新型保温被的研制与应用效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日光温室热量总损失的70%以上是通过前屋面散失的。目前,日光温室外覆盖保温材料有草苫等传统材料和保温被,但存在质量不均、防水性差、污染薄膜或价格过高不易推广等问题。所以开发性能良好,价格低廉的新型保温被仍有必要。
     选择多种材料,制作保温被,通过室内试验测试其性能,根据其结果再制作保温被,采用室外试验检验其保温性。在室内试验中,首先选择毛毡、喷胶棉、粗羊毛和PE发泡材料作保温芯材,牛津布和单面涂层防雨布作面料,还准备了铝箔反射材料,制作了6种保温被。采用静态热箱法,以草帘和2 kg/m2的毛毡保温被作为对照,测试了6种保温被的保温性;采用重量法,土工布综合强力机和人工热风老化法测试了前3种保温被的防水性,机械强度和耐老化性。结果表明:
     (1)采用“外层材料+塑料薄膜+芯材+内层材料”结构的1号和3号保温被吸水率为3.88%和6.75%,较2号保温被吸水率17.66%小,此结构具有良好的防水性。
     (2)1号、2号和3号保温被的机械强度分别为324.8、216.4和172.7 N/cm,保温被的强度取决于内外层(防护层)材料的强度特性,牛津布和单面涂层防雨布具有较高的强度。
     (3)人工老化后3种保温被的强度依次降低10.2%、7.0%和11.3%,牛津布和单面涂层防雨布具有良好的耐老化性。
     (4)在21和37W热源功率下,两层喷胶棉制作的保温被的传热系数为3.10和3.26 W/(m2·K),较草帘(3.52和3.61 W/(m2·K))和对照保温被(3.22和3.28 W/(m2·K))小,600 g/m2羊毛制作的保温被为3.42和3.49 W/(m2·K),也小于草帘(3.69和3.60 W/(m2·K))和对照保温被(3.64和3.53 W/(m2·K)),采用400 g/m2喷胶棉或600 g/m2以上羊毛制作保温被,其保温性超过草帘和对照保温被。
     选用牛津布作内外层材料,采用“外层材料+塑料薄膜+芯材+内层材料”结构制作了含600 g/m2羊毛的羊毛保温被和含400 g/m2羊毛夹层的毛毡羊毛保温被,通过室外小拱棚试验,以1 kg/m2和2 kg/m2的毛毡保温被作为对照,测试了其保温性。结果表明:
     (1)羊毛保温被覆盖的小拱棚的平均棚内气温为23.1℃、平均土温为27.7℃,通过羊毛保温被的平均热流为-11.53 W/m2,其平均传热系数为1.45 W/(m2·K),1 kg/m2毛毡保温被覆盖的平均棚内气温为22.4℃、平均土温为27.6℃,通过此保温被的平均热流为-15.91 W/m2,其平均传热系数为2.43 W/(m2·K),羊毛保温被的保温性优于1 kg/m2的毛毡保温被。
     (2)毛毡羊毛保温被覆盖的小拱棚的平均棚内气温为24.3℃、平均土温为27.6℃,其平均传热系数为1.35 W/(m2·K);2 kg/m2毛毡保温被覆盖的平均棚内气温为23.9℃、平均土温为27.5℃,其平均传热系数为1.39 W/(m2·K),毛毡羊毛保温被的保温性超过2 kg/m2的毛毡保温被。
     成本分析表明,羊毛保温被为11.7元/m2,毛毡羊毛保温被为14.3元/m2,分别比1 kg/m2毛毡保温被12.2元/m2和2 kg/m2毛毡保温被16元/m2低,羊毛芯保温被可替代现有的毛毡保温被。
The heat loss through the front roof accounts for mort than 70% of the total heat loss of sunlight greenhouse. At present, outside covering materials for heat preservation of sunlight greenhouse include traditional materials, such as straws, and heat preservation quilts. But there are problems of quality unevenness, poor waterproof and pollution to the film, or high price and difficulty in popularization. So the research and development of novel heat preservation quilts (HPQ) of good performance and low cost becomes a necessity.
