光催化氧化降解室内空气甲醛性能及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛是我国室内空气主要污染物之一,具有污染普遍、污染时间长等特点,长期接触会对人体健康造成危害。因此室内甲醛污染去除研究具有重要意义。光催化氧化法是近年来室内空气净化研究的热点。由于室内甲醛浓度水平很低,从气态到催化剂表面的传质阻力较大,致使其传质速率较低。此外,现有研究中普遍应用镀膜催化剂反应器,光能利用率低。因此,现有光催化反应器光催化氧化甲醛的转化率偏低。为更好的将光催化氧化法应用于室内空气净化的实践,需要寻找新的反应器形式,并研究设计高效的光催化氧化空气净化器。
     基于固定式填充床反应器是所有光催化反应器中转化率最高的特点,本研究选用固定式填充床反应器对甲醛进行光催化降解研究。通过改变反应条件,了解反应器入口甲醛浓度、反应气体温湿度、气体在反应器内停留时间及气体氧含量等因素对甲醛降解效果的影响。自主设计光催化空气净化器,对其净化效能进行考察,并对其应用进行模拟。此外,应用计算流体力学软件对光催化反应器及空气净化器内空气流速分布进行了模拟。
     通过比较,选取黑灯管为紫外光源,置于反应器中心位置,并以玻璃珠作光催化剂载体,填充于反应器内,构成本研究光催化反应器。通过计算模拟该光催化反应器内空气流速分布,发现其轴向流速均匀,但径向流速,从灯管处至反应器器壁处逐渐减少,直至接近零,易造成催化剂的浪费。在此基础上,对光催化反应器进行改进,设计新型填充式空气净化器。净化器选取侧面进风,单个装置侧壁开孔方式采取上宽下细形式。应用风速仪对单个净化装置进气流速测定结果表明,空气在整个侧面基本以0.05 m/s的速度均匀进入净化装置。空气净化器单个净化装置空气流速计算模拟结果显示,净化装置内空气流速分布均匀。因此催化剂可以得到充分利用。
     应用固定式填充床反应器对甲醛进行光催化降解,发现接近室内甲醛浓度水平时,甲醛光催化降解受反应温湿度影响很小,受浓度影响显著,并且甲醛浓度5~20 mg/m3时,甲醛光催化反应速率适宜用L-H模型描述;而0.6~1.2 mg/m3时,甲醛反应速率更适宜用Power-rate law模型表述,说明高浓度时对甲醛光催化反应适用的L-H模型,对于室内浓度水平并不一定适用。计算出L-H模型表观反应速率常数k为4.666~9.470 mg/g-hr,甲醛在光催化剂表面的吸附平衡常数K为0.0098~0.0128 mg-1;Power-rate law模型的常数k和n分别为0.317~0.452和1.082~1.370。L-H模型的表观反应速率常数k和Power-rate law模型的常数k均随温度的升高而降低,且两模型的常数k与温度的关系都基本符合阿仑尼乌斯公式。
     应用本研究自主设计空气净化器对室内甲醛进行净化研究,结果表明:甲醛初始浓度0.727~1.815 mg/m3时,甲醛净化效率为84.7%~92.0%,净化过程中没有新的气态有机污染物生成。基于净化试验结果得出空气净化器甲醛反应速率方程,建立有甲醛持续释放实验房间应用空气净化器室内甲醛浓度变化数学模型,经实验结果证实模拟结果基本可以反应室内甲醛浓度变化情况。通过人造板材使用量与室内甲醛浓度关系方程,应用数学模型对空气净化器在实际房间的应用进行模拟,结果表明:空气净化器的间歇应用可以保持室内甲醛浓度低于国家标准,空气净化器应用频率与室内人造板材等级及使用量密切相关。
     本研究基于应用固定式填充床光催化反应器对甲醛降解的理论研究,自主设计新型填充式空气净化器,并对其净化效果进行模拟,为室内空气甲醛净化提供了一种高效、实用的空气净化装置。同时,对其应用提供了指导,有助于人们更好的去除室内甲醛污染,为人们提供安全的生活环境。
Formaldehyde is one of the major indoor pollutants, which has adverse effects on human health and could last a longer time in indoor environments. Consequently, it is worthwhile to develop an innovative measure for effectively removing indoor formaldehyde. Photocatalysis has been one of the most popular techniques for indoor air purification for the past two decades. However, due to low concentration of indoor formaldehyde, the mass transfer resistance between the air and the surface of photocatalyst is significant, which make the mass transfer rate of formaldehyde become relatively low. Besdieds, the film-coated photocatalytic reactors commonly applied in previous investigations can’t utilize the ultraviolet (UV) light sufficiently. These two reasons lead to lower formaldehyde conversion for the photocatalysis. In order to enhance the formaldehyde conversion, an innovative photocatalytic reactor has to be developed to achieve high performance of indoor air purifier.
