转轮除湿参数影响分析及湖南地区应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转轮除湿空调系统是环境友好空调代表之一,它利用除湿转轮的吸附式除湿,独立处理系统的湿负荷,将空调系统温湿处理解耦,不但提高冷却设备蒸发温度而且保持连续送出低温度、低露点的空气。对于转轮除湿空调系统而言,除湿转轮是一个十分重要的组成部件,其除湿效果和再生能耗直接影响着系统的品质优劣。
     本文通过对不同固体除湿剂热物性质的比较,选定细孔硅胶为转轮除湿剂,基于波浪形微通道内传热传质理论对物理模型提出了假设,依据能量守恒和质量守恒定律推导了描叙微通道内部传热传质的控制方程,利用麦考马克时间推进显式法对方程进行了离散,运用MATLAB软件编译了计算程序。
     本文通过数值模拟研究了运行参数和结构参数对除湿性能的影响。结果表明,转轮出口含湿量随进口空气状态参数变化呈单调性,转轮在低温高湿中的除湿效果更加好,高温低湿的再生空气能使除湿剂的脱附更加完全,进而提高其除湿量。而转速、再生区与除湿区面积比率以及轮厚都为可优参数,它们在变化过程中存在一个最优值,使得处理空气的出口含湿量达到最低。同时,对于再生区与除湿区面积比率对性能指标MRC以及处理空气进口温湿度对性能指标DCOP的影响,本文给出了结论。
     本文以长沙某工人俱乐部一楼健身室为建筑模型,研究了在该地区夏季高热高湿气候状况下转轮空调的能耗状况,并计算了相同运行工况下冷却除湿空调系统的能量消耗。在对两者进行比较之后发现,转轮除湿一次回风空调系统的能耗比冷却除湿空调系统仅少3.6%,而通过对循环模式的改进,增加了室内排风与新风间热焓交换器的转轮除湿二次回风空调系统比改进前节能8.1%,而以排风为再生空气的转轮除湿二次回风系统比改进前节能23.2%。同时对四种系统除湿过程进行了(?)分析,发现在除湿过程中除湿转轮对能量的利用要优于表面冷却器。
Rotary dehumidification air-conditioning system is one of those which are friendly to environment. The rotor moves away the vapor with the adsorption of the desiccant inside it, which releases the coupling of the system's sensible heat load and latent heat load. Because of the processing of the rotor, the process air is treated to such a status with low temperature and low dew-point and the evaporating temperature of the chilling equipment is enhanced. The rotor plays a very important part in the rotary dehumidification air-conditioning system, whose dehumidifying efficiency makes an great affect to the system performance.
     After the comparisons of the heat properties of several different solid desiccants, the Kiselgel A was selected as the desiccant of the system. A series of assumptions were made based on the heat and mass transfer theory inside the sinusoidal micro channel. The governing equations which describe the process of heat and mass transfer were derived observing the law of energy and mass conservation and discretized by the MacCormack explicit finite difference method. The computation program was compiled simulate air handling process.
     The affection of operating parameters and structure parameters to the dehumidification was studied. It shows that the outlet humidity is monotonic as a function of the parameters of the air status while there is an optimised value of rotation speed、the area ratio of regeneration to dehumidification and width of rotor to make the dehumidification amount the greatest.Meanwhile, the influence of the area ratio of regeneration to dehumidification to the MRC and inlet process air temperature and humidity to the DCOP is investigated.
     According to the weather condition of the Changsha city, the energy consumption of the rotary dehumidification air-conditioning system and the normal cooling dehumidification air-conditioning system was calculated. The result reveals that the energy the former expended is 3.6% less than the latter.But after some improvement of rotary dehumidification system, two better rotary dehumidification systems were studied. Comparing to the initial rotary dehumidification system under the same working condition,the energy they saved is about 8.1% and 23.2% respectively. After the exergy analysis, it is asured that the rotor has a higher rate of energy applying than the chiller does.
引文
[1]J.Wurm, D.Kosar, T.Clemens. Solid desiccant technology review. Bulletin of the international institute of refrigeration,2002,82(3):2-31.
    [2]沈晋明.我国目前室内空气品质改善的对策与措施.暖通空调,2002,2:3~7.
    [3]铃木谦一郎,大矢信男.除湿设计.北京:中国建筑工业出版社,1980.56~67.
    [4]刘东.转轮除湿供冷空调系统的研究.[博士学位论文].上海:同济大学,2003.
    [5]王全学,冯毅.吸附除湿制冷空调系统的研究现状及发展趋势.制冷学报,1997,4:33~39.
    [6]A.A.Kinsara, O.M.Al-Rabghi, M.M.Elsayeds. Parametric study of an energy efficient air conditioning system using liquid desiccant. Applied Thermal Engineering,1997,18(5):327-335.
    [7]A.C.Oliveira, C.F.Afonso, S.B.Rifat, et al.Thermal performance of a novel air conditioning system using a liquid desiccant. Applied Thermal Engineering, 2000,20(5):1213~1223.