     In this study, various materials were selected to make HPQs, and their performances were tested in laboratory. After getting the test results in laboratory, HPQs were remade and their heat preservation performance was tested by field experiment. In the lab test, six HPQs were made, adopting felt, spray-bonded unwoven fabric, coarse wool and Puffed PE as thermal insulation materials, using oxford and waterproof cloth with coat as covering materials, and using aluminum foil as reflecting material. The heat preservation of six HPQs was tested with static hot-box experiment to compare with that of straws and felt quilt with a flat density of 2kg/m2. The waterproof, mechanical strength and resistance to aging of the first three HPQs were tested with weighing method, strength tester and artificial aging. The results were listed as following:
     (1) HPQ 1 and HPQ 3 whose structure was“outside material + plastic film + core + inside material”showed a better waterproof with water absorption of 3.88% and 6.75%, less than that of HPQ 2, 17.66%. The structure had a perfect property of waterproof.
     (2) The mechanical strength of HPQ 1, HPQ 2 and HPQ 3 was 324.8, 216.4 and 172.7 N/cm, respectively. The mechanical strength of HPQ depended on the mechanical property of its inside and outside materials (defending layer). Oxford and waterproof cloth with coat had good performance in mechanical strength.
     (3) The mechanical strength of the first three HPQs declined by 10.2%, 7.0% and 11.3% in turn after the artificial aging. Oxford and waterproof cloth had nicer resistance to aging.
     (4) The heat-transfer coefficients of the HPQ made of spray-bonded unwoven fabric with a flat density of 400 g/m2 were 3.10 and 3.26 W/(m2·K), less than those of straws (3.52 and 3.61 W/(m2·K)) and those of contrasting HPQ (3.22 and 3.28 W/(m2·K)), under the heating power of 21 and 37 W. The heat-transfer coefficients of the HPQ made of wool with a flat density of 600 g/m2 were 3.42 and 3.49 W/(m2·K), also less than those of straws (3.69 and 3.60 W/(m2·K)) and those of contrasting HPQ (3.64 and 3.53 W/(m2·K)). The HPQ made of spray-bonded unwoven fabric with a flat density of 400 g/m2 or wool with a flat density of 600 g/m2 exceeded straws and the contrasting HPQ in heat preservation.
     Choosing oxford as inside and outside materials and adopting the structure of“outside material + plastic film + core + inside material”, wool HPQ including wool with a flat density of 600 g/m2 and felt wool HPQ including wool interlayer with a flat density of 600 g/m2 were made. Their heat preservation was tested by field small arch greenhouse experiment, compared with felt HPQ with a flat density of 1 kg/m2 and felt HPQ with a flat density of 2 kg/m2, and following results were obtained:
     (1) The small arch greenhouses covered with the wool HPQ got an average air temperature of 23.1℃and an average soil temperature of 27.7℃, and average heat flow through the wool HPQ was -11.53 W/m2 while its average heat-transfer coefficient was 1.45 W/(m2·K). The ones covered with the felt HPQ with a flat density of 1kg/m2 got the air temperature of 22.4℃and the soil temperature of 27.6℃, and the heat flow through the HPQ was -15.91 W/m2 while its heat-transfer coefficient was 2.43 W/(m2·K). The wool HPQ had a better heat preservation than the felt HPQ with a flat density of 1 kg/m2.
     (2) The ones covered with the felt wool HPQ got the air temperature of 24.3℃and the soil temperature of 27.6℃, and the heat-transfer coefficient of the HPQ was 1.35 W/(m2·K). The ones covered with the felt HPQ with a flat density of 2 kg/m2 got the air temperature of 23.9℃and the soil temperature of 27.5℃, and the heat-transfer coefficient of the HPQ was 1.39 W/(m2·K). Therefore the felt wool HPQ had a better heat preservation than the felt HPQ with a flat density of 2 kg/m2.