     Packed-bed reactor was selected as the photocatalytic reactor for this study since it has the highest conversion among all the photocatalytic reactors. The packed-bed photocatalytic reactor was used to investigate the removal conversion and reaction rate of indoor formaldehyde. Moreover, the effects of operating parameters on the formaldehyde conversion were also investigated. The operating parameters investigated included influent formaldehyde concentration, reaction temperature, humidity, residence time, and oxygen content. An innovative air purifier was further designed to investigate its performance of indoor formaldehyde removal in a testing room. Furthermore, computational simulation was conducted for the velocity profile of the packed-bed photocatalytic reactor and the air purifier as well as the variation of formaldehyde concentration in then testing room.
     Black-light lamp was selected as the UV source for the photocatalytic reaction. The lamp was situated at the center of the reactor. Glass beads coated with TiO2 were filled inside the photocatalytic reactor as the photocatalysts. The simulated air velocity profile of the photocatalytic reactor showed that the velocity in the radial was not uniform. The velocity decreased from the center to the wall of the reactor, which could result in the insufficient utilization of the photocatalyst. Therefore, the photocatalytic reactor was modified and an innovative packed air purifier was designed. Air entered from the lateral surface of the air purifier. The width of the slots decreased from the top to the bottom of the lateral surfaces of the single purification device within the air purifier. The results measured with an anemoscope showed that the air uniformly entered the air purifier in a flow rate of 0.05 m/s. The simulation results of the air pattern in the single device showed that the air velocity was relatively uniform, which suggested that the photocatalyst can be utilized effectively.
     The decomposition of formaldehyde with packed-bed photocatalytic reactor was investigated for the formaldehyde concentration close to indoor level. The results showed that the decomposition of formaldehyde was apparently affected by influent formaldehyde concentration. Reaction temperature and humidity has limited effect on the decomposition of formaldehyde. The reaction rate for influent formaldehyde concentration of 5~20 mg/m3 can be accounted for by using the rate expression of L-H model. The reaction rate constant and adsorption equilibrium for the L-H model was 4.666~9.470 mg/g-hr and 0.0098~0.0128 mg-1 separately. However, Power-rate model was feasible for describing the photocatalytic oxidation for influent formaldehyde concentration of 0.6~1.2 mg/m3. The constant k and n for the Power-rate law was 0.317~0.452 and 1.082~1.370 separately. The constant k for the L-H model and the Power-rate law model decreased with the reaction temperature. The correlation between the constant k for these two models and the reaction temperature agrees with the Arrhenius equation.
     The experimental results of the innovative air purifier indicated that the formaldehyde removal efficiency was 84.7%~92.0% for initial concentration of 0.727~1.815 mg/m3. None new kind of organic pollutant was detected in the testing room during the operation of the air purifier. The formaldehyde reaction rate equation of the air purifier was developed. Based on mass balance, a mathematical model to simulate the variation of formaldehyde concentration in the testing room was constructed, in which there was continuous formaldehyde emission source and the air purifier was operated. The simulated results were proved by the experimental data. The relation expression of particle board amount and formaldehyde concentration in the room was used to approximately calculate the formaldehyde release rate. The variation of indoor formaldehyde concentration in actual room with using the air purifier was then simulated. The simulated results showed that the periodic operation of air purifier could keep the indoor formaldehyde concentration less than 0.1 mg/m3. The operation procedure of the air purifier was mainly determined by the release rate and amount of the release sources in the room.
     The decomposition of formaldehyde in the packed-bed photocatalytic reactor was investigated in this study. An innovative air purifier was designed based on the results obtained from the investigation of the packed-bed photocatalytic reactor. The application of the air purifier was further simulated to verify its performance on indoor formaldehyde removal. The outcome of this study provides the basic criteria for designing an innovative air purifier device. The operation procedure of the air purifier was also recommended in the study. Therefore, the results obtained from this study would be valuable for improving indoor air quality.
