in re-cycled rubber granulate. Applied Acoustics Volume,1999(3):203-212
    [126]刘吉轩,陈天宁,张生陛等.高分子颗粒孔隙结构材料的吸声特性研究.应用声学.1996(4):38-44
    [127]钱军民,李旭祥.聚合物—岩棉复合泡沫吸声材料研制.化工新型材料,2000(4):32-35
    [128]Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Plantar 1997 202(1):1-8.
    [129]Neinhuis C, Barthlott W. Characterization and distribution of water repellent, self-cleaning plant surfaces. Annals of Botany,1997,79(6):667-677.
    [130]Often A, Herminghaus S. How plants keep dry:A physicist's point of view. Langmuir, 2004,20(6):2405-2408.
    [131]Higgins A M, Jones R A L. Anisotropic spinodal dewetting as a route to Self-assembly of patterned surfaces. Nature,2000,404(6777):476-478.
    [132]Shirtcliffe N J, Pyatt F B, Newton M I, et al. A lichen protected by a super-hydrophobic and breathable structure. Journal of Plant Physiology.2006,163(11):1193-1197.
    [133]Gu Z Z, Wei H M, Zhang R Q, et al. Artificial silver ragwort surface. Appl Phys Lett, 2005,86(20):201-215.
    [134]Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature:binary structure and unitary structure. Plant Science,2007,172 (6):1103-1112.
    [135]Feng L, Li S, Li Y, "et al. Super-hydrophobic surfaces:from natural to artificial.Adv Mater,2002,14(24):1857-1860.
    [136]Sun Q F,Yu H P, Liu Y X, Li J, et al. Transform wood surface from hydrophilic to superhydrophobic by the controlled hydrothermal synthesis of TiO2 coating. App Sur Sci.2010:16 (256):5046-5050
    [137]Feng X, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater, 2006,18,3063-3078
    [138]Turner M B, Spear S K, Holbrey J D, Rogers R D. Biomacromolecules,2004,5:1379-1384
    [139]Turner M B, Spear S K, Holbrey J D, Daly D T, Rogers R D. Biomacromolecules,2005, 6:2497-2502
    [140]Tan S S Y, MacFarlane D R, Upfal J, Edye L A, Doherty W O S, Patti A F, Pringle J M, Scott J L. Green Chem.,2009,11:339-345
    [141]Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos D S. J. Agric. Food. Chem.,2007,55:9142-9148
    [142]Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C. Green Chem.,2008,10:965-971
    [143]Nishino T, Matsuda I, Hirao K. Macromolecules,2004,37:7683-7687
    [144]Henriksson M, Berglund L A, Isaksson P, Lindstroem T, Nishino T. Biomacromolecules, 2008,9:1579-1585
    [145]Hermanutz F, Gahr F, Uerdingen E, Meister F, Kosan B, Macromol. Symp.,2008,262: 23-27
    [146]Wong H, Pink C J, Ferreira F C, Livingston A G. Green Chem.,2006,8:373-379
    [147]Swatloski R P, Rogers R D, Holbrey J D. US 20 030 157 351,2008
    [148]Bagheri M, Todriguez H, Swatloski R P, Spear S K, Daly D T, Rogers R D. Biomacromolecules,2008,9:381-387
    [149]Heinze T, Schwikal K, Barthel S. Macromol. Biosci.,2005,5:520-525
    [150]Barthel S, Heinze T. Green Chem.,2006,8:301-306
    [151]Koehler S, Liebert T, Schoebitz M, Schaller J, Meister F, Guenther W, Heinze T. Macromol. Rapid Commun.,2007,28:2311-2317
    [152]Granstrom M, Olszewska A, Makela V, Heikkinen S, Kilpelainen I. Tetrahedron Lett., 2009,50:1744-1747
    [153]Gericke M, Liebert T, Heinze T. Macromol. Biosci.,2009,9:343-353
    [154]Pommet M, Juntaro J, Heng J Y Y, Mantalaris A, Lee A F, Wilson K, Kalinka G, Shaffer MSP, Bismarck A. Biomacromolecules,2008,9:1643-1651
    [155]Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer M S P, Bismarck A. Adv. Mater., 2008,20:3122-3126
    [156]Czaja W K, Young D J, Kawecki M, Brown R M Jr. Biomacromolecules 2007,8:1-12
    [157]Aho A J, Rekola J, Matinlinna J, Gunn J, Tirri T, Viitaniemi P, Vallittu P. J. Biomed. Mater. Res. Part B,2007,22:64-71
    [158]Wakai C, Oleinikova A, Ott M, Weigartner H. J. Phys. Chem.,2005,109:17028-17030
    [159]Singh s, Simmons B A, Vogel k p. Biotechnology and Bioengineering,2009,104:68-75
    [160]Ebner G, Schiehser S, Potthast A, Rosenau T. Tetrahedron Lett.,2008,49:7322-7324
    [161]Biedron T, Kubisa P. Macromol. Rapid Commun.,2001,22:1237-1242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700