     Cost analysis indicated that, the cost of wool HPQ and felt wool HPQ was 11.7 $/m2 and 14.3 $/m2, lower than that of felt HPQ with a flat density of 1 kg/m2 and felt HPQ with a flat density of 2 kg/m2, 12.2 $/m2 and 16 $/m2, respectively. HPQs with wool core can act as substitutes to the current felt HPQs.
引文
[1] 王耀林, 张志斌, 葛红. 设施园艺工程技术[M]. 郑州: 河南科学技术出版社, 2000.
    [2] 张福墁, 陈端生. 面向 21 世纪的中国设施园艺工程[J]. 农业工程学报, 1995, 11(增刊): 109-114.
    [3] 李式军. 设施园艺学[M]. 北京: 中国农业出版社, 2002.
    [4] 张强. 农业高科技温室工程项目规范化建设与管理实用手册[M]. 清华紫光出版社, 2003.
    [5] 邹志荣. 园艺设施学[M]. 北京: 中国农业出版社, 2002.
    [6] 张福墁. 设施园艺学[M]. 北京: 中国农业大学出版社, 2001.
    [7] 赵军, 王立志. 发达的荷兰设施农业[J]. 世界农业, 1999(7): 16-17.
    [8] 杨其长, 李宝海. 国内外设施农业的现状及我国的对策[J]. 西藏农业科技, 2001, 23(2): 6-12.
    [9] 冯广和. 国内外现代温室的发展[J]. 新疆农机化, 2004(3): 50-51.
    [10] 王耀林. 国内外设施农业现状及发展趋势[J]. 中国农业科学, 2001, 34(增刊): 96-100.
    [11] 杨培林, 郭晶, 马振明. 国内外设施农业的现状及发展态势[J]. 农机化研究, 2003(1): 30-31.
    [12] 李保明. 中国设施农业技术的研究与应用进展[J]. 机电信息, 2003(19): 19-20.
    [13] 聂和民. 日光温室的结构与发展问题探讨[J]. 农业工程学报, 1990(2): 100-101.
    [14] 张真和. 日光温室高效节能源蔬菜栽培[M]. 北京: 农业读物出版社, 1993.
    [15] 盘锦泉, 李新义, 王惠永, 等. 我国引进的温室设施及国内温室的发展[J]. 农业工程学报, 1989, 5(2): 64-74.
    [16] 冯广和. 我国现代温室的兴起与发展[J]. 农村实用工程技术, 2003(6): 19-20.
    [17] 李萍萍, 毛罕平. 我国温室生产的现状与亟待研究的技术问题探讨[J]. 农业机 械学报, 1996, 27(3): 135-139.
    [18] 冯广和. 我国设施园艺发展的简要历程[J]. 农村实用工程技术, 2003(4): 31.
    [19] 张晓文. 设施农业的发展现状与展望[J]. 农机推广与安全, 2006(11): 6-8.
    [20] 周长吉. 温室灌溉系统设备与应用[M]. 北京: 中国农业出版社, 2004.
    [21] 高翔, 齐新丹, 李骅. 我国设施农业的现状与发展对策分析[J]. 安徽农业科学, 2007, 35(11): 3453- 3454.
    [22] 阎世霞. 我国设施农业现状分析[J]. 北方园艺, 2001(6): 4-5.
    [23] 潘文维, 罗庆熙, 李军. 我国温室产业现状及发展建议[J]. 北方园艺, 2002(3): 4-5.
    [24] 管小冬, 王松涛. 我国大型温室工程发展中的几个问题[J]. 设施园艺, 2002(11): 8-9.
    [25] 朱新华, 郭文川, 贺卫涛. 我国温室设施的现状和发展对策[J]. 农村能源, 2001(3): 6-7.
    [26] 周长吉, 杨振声. 准确统一“日光温室”定义的商榷[J]. 农业工程学报, 2002, 18(6): 200-202.
    [27] 李天来. 我国日光温室产业发展现状与前景[J]. 沈阳农业大学学报, 2005, 36(2): 131-138.
    [28] 陈正法, 张茜茜, 粱称福. 我国日光温室研究进展及发展趋势[J]. 中国农学通报, 1999, 15(5): 37-40.