引文
1. Y. H. Chao, C. W. Tung, J. Burnett. Influence of Different Indoor Activities on the Indoor Particulate Levels in Residential Buildings. Indoor and Built Environment. 1998, 7: 110~121
    2. N. C. Jones, C. A. Thornton, D. Mark, R.M. Harrison. Indoor/Outdoor Relationships of Particulate Matter in Domestic Homes with Roadside, Urban and Rural Locations. Atmospheric Environment. 2000, 34: 2603~2612
    3. A. Chaloulakou, I. Mavroidis. Comparison of Indoor and Outdoor Concentrations of a Public School. Evaluation of An indoor Air Quality Model. Atmospheric Environment. 2002, 36(11): 1769~1781
    4. P. Schneider, I. Gebefügi, K. Richter, et al. INGA Study Group. Indoor and Outdoor BTX Levels in German Cities. Science of the Total Environment. 2001, 267(1-3): 41~51
    5. C. Dimitroulopoulou, M. R. Ashmore, M. A. Byrne1, et al. Modelling of Indoor Exposure to Nitrogen Dioxide in the UK. Atmospheric Environment. 2001, 35(2): 269~279
    6. R. Williams, J. Creason, R. Zweidinger, et al. Indoor, Outdoor, and Personal Exposure Monitoring of Particulate Air Pollution: The Baltimore Elderly Epidemiology-Exposure Pilot Study. Atmospheric Environment. 2000, 34: 4193~4204
    7. 宋广生. 室内空气质量标准解读. 机械工业出版社. 2003: 102~111
    8. 吴少杰, 朱泮民, 冯兴华. 室内环境保护中存在的几个问题. 河南城建高等专科学校学报. 2000, 9(4): 20~23
    9. M. V. Jokl. New Units for Indoor Air Quality: Decicarbdiox and Decitvoc. International Journal of Biometeorology. 1998, 42(2): 93~111
    10. F. G. Christopher, S. V. Pasquale. The Use of Ultraviolet Germicidal Irradiation (UVGI) in Disinfection of Airborne Bacteria. Environmental Engineering and Policy. 2002, 3: 101~107
    11. H. J. Anne, K. K. Soren, M. Lars. Cytological Changes and Conjunctival Hyperemia in Relation to Sensory Eye Irritation. International Archives of Occupational and Environmental Health. 1998, 71: 225~235
    12. 张国强, 喻李葵. 室内装修 谨防人类健康杀手. 中国建筑工业出版社, 2003: 13~162
    13. 张秀珍, 李延平, 徐强等. 活性炭纤维的吸附效果研究及在空气净化方面的应用. 江苏预防医学, 1996(3): 6~8
    14. M. Hayashi, M. Enai, Y. Hirokawa. Annual Characteristics of Ventilation and Indoor Air Quality in Detached Houses Using a Simulation Method with Japanese Daily Schedule Model. Building and Environment. 2001, 36(6): 721~731
    15. 闫斌, 郭占景, 程锦隆. 石家庄市装修居室空气质量. 环境与健康杂志. 2006, 23(1): 44~45
    16. 李世杰, 张晓杰, 郑雯. 漯河市装修居室空气污染状况调查. 环境与健康杂志. 2006, 23(1): 49~50
    17. 蒋红卫. 宾馆装修室内空气有害物质监测分析. 医药论坛杂志. 2005, 26(18): 12~14
    18. 刘伟, 翟德华, 于洋, 等. 装修室内空气污染现状分析及控制途径. 城市环境与城市生态. 2003, 16(5): 53~55
    19. 周林红, 吴燕. 新装居室室内空气污染状况调查及防治措施. 甘肃科技. 2004, 20(8): 144~147
    20. 王琨. 室内空气污染物检测与预测及其控制研究. 哈尔滨工业大学工学博士论文. 2004: 29~36
    21. 张胜军, 姚晓青, 蒋欣. 室内装修后苯、甲苯、二甲苯和甲醛污染调查. 中国环境监测. 2004, 20(4): 23~24
    22. 刘君卓, 陶永娴, 温天佑, 等. 室内装修后甲醛和苯的浓度变化特征. 环境与健康杂志. 2002, 19(5): 387~388
    23. 戴天有, 刘德全, 曾燕君, 等. 装修房屋室内空气的污染. 环境科学研究. 2002, 15(4): 27~30
    24. 孙宗光, 齐文启, 孙立岩. 化学物质对室内空气的污染. 环境监测管理与技术. 2000, 12(4): 14~18
    25. 耿世彬, 杨家宝. 室内空气品质及相关研究. 建筑热能通风空. 2001, 20(2): 29~33
    26. 孙胜龙. 居室污染与人体健康知识问答. 中国化学工业出版社, 2000: 2~5
    27. 白玮, 龙惟定. 影响生产率的要素——室内空气品质. 暖通空调. 1999, 29(2): 34~37
    28. 郑慧, 王志刚. 室内环境污染与环境设计. 环境科学动态. 2001,1: 31-33
    29. P. O. Fanger, D. S. Human. Requirements in Future Air-conditioned Environments. International Journal of Refrigeration.2001, 24(2):148~153
    30. 刘建伟. 绿色装修离我们还有多远. 新材料新装饰. 2005, 3(6): 32~35
    31. K. A. Melikov, R. Cermak, M. Majer. Personalized Ventilation: Evaluation of Different Air Terminal Devices. Energy and Buildings. 2002, 34: 829~836
    32. 沈晋明, 刘燕敏, 孙光前. 室内空气品质的新定义与新风直接入室方法的实验测试. 暖通空调. 1995, 6: 30~33
    33. 马仁民. 通风的有效性与室内空气品质. 暖通空调. 2000, 30(5): 20~23
    34. 左晨, 唱斗, 王生,等. 开窗时间对装修后室内空气中苯和甲苯浓度的影响. 环境与职业医学. 2004, 21(5): 408~410