    [8]张立志.除湿技术.北京:化学工业出版社,2005.263~266.
    [9]杨俊杰,徐吉浣.燃气转轮除湿器的原理及应用.煤气与热力,2001,21(4):321~323.
    [10]R. K. Collier,T. S. Cale, Z.Lavan, Advanced desiccant material assessment, Gas Research Institute Report GRI-86/0182,1986,428~512.
    [11]R. K. Collier, Advanced desiccant material assessment-phase Ⅱ, Gas Research Institute Report GRI-88/0125,1988,334~350.
    [12]T.W.Chung, T.S.Yah.Influence of manufacturing variable on surface properties and dynamic adsorption of silica gel, non-crystalline Solids,2001,279:145~153.
    [13]Tokatev M, Gordeeva L, Romannikov V, et al. Thermal Science,2002,41: 470~474.
    [14]Yu.I.Aristov, M.M.Tokatev, G.Cacciola, et al.Selective Water Sorbents for Multiple Applications, 1.CaCl2 Confined in mesopores of Silica Gel:Sorption properties. Reaction Kinetics and Catalysis Letters.1996,59(2):325~333.
    [15]Yu.I.Aristov, M.M. Tokatev, G.Cacciola, et al.Selective Water Sorbents for Multiple Applications,2.CaCl2 Confined in mesopores of Silica Gel:Sorption properties. Reaction Kinetics and Catalysis Letters.1996,59(2):335~342.
    [16]J.Khedari, R.R.awangkul, W.cheemchavee. Feasibility study of using agrculture waste as desiccant for air conditioning system. Renewable energy,2003,28(10): 1617~1628.
    [17]刘业凤,范宏武,王如竹.新型复合吸附剂SiO2·xH2O·yCaCl2与常用吸附剂空气取水性能的对比实验研究.太阳能学报,2003,24(2):141~144.
    [18]张学军,代颜军,王如竹.新型复合干燥剂吸附分形特性.工程热物理学报,2004,25(2):320~322.
    [19]方玉堂,梁向晖,范娟等.硅胶/分子筛复合物的制备及吸附性能.材料研究学报,2004,18(6):641~646.
    [20]J.Wurm, D.Kosar, T.Clemens. Solid desiccant technology review, Bulletin of the international institute of refrigeration,2002,82(3):2-31.
    [21]R.V.Dunkle. A method of solar air conditioning, Mech, and Chem. Eng. trans, I, E Aug,1965,1:73~78.
    [22]G.O.G.Lof.J.Appleyard, Preliminary performance of simplified advanced solar desiccant cooling system employing air-to-water exchanger coil and partial air recirculation, Proceedings of 10th Annual ASME Solar energy Conference, Denver, Colo.1988:145~151.
    [23]D.G.Waugama, C.F.Kettleborough.Combining direct and indirect evaporative cooling systememploying air-water exchanger coil and partial air recirculation, Proceedings of 10th Annual ASME Solar energy Conference, Denver, Colo.1988:145~151.
    [24]A.A.Pesaran, T.R.Penney, Impact of desiccant degradation on Desiccant cooling system performance. ASHRAE TransactionVol.97, part1,1992:595~601.
    [25]Z.Lavan, W.M.Worek. Second law analysis of desiccant cooling systems. Journal of Solar Energy Engineering.1982,104:229~236.
    [26]代彦军,俞金娣,张鹤飞.转轮式干燥冷却系统参数分析与性能预测.太阳能学报.1998,19(1):60~65.
    [27]冯毅,谭盈科,李宗楠,太阳能驱动的吸附除湿空调系统的研究.太阳能学报,2000,21(3):265~680.
    [28]W.Zheng, W.M.Worek and D.Novosel. Performance Optimization of Rotary Dehumidifiers. Solar Energy Engineering, Trans of the ASME,1995,117:40~46.
    [29]J.C.Sheridan, J.W.MitChell. Hybrid solar desiccant Cooling sysem.Solar Energy, 1985,34(2):187~193.
    [30]P.L.Dhar, SK singh.Studies on solid desicant based hybrid air conditioning systems. Applied Thermal Engineering,2001,21:119~134.
    [31]Weiwei Liu, Zhiwei Lian, Reinhard Radermacher, Ye Yao. Energy consumption analysis on a dedicated outdoor air system with rotary desiccant wheel. Energy, 2007,32:1749~1760.
    [32]S.S.Mathaudhu, HVAC for energy showcase. ASHRAE Journal,1997,39(7): 27~30.
    [33]袁一军,新型绿色空调-Genius湿能空调器应用前景分析.建筑热能通风空调,2000,1:18~20.
    [34]丁云飞,丁静,杨晓西.基于太阳能再生的转轮除湿独立新风系统.流体机械,2006,34(8):63~66.
    [35]张于峰,郝红等.转轮复合式空调系统的数值计算及能耗分析.太阳能学报,2006,27(1):55~62.