    [29] 杨其长, 李宝海. 国内外设施农业的现状及我国的对策[J]. 西藏农业科技, 2001, 23(2): 6-12.
    [30] 杨振超, 邹志荣, 屈锋敏, 等. 设施园艺产业发展与人才培养[J]. 农业工程技术(温室园艺), 2007(1): 15-17.
    [31] 邹志荣. 温室大棚建造与管理新技术[M]. 陕西杨凌: 西北农林科技大学出版社, 2005.
    [32] 陈青云, 李成华. 农业设施学[M]. 北京: 中国农业大学出版社, 2001.
    [33] 刘瑞春. 温室覆盖材料保温性测定方法标准及测试环境条件研究[D]. 中国农业大学, 2007.
    [34] 宋希强, 钟云芳. 日光温室覆盖材料概况[J]. 蔬菜, 2000(8): 16-17.
    [35] 韦雪松. 温室覆盖材料热学性质研究[D]. 天津大学, 2005.
    [36] Kurata K. Scale-model experiments of applying a Fresnel prism to greenhouse covering[J]. Solar Energy, 1991, 46(1): 53-57.
    [37] Zhang Y, Gauthier L, Halleux D de, et al. Effect of covering materials on energy consumption and greenhouse microclimate[J]. Agricultural and Forest Meteorology, 1996, 82(1-4): 227-244.
    [38] Feuilloley P, Issanchou G. Greenhouse covering materials measurement and modeling of thermal properties using the hot box method, and condensation effects[J]. Journal of Agricultural Engineering Research, 1996, 65(2): 129-142.
    [39] Papadopoulos A P, Hao X M. Effects of greenhouse covers on seedless cucumber growth, next term productivity, and energy use[J]. Scientia Horticulturae, 1997, 68(1-4): 113-123.
    [40] Geoola F, Kashti Y, Peiper U M. A model greenhouse for testing the role of condensation, dust and dirt on the solar radiation transmissivity of greenhouse cladding materials[J]. Journal of Agricultural Engineering Research, 1998, 71(4): 339-346.
    [41] Pollet I V, Pieters J G. Condensation and radiation transmittance of greenhouse cladding materials: Part 1, Laboratory Measuring Unit and Performance[J]. Journal of Agricultural Engineering Research, 1999, 74(4): 369-377.
    [42] Georgios Leonidopoulos. Greenhouse daily sun-radiation intensity variation, daily temperature variation and heat profits through the polymeric cove[J]. Polymer Testing, 2000, 19(7): 813-820.
    [43] 何法才, 苗香雯. 不同玻璃对温室内植物生长环境的影响[J]. 浙江农业大学学报, 1997, 23(3): 261-264.
    [44] 邱国佺, 郑迎松, 李业发. 阳光板的光学和热学性质的实验和理论研究[J]. 太阳能学报, 2000, 21(3). 292-295.
    [45] 张瑞宏, 马承伟, 张俊芳. 真空玻璃技术在温室工程中的应用分析[J]. 农机化研究, 2005(2): 188-191.
    [46] 邱建军. 温室保温覆盖材料传热系数的测定[D]. 北京农业大学, 1995.
    [47] 李以翠. 温室双层充气膜覆盖的研究[D]. 中国农业大学, 2000.
    [48] 王宇欣. 高寒地区大型连栋充气温室节能保温机理及结构可靠性的系统研究[D]. 中国农业大学, 2000.
    [49] James E F, Royal D H. Thermal screens increase plant temperature[J]. Grower Talks, 1995(6): 84-86.
    [50] Plaisier H. Using screens to control minimum greenhouse temperatures[J]. Floraculture International, 1998(5): 34-37.
    [51] Staley L M, Monlnar J M. The influence of thermal curtains on energy utilization in glasshouse[J]. Journal of Agricultural Engineering Research, 1986(33): 127-139.
    [52] 董连君. 棚室保温非质造布的研制和试验[J]. 非织造布, 1994(2): 25-26.