    35. 谢洪勇. 火焰 CVD 法制备含碳纳米 TiO2 及光催化降解甲醛气体研究. 纳米加工工艺. 2006, 3(3):38~42
    36. 丁震, 冯小刚, 陈晓东, 等. 金属泡沫镍负载纳米 TiO2 光催化降解甲醛和VOCs. 环境科学. 2006, 27(9): 1814~1819
    37. R. B. de Lima, M. P. Massafera, E. A. Batista, et al. Catalysis of Formaldehyde Oxidation by Electrodeposits of PtRu. Journal of Electroanalytical Chemistry. 2007, 603: 142~148
    38. L. Yang, Z. Liu, J. Shi, et al. Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes. Separation and Purification Technology. 2007, 54: 204~211
    39. Zygmunt Grabarczyk. Effectiveness of Indoor Air Cleaning with Corona Ionizers. Journal of Electrostatics. 2001, 51-52: 278~283
    40. 潘恺友, 马良才, 周建人, 等. 等离子空气净化器消毒效果的研究. 医学动物防治. 2001, 17(2): 1~2
    41. 王晓明, 史文祥, 赵莹, 等. 等离子体室内空气净化技术研究进展.高电压技术. 2004, 30(1): 48~51
    42. 汪耀珠, 唐明德, 易义珍, 陈律. 低浓度臭氧净化空气中甲醛效果的实验性研究. 实用预防医学. 2002, 9(1): 28~29
    43. 曾召衡, 谢其德. 室内空气清净机去除甲醛之效能分析. 第二十届空气污染控制技术研讨会, 台湾, 2003.
    44. E. J. Esswein and M. F. Boeniger. Effect of an Ozone-Generating Air-Purifying Device on Reducing Concentrations of Formaldehyde in Air.Applied Occupational and Environmental Hygiene. 1994, 9(2):139~146
    45. A. Fujishima, A. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972, 238(5358): 37~38
    46. M. Schiavello and A. Sclafani. Thermodynamic and Kinetic Aspects in Photocatalysis. Photocatalysis Fundamental and Applications. John Wiley & Sons, 1989: 53~77
    47. 高濂 郑珊 张青红. 纳米氧化钛光催化材料及应用. 化学工业出版社, 2002: 40~41
    48. 胡春,王怡中,汤鸿霄. 多相光催化氧化的理论与实践发展. 环境科学进展. 1995, 1: 55~64
    49. 姜坪,盛建平,葛群英,吴静,钟兴. TiO2 光催化降解甲醛气体的研究. 建筑热能通风空调. 2005, 24(2): 99~102
    50. A. D. Modestov, O. Lev. Photocatalytic Oxidation of 2, 4-Dichlorophenoxyacetic Acid with Titania Photocatalyst. Comparison of Supported and Suspended TiO2. Journal of Photochemistry and Photobiology A: Chemistry. 1998, 112(2-3): 261~270
    51. S. T. Martin, H. Herrmann, W. Choi, et al. Time-resolved Microwave Conductivity. Journal of the Chemical Society, Faraday Transactions. 1994, 90(21): 3315~3330
    52. J. K. Burdett, T. Hughbanks, G. J. Miller, et al. Structural-electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K. Journal of the American Chemical Society. 1987, 109(12): 3639~3646
    53. M. A. Fox, M. T. Dulay. Heterogeneous Photocatalysis. Chemical Reviews. 1993, 93(1): 341~357
    54. S. Muraswa, Y. Takaoka. Several Applications of TiO2 Photocatalyst for Water and Air Purification. The First International Conference on Advanced Oxidation Technologies for Water and Air Remediation. Canada. 1994
    55. Watanabe T., Kitamura A., Kojima E., Nakayama C., Hashimoto, K., Fujishima A . Photocatalytic activity of TiO2 thin film under room light. The First International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air. Canada. 1992
    56. D. F. Ollis, H. Al-Ekabi. Photocatalytic Purification and Treatment of Waterand Air. Elsevier: Amsterdam. 1993: 809
    57. 洪雨利. 溶胶凝胶法制备奈米二氧化钛触媒进行光催化还原二氧化碳之批次反应研究. 国立中山大学硕士论文(台湾). 2004: 57~59
    58. 张博, 秦永宁, 刘源. 溶胶凝胶法制备纳米 TiO2 及其光催化降解甲醛的研究. 内蒙古工业大学学报. 2003, 22 (4):248~251
    59. C. H. Hung, B. J. Marinas. Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films. Environmental Science and Technology. 1997, 31(2): 562~568
    60. J. Rubio, J. L. Oteo, M. Villegas, et al. Characterization and Sintering Behaviour of Submicrometre Titanium Dioxide Spherical Particles Obtained by Gas-phase Hydrolysis of Titanium Tetrabutoxide. Journal of Materials Science. 1997, 32(3): 643~652
    61. 孟耀斌, 黄霞, 钱易. 不同波段紫外光在 TiO2 悬浊液中的消光特点. 环境科学. 2001, 22(2): 46~50
    62. 戴智铭, 陈爱平, 古宏晨. 气固相光催化氧化反应动力学分析. 化工学报. 2002, 53(6): 578~582.
    63. W. H. Ching, M. Leung and D. Y. C. Leung. Solar Photocatalytic Degradation of Gaseous Formaldehyde by Sol–gel TiO2 Thin Film for Enhancement of Indoor Air Quality. Solar Energy. 2004, 77(2): 129~135
    64. L. A. Dibble, G. B. Raupp. Fluidized-bed Oxidation of Trichloroethylene in Contaminated Air-streams. Environmental Science & Technology. 1992, 26: 492~495
    65. J. Peral, D. F. Ollis. Heterogeneous Photocatalytic Oxidation of Gas-phase Organics for Air Purification: Acetone, 1-butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation. Journal of Catalysis. 1992, 136: 554~565
    66. T. N. Obee, S. O. Hay. Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania. Environmental Science & Technology 1997, 31: 2034~2038
    67. T. Noguchi, A. Fujishima, P. Sawunytama, et al. Photocatalytic Degradation of Gaseous Formaldehyde Using TiO2 film. Environmental Science and Technology. 1998, 32: 3831~3833
    68. L. Cao, A. Huang, F. J. Spiess, et al. Gas-phase Oxidation of 1-butene UsingNanoscale TiO2 Photocatalysts. Journal of Catalysis 1999, 188: 48~57
    69. X. F. Fu, L. A. Clark, W. A. Zeltner, et al. Effect of Reaction Temperature and Water Vapor Content on the Heterogeneous Photocatalytic Oxidation of Ethylene. Journal of Photochemistry and Photobiology A: Chemistry. 1996, 97: 181~186
    70. X. F. Fu, W. A. Zeltner, M. A. Anderson. The Gas-phase Photocatalytic Mineralization of Benzene on Porous Titania-based Catalysts. Applied Catalysis B: Environmental. 1995, 6(3): 209~224
    71. J. Blanco, P. Avila, A. Bahamonde, et al. Photocatalytic Destruction of Toluene and Xylene at Gas Phase on a Titania Based Monolithic Catalyst. Catalysis Today. 1996, 29(1-4): 437~442
    72. T. N. Obee, R. T. Brown. TiO2 Photocataysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene and 1, 3-Butadiene. Environmental Science and Technology. 1995, 29(5): 1223~1231
    73. P. Avila, A. Bahamonde, J. Blanco, et al. Gas-phase Photo-assisted Mineralization of Volatile Organic Compounds by Monolithic Titania Catalysts. Applied Catalysis B: Environmental. 1998, 17(1-2): 75~88
    74. N. R. Blake, G. L. Griffin. Selectivity Control During the Photoassisted Oxidation of 1-butanol on Titanium Dioxide. Journal of Physical Chemistry. 1988, 92(20): 5697~5701
    75. J. L. Falconer, K. A. Magrini-Bair. Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2. Journal of Catalysis. 1998, 179(1): 171~178
    76. D. Bahnemann, A. Henglein, J. Lilie, et al. Flash Photolysis Observation of the Adsorption Spectra of Trapped Positive Holes and Electrons in Colloidal Titanium Dioxide. Journal of Physical Chemistry. 1984, 88(4): 709~711
    77. D. Lawless, N. Serpone, D. Meisel. Role of OH Radicals and Trapped Holes in Photocatalysis. A Plus Radiolysis Study. Journal of Physical Chemistry. 1991, 95(13): 5166~5170
    78. L. A. Dibble, G. B. Raupp. Kinetics of Gas-solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near UV Illuminated Titanium Dioxide. Catalysis Letters. 1990, 4(4-6): 345~354
    79. K. Wang, H. Tsai, Y. Hsieh. A Study of Photocatalytic Degradation of Trichloroethylene in Vapor Phase on TiO2 Photocatalyst. Chemosphere. 1998, 36(13): 2763~2773