    [53] 周长吉, 程勤阳, 周新群, 等. 缀铝膜保温幕保温性能测试分析[J]. 农业工程学报, 1999, 15(3): 191-195.
    [54] 凌坚, 马承伟, 林聪, 等. 温室缀铝膜保温幕节能性能的实验研究初报[J]. 农业工程学 报, 2002, 18(1): 89-92.
    [55] 蔡龙俊, 杨琳. 连栋温室内保温幕节能效果的研究分析[J]. 农业工程学报, 2002, 18(6): 98-102.
    [56] 崔庆法, 王静. 连栋温室可移动式双层内保温幕保温节能效果初探[J]. 农业工程学报, 2002, 18(6): 111-114.
    [57] 李海明, 崔庆法. 连栋温室简易内保温幕保温节能研究[J]. 中国生态农业学报, 2005, 13(2): 173-175.
    [58] 安志信. 蔬菜节能日光温室的建造及栽培技术[M]. 天津: 天津科技出版社, 1994.
    [59] 王耀林. 遮阳网与不织布及防寒保温外覆盖材料[J]. 农村实用工程技术, 1997(3): 8-9.
    [60] 陈端生. 中国节能日光温室建筑与环境研究进展[J]. 农业工程学报, 1994, 10(1): 123-129.
    [61] 邱仲华, 宋明军. 一种复合保温覆盖材料研制和应用初报[J]. 农业工程学报, 1995, 11(4): 117-120.
    [62] 宋明军. 日光温室新型外覆盖保温材料的研制及性能研究[D]. 甘肃农业大学, 2005.
    [63] 齐刚, 董仁杰, 刘道启. 一种温室覆盖新型材料蜂窝塑膜[J]. 北京农业工程学报, 1992, 12(1): 52-56.
    [64] 董仁杰, 吕钊钦, 齐刚, 等. 蜂窝塑膜温室覆盖材料性能试验研究[J]. 山东农业大学学报, 1993, 24(1): 30-36.
    [65] 周新群, 董仁杰, 张淑敏, 等. 日光温室外保温蜂窝结构覆盖材料的研究[J]. 农业工程学报, 1998, 14(4): 159-163.
    [66] 周长吉, 周新群, 桂金光. 几种日光温室复合保温被保温性能分析[J]. 农业工程学报, 1999, 15(2): 168-171.
    [67] 李化龙, 刘新生, 范彩兰, 等. 日光温室反辐射式保温被的开发与特性研究[J]. 陕西气象, 2001(1): 24-26.
    [68] 刘义玲. 沈农Ⅱ型热镜保温被[J]. 新农业, 2000(3): 51.
    [69] 新型农用高保温被研制成功[J]. 北京农业, 2001(6): 36.
    [70] 黄学群, 谢世平. 新型高效保温被的效果及应用前景[J]. 天津农业科学, 2004, 10(3): 25-27.
    [71] 徐刚毅, 周长吉. 日光温室 PE 发泡自防水保温被的研制与性能测试[J]. 农业工程学报, 2005, 21(1): 128-131.
    [72] 单明景, 焦晓宁, 郑智新. 新型保温被保温层的研究[J]. 产业用纺织品, 2006(11): 9-11.
    [73] 杨仁权, 吴松. 新型节能日光温室设计[J]. 农业机械, 2002, 12(3): 30-33.
    [74] 陈端生, 郑海山, 刘步洲. 日光温室气象环境综合研究(I)一墙体、覆盖物热效应研究初报[J]. 农业工程学报, 1990, 6(2): 77-81.
    [75] 陈友根. 大跨度节能型日光温室光热环境模型研究[D]. 石河子大学, 2002.
    [76] 赵岽. 辽沈Ⅳ型大跨度节能日光温室围护结构蓄散热规律试验研究[D]. 沈阳农业大学, 2006.
    [77] 林真纪夫. Experimental studies on heating load of greenhouse[J]. 千叶大学学报, 1985, 35: 1-8.