    80. W. Y. Choi, J. Y. Ko, H. W. Park, et al. Investigation on TiO2-coated Optical Fibers for Gas-phase Photocatalytic Oxidation of Acetone. Applied Catalysis B: Environmental. 2001, 31(3): 209~220
    81. M. R. Nimlos, E. J. Wolfrum, M. L. Brewer, et al. Gas-phase Heterogeneous Photocatalytic Oxidation of Ethanol: Pathway and Kinetic Modeling. Environmental Science and Technology. 1996, 30: 3102~3110
    82. W. Wang, Y. Ku. Photocatalytic Degradation of Gaseous Benzene in Air Streams by Using an Optical Fiber Photoreactor. Journal of Photochemistry and Photobiology A: Chemistry. 2003, 159(1): 47~59
    83. Y. Luo, D. F. Ollis. Heterogeneous Photocatalytic Oxidation of Trichlorethylene and Toluene Mixture in Air: Kinetic Promotion and Inhibition, Time-dependent Catalyst Activity. Journal of Catalysis. 1996, 163: 1~11
    84. M. Anpo, K. Chiba, M. Tomonari, et al. Photocatalysis on Native and Platinum-loaded TiO2 and ZnO Catalysts-origin of Different Reactivities on Wet and Dry Metal Oxides. Bulletin of the Chemical Society of Japan. 1991, 64(2): 543~551
    85. 刘安治. 近紫外光/二氧化钛催化分解气相中低浓度四氯乙烯之操作参数探讨. 中山大学硕士论文(台湾). 2004: 62~65
    86. E. Galanos, S. Poulopoulos, C. Philippopoulos. Photocatalytic Destruction of Methyl Tert-butyl Ether in the Gas phase Using Titanium Dioxide. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering. 2002, 37(9): 1665~1675
    87. 黄彪. 超临界乙醇流体制取活性炭-TiO2 光催化剂复合材料的研究. 环境科学学报. 2002, 22(5): 641~646
    88. 黄彪. 超临界乙醇流体制取 TiO2 光催化剂合成与光催化性能. 化工学报. 2003, 54(9): 1315~1319
    89. Y. H. Zhang, G. X. Xiong, N. Yao, et al. Preparation of Titania-based Catalysts for Formaldehyde Photocatalytic Oxidation from TiCl4 by the Sol-gel Method. Catalysis Today. 2001, 68(1): 89~95
    90. 全燮, 詹天珍, 回滨, 等. TiO2-SiO2-GF 复合光催化剂对甲醛光催化降解研究. 大连理工大学学报. 2005, 45(4): 522~526
    91. 邹丽霞, 钟 秦, 刘庆成. TiO2 纳米线阵列膜的制备及其光催化降解气相甲醛动力学. 化工学报. 2006, 57(2): 311~317
    92. 丁震, 陈晓东, 陈连生, 等. 微波加热制备泡沫镍负载 La3+掺杂纳米TiO2 及其光催化降解甲醛的性能. 催化学报. 2006, 27 (5): 449~453
    93. 张定国, 刘芬, 熊小青. Fe3+掺杂 TiO2 薄膜的制备及光催化降解甲醛的研究. 环境科学与技术. 2006, 29(5): 24~25
    94. 李世平, 陶冶, 刘培英. Ce 掺杂纳米 TiO2 光催化剂的制备及降解甲醛的研究. 环境污染治理技术与设备. 2006, 7(4): 78~81
    95. J. Peng, S. Wang. Performance and Characterization of Supported Metal Catalysts for Complete Oxidation of Formaldehyde at Low Temperatures. Applied Catalysis B: Environmental. 2007, 73: 282~291
    96. L. Saadouna, J. A. Ayllonb, B. J. Jimenez, et al. Synthesis and Photocatalyti Activity of Mesoporous Anatase Prepared from Tetrabutyl Ammonium-titania Composites. Materials Research Bulletin. 2000, 35(1): 193~202
    97. F. Shiraishi, S. Yamaguchi, Y. Ohbuchi. A Rapid Treatment of Formaldehyde in a Highly Tight Room Using a Photocatalytic Reactor Combined with a Continuous Adsorption and Desorption Apparatus. Chemical Engineering Science. 2003, 58(3-6): 929~934
    98. J. G. Yu, M. H. Zhou, B. Cheng, et al. Ultrasonic Preparation of Mesoporous Titanium Dioxide Nanocrystalline Photocatalysts and Evaluation of Photocatalytic Activity. Journal of Molecular Catalysis A: Chemical. 2005, 227: 75~80
    99. 丁延伟, 范崇政, 吴缨, 等. 纳米 TiO2 光催化降解 CH3OH、HCHO 及HCOOH 反应的研究. 分子催化. 2002, 16(3): 175~180
    100. 肖劲松, 訾学红, 尹雪云, 等. 纳米 TiO2 涂料光催化清除空气中主要污染物的研究. 暖通空调. 2002, 32(5): 23~25
    101. C. H. Ao, S. C. Lee, J. Z. Yu, et al. Photodegradation of Formaldehyde by Photocatalyst TiO2: Effects on the Presence of NO, SO2 and VOCs. Applied Catalysis B: Environmental. 2004, 54: 41~50
    102. 黄勇, 杨建军, 毛立群. 光催化降解甲醛的波长效应研究. 感光科学与光化学. 2007, 23(4): 253~260
    103. 黄婉霞, 孙作凤, 吴建春, 等. 纳米二氧化钛光催化作用降解甲醛的研究. 稀有金属. 2005, 29(1): 34~38
    104. 季君晖, 史维明. 抗菌材料. 北京化学工业出版社, 2003
    105. 饶荣水, 崔文勇, 李开元, 等. 室内甲醛降解的实验研究. 洁净与空调技术. 2005, 4: 5~8
    106. 鹿院卫, 马重芳, 夏国栋, 等. 室内污染物甲醛的光催化氧化降解研究. 太阳能学报. 2004, 25(4): 542~546
    107. 钱昱, 李梅, 路庆华. 纳米二氧化钛光催化降解空气中甲醛影响因素的研究. 实验室研究与探索. 2004, 23(12): 12~16
    108. K. H. Wang, H. H. Tsai, Y. H. Hsieh. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Applied Catalysis B: Environmental. 1998, 17: 313~320
    109. 齐文刚, 邹丽霞, 白秀敏. 光催化降解甲醛气体的实验研究. 化学反应工程与工艺. 2005, 21(5): 442~445
    110. 耿世彬, 王瑞海, 韩旭, 等. 纳米光催化材料消除空气中低浓度甲醛的实验研究. 暖通空调. 2006, 36(5): 93~97
    111. C. H. Hung and B. J. Marinas. Role of Water in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films. Environmental Science & Technology 1997; 31: 1440~1445
    112. 梅长彤. 大室法条件下人造板的甲醛散发量. 南京林业大学学报(自然科学版). 2001, 25(5): 49~51
    113. 曾海东, 张寅平, 王庆苑, 等. 用密闭小室测定建材 VOC 散发特性. 清华大学学报(自然科学版). 2004, 44(6): 778~781
    114. S. Kim, J. A. Kim, H. J. Kim, et al. Determination of Formaldehyde and TVOC Emission Factor from Wood-based Composites by Small Chamber Method. Polymer Testing. 2006, 25: 605~614
    115. M. F. J. Dijkstra, H. Buwalda, A. W. F. de Jong, et al. Experimental Comparison of Three Reactor Designs for Photocatalytic Water Purification. Chemical Engineering Science, 2001, 56(4): 547~555
    116. W. Nam, J. Kim, G. Han. Photocatalytic Oxidation of Methyl Orange in a Three-phase Fluidized Bed Reactor. Chemosphere. 2002, 47: 1019~1024
    117. T. H. Lim, S. M. Jeong, S. D. Kim, et al. Photocatalytic Decomposition of NO by TiO2 Particles. Journal of Photochemistry and Photobiology A:Chemistry. 2000, 134:209~217
    118. 明彩兵, 吴平霄. 光催化反应器的研究进展环境. 污染治理技术与设备. 2005, 6(4): 1~6
    119. H. Einaga, S. Futamura and T. Ibusuki. Heterogeneous Photocatalytic Oxidation of Benzene, Toluene, Cyclohexene and Cyclohexane in Humidified Air: Comparison of Decomposition Behavior on Photoirradiated TiO2 Catalyst. Applied Catalysis B: Environmental. 2002, 38(3): 215~225
    120. P. F. Biarda, A. Bouzaza, and D. Wolbert. Photocatalytic Degradation of Two Volatile Fatty Acids in Monocomponent and Multicomponent Systems: Comparison between Batch and Annular Photoreactors. Applied Catalysis B: Environmental. 2007, 74(3-4): 187~196
    121. H. S. Fogler. Elements of chemical reaction engineering. 3rd edition. Prentice Hall. 1999: 19
    122. G. Huang, C. Zhang, Y. Zhu. ZnWO4 Photocatalyst with High Activity for Degradation of Organic Contaminants. Journal of Alloys and Compounds. 2007, 432: 269~276
    123. F. Shiraishi, D. Ohkubo, K. Toyoda, et al. Decomposition of Gaseous Formaldehyde in a Photocatalytic Reactor with a Parallel Array of Light Sources 1. Fundamental Experiment for Reactor Design. Chemical Engineering Journal. 2005, 114: 153~159
    124. K. Yoshino. 姜伟译. 紫外线杀菌的原理和最新应用. 中国照明电器. 2005, 4: 28~31
    125. 张濂, 许志美. 化学反应器分析. 华东理工大学出版社, 2005: 107~109
    126. Q. Chen and J. Srebric. Application of CFD Tools for Indoor and Outdoor Environment Design. International Journal on Architectural Science. 2000, 1(1): 14~29