    [78] Garzoli K V, Blackwell J. An analysis of the nocturnal heat loss from a single skin plastic greenhouse[J]. Journal of Agricultural Engineering Research, 1981, 26(3): 203-214.
    [79] Garzoli K V, Blackwell J. An analysis of the nocturnal heat loss from a double skin plastic greenhouse[J]. Journal of Agricultural Engineering Research, 1987, 36(2): 75-86.
    [80] 周新群. 日光温室新型保温覆盖材料的研究[D]. 中国农业大学(东校区), 1998.
    [81] 戴梅, 沈善铜. 日光温室考察报告[J ]. 农业工程学报, 1995, 11(增) : 132- 135.
    [82] 邱仲华, 宋明军. 一种复合保温材料研制和应用初报[J]. 农业工程学报, 1995, 11(4): 117-120.
    [83] 陈端生, 邱建军, 王刚, 等. 几种日光温室外保温覆盖材料的保温性能[J]. 农业工程学报, 1996, 12(增): 108-115.
    [84] 董仁杰. 生态温室系统环境研究[D]. 北京: 中国农业大学(东校区), 1997.
    [85] 徐刚毅, 董天峰. 日光温室保温被发展近况[J]. 蔬菜, 1998(5): 14-15.
    [86] 中华人民共和国国家技术监督局. GB/T 4132—1996. 绝热材料及相关术语[S]. 北京: 中国标准出版社, 1997.
    [87] 覃密道. 覆盖材料传热系数测试技术和设备的研究[D]. 中国农业大学, 2004.
    [88] 周景德, 管康雄. 绝热材料及其构件绝热性能测试方法回顾[J]. 房材与应用, 2001, 29(1): 8-11.
    [89] 覃密道, 马承伟, 刘瑞春. 热箱法测定园艺设施覆盖材料传热系数的研究进展[J]. 农业工程学报, 2005, 21(2): 183-186.
    [90] 周景德, 钱美丽, 管康雄, 等. 玻璃及墙体保温性能最新检测装置[J]. 建筑技术开发, 1994(5): 30.
    [91] 周景德, 钱美丽. 无砂粘土陶粒混凝土空心砌块的保温隔热性能[J]. 房材与应用, 1995, 23(5): 9-12.
    [92] 聂玉强, 翼兆良. 防护热箱法测试试验装置的设计[J]. 节能技术, 2002, 20(3): 3-5.
    [93] 聂玉强, 邝小磊. 防护热箱法实验装置测试技术与不确定度评定[J]. 新型建筑材料, 2006(8): 77-80.
    [94] 姚仲鹏, 王瑞君. 传热学[M]. 第二版. 北京: 北京理工大学出版社, 2003: 54-55.
    [95] 杨强生, 浦保荣. 高等传热学[M]. 第二版. 上海: 上海交通大学出版社, 2001: 44-45.
    [96] 俞佐平. 传热学[M]. 第二版. 北京: 高等教育出版社, 1985: 64-65.
    [97] Hahne E, Grigull U. Shape factor and shape resistance for steady multidimensional heat conduction[J]. International Journal of Heat Mass Transfer, 1975, 18(6): 751-767.
    [98] 张永波, 顾振亚. 防水透湿织物性能测试方法综述[J]. 针织工业, 1999(5): 50-53.
    [99] 马眷荣. 建筑材料辞典[Z]. 北京: 化学工业出版社, 2003.
    [100] 曹楠. 温室新型覆盖材料 PETP 薄膜光热性能研究[D]. 中国农业大学, 2004.
    [101] 冯 维 祺 , 马 月 辉 . 我 国 羊 产 业 发 展 与 资 源 利 用 [EB/OL]. http://www.caaa.cn/show/newsarticle.php?ID=72713, 2005-08-26.
    [102] 龚伟宏, 谭光兆, 张金凤. 中卫山羊毛的分类方法及其品质研究[J]. 宁夏农林科技, 1995(3): 35-37.
    [103] 冯维祺, 马月辉. 西部养羊产业化的发展与产品结构调整浅见[J]. 中国草食动物, 2001(S1): 17-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700