    127. B. E. Launder and D. B. Spalding. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering. 1974, 3(2): 269~289
    128. V. Yakhot, S. A. Orszag. Renormalization Group Analysis of Turbulence: Basic theory. Journal of Scientific Computing. 1986, 1(1): 3~51
    129. L. A. Phillips and G. B. Raupp. Infrared Spectroscopic Investigation of Gas—solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene.Journal of Molecular Catalysis. 1992, 77(3): 297~311
    130. O. Levenspiel. Chemical Reaction Engineering. 2rd ed. John Wiley & Sons. 1990: 37~57
    131. 周连, 陈晓东, 陈宇炼, 等. 温、湿度变化对木质人造板材甲醛释放影响. 中国公共卫生. 2007, 23(2): 172~173
    132. 杜剑桥,王兰武,邱发礼,吕绍洁. 锐钛型纳米 TiO2 光催化降解甲醛性能研究. 钢铁钒钛. 2004, 25(1): 57~61
    133. R. P. H.Gasser. 金属的化学吸附和催化作用导论. 赵壁英, 吴念祖, 卜乃瑜译. 北京大学出版社. 1991: 196
    134. 张金龙, 陈峰, 何斌. 光催化. 华东理工大学出版社. 2004: 164
    135. G. Ya. Popova, T. V. Andrushkevich, Yu. A. Chesalov, et al. In Suit FTIR Study of the Adsorption of Formaldehyde, Formic Acid, and Methyl Formiate at the Surface of TiO2. Kinetics and Catalysts. 2000, 41(6): 885~891
    136. C. D. Jaeger and A. J. Bard. Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO2 Particulate System. Journal of Physical Chemistry. 1979, 83(24): 3146~3152
    137. M.R. Hoffmann, S.T. Martin, W. Choi, et al. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews. 1995, 95(1): 69~96
    138. J. Yang, D. Li, Z. Zhang, et al. A Study of the Photocatalytic Oxidation of Formalehyde on Pt/Fe2O3/TiO2. Journal of Photochemistry and Photobiology A: Chemistry 2000; 137(2-3): 197~202
    139. B. Veyret, R. Lesclaux, M. T. Rayez, et al. Kinetics and Mechanism of the Photo-oxidation of Formaldehyde. 1. Flash Photolysis Study. Journal of physical chemistry. 1989, 93(6):2368~2374
    140. 徐瑞芬, 胡学香, 胡伟康, 等. 纳米尺度分散的 TiO2 光催化降解甲醛的机理. 化学研究与应用. 2003, 15(5): 715~717
    141. A. Linsebigler, G. Lu, J. T. Yates. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Review. 1995, 95: 735~758.
    142. J. Zhao, X. Yang. Photocatalytic Oxidation for Indoor Air Purification: a Literature Review. Building and Environment, 2003, 38 (5) : 645~654
    143. S. B. Kim, S. C. Hong. Kinetic Study for Photocatalytic Degradation ofVolatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst. Applied Catalysis B : Environmental. 2002, 35(2): 305~315
    144. 吴荣宗. 工业触媒概论. 国兴出版社. 1998: 96.
    145. J. C. Lou, S. S. Lee. Destruction of Trichloromethane with Catalytic Oxidation. Applied Catalysis B: Environmental. 1997, 12: 111~123
    146. 北川浩, 铃木谦一郎. 吸附的基础与设计. 廉政理译. 化学工业出版社. 1983: 33
    147. 傅献彩, 沈文霞, 姚天扬. 物理化学. 高等教育出版社. 13rd. 2001: 752
    148. 齐虹, 孙德智, 迟国庆. 光催化降解甲醛的影响因素及动力学研究. 哈尔滨工业大学学报. 2006, 38(7): 1051~1054
    149. 刘洪亮, 侯常春, 马蔚, 等. 臭氧空气净化器对甲醛、苯净化效果的实验研究. 环境与健康杂志. 2002, 19(1): 53~54
    150. R. Wiglusz, E. Sitko, G. Nikel, et al. The Effect of Temperature on the Emission of Formaldehyde and Volatile Organic Compounds (VOCs) from Laminate Flooring-Case Study. Building and Environment. 2002, 37: 41~44
    151. 罗文圣, 兴丰, 井学伟, 等. 室内空气中甲醛浓度与人造板使用量的关系. 木材工业, 2006, 20(5): 24~27
    152. 牧勉. 木质材料甲醛释放对策. 住宅与木材. 1999, 7: 12~25
    153. K. Wang, Q. Zhao, W. Li, et al. Ventilation of Indoor Formaldehyde and Estimation of Its Emission and Air Exchange Rate. Journal of Harbin Institute of Technology. 2007, 14(1): 41~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700