    [36]R.S.Barlow.Analysis of the adsorption process and of desiccant cooling system:A pseudo-steady-state modle for coupled heat and mass transfer.U.S Development of Energy Report NO.SERI/TR-631-1130,Solar Energy Research Institute, Golden, Colo,1982.
    [37]J.J.Jurinak, J.W.Mitchell.Effect of matrix properties on the performance of a counterflow rotary dehumidifier.Journal of Heat Transfer,1984,106:638-635.
    [38]D.Charoensupapy, W.M.Worek, Parametric of an open-cycle adiabatic, solid desiccant cooling system. Energy,1988,13(9):739~749.
    [39]R.K.Collier, B.M.Cohen. An analytical examination of methods for improving the performance of desiccant cooling systems. ASME Journal of Solar Energy Engineering,1991,113:157~163.
    [40]W.Zheng et al, Numerical Heat Transfer, PartA,1993,23:211~232.
    [41]冯青,俞金娣,张鹤飞.转轮式干燥剂除湿器数学模型及RDEH程序.太阳能学报,1994,15(3):209~217.
    [42]I.L.Maclaine-cross, P.J.Banks, Coupled heat and mass transfer in regenerator-Prediction using an analogy with heat transfer, Int.J.Heat Mass Transfer,1972, 15:1225~1242.
    [43]E.ven den Bulck, J.W.Mitchell, S.A.Klein.Design theory for rotary heat and mass exchangers-I, Wave analysis of rotary heat and mass exchangers with infinite transfer coefficients, Int.J.Heat and Mass Transfer,1985,28:1575~1586.
    [44]Pascal Stabat, Dominique Marchio. Heat-and-mass transfers modelled for rotary desiccant dehumidifiers. Applied Energy,2008,85:128~142.
    [45]R.B.Evans et al, Journal of Heat Transfer,1991,113:329~335.
    [46]ChauC.K, Worek.WilliamM. Interactive simulation tools for open-cycle desiccant cooling systems. ASHRAE Transactions,1995,101:725~734.
    [47]J.L.Niu, L.Z.Zhang, Effects of wall thickness on the heat and moisture transfers in desiccant wheels for air dehumidification and enthalpy recovery, Int. Comm. Heat Transfer,2002,29 (2):255-268.
    [48]A.A.Pesaran, A.F.Mills, Moisture transport in Silica Gel packed beds-I. Theoretical study, Int.J. Heat and Mass Transfer,1987,30:1037-1049.
    [49]A.A.Pesaran, A.F.Mills, Moisture transport in Silica Gel packed beds-II. Experimental study, Int.J.Heat and Mass Transfer,1987,30:1051~1060.
    [50]Mihajlo.N.Golubovic, H.D.Madhawa Hettiarachchi et al. Evaluation of rotary dehumidifier performance with and without heated purge. Heat and Mass Transfer,2007,34:785~795.
    [51]P.Majumdar.Heat and mass transfer in composite desiccant pore structures for dehumidification.Solar Energy,1998,62(1):1~10.
    [52]G.R.Thorp.The modeling and potential application of a simple solar regenerated grain cooling device.Postharvest Biology and Technology 1998,13:151~168.
    [53]代彦军,干燥剂除湿与燕发冷却复合传热传质及应用研究:[博士学位论文].西安:西北工业大学,1999.
    [54]张学军,代彦军,王竹如.蜂窝式转轮除湿性能参数优化.机械工程学报,2005,41(5):74~78.
    [55]袁卫星,刘晓茹.转轮除湿器简化模型数值模拟与性能分析.太阳能学报,2003,28(3):296~300.
    [56]雷海燕,刘雪玲.固体吸附式空调及其研究进展.天津理工大学学报,2005,21(3):49~51.
    [57]方利国,谭盈科.除湿制冷系统及除湿器研究进展.广东化工,1995,23(3):15~19.
    [58]李芃,仇中柱,沈晋明.除湿转轮的数学模型.同济大学学报,2004,32(3):327~331.
    [59]钟金华,代彦军.干燥剂转轮动态除湿特性实验研究.上海交通大学学报,2005,39(8):1205~1208.
    [60]P. Majumdar, Heat and mass transfer in composite desiccant pore structures for dehumidification, Solar Energy,1998,62 (1):1~10.
    [61]秦朝葵,Gerhard Schmitz.氯化锂除湿转轮的性能预测.同济大学学报,2002,30(7):807~810.
    [62]John D.Anderson.计算流体力学基础及其应用(吴颂平,刘赵淼,译者).北京:机械工业出版社,2008.201-210.
    [63]A.Kodama, T.Hirayama, M.Goto, T.Hirose, R.E.Critoph, The use of psychrometric charts for the optimization of a thermal swing desiccant wheel, Applied Thermal Engineering 2001,21:1657~1674.
    [64]刘瑞,刘蔚巍.转轮除湿复合式空调系统能耗研究.流体机械,2005,33(12):69~72.
    [65]刘东,沛霖.吸收式除湿制冷的特性研究.华东电力,2001(2):17-19.
    [66]施泰姆勒F(著).湿度控制与冷却顶棚(戴茹,译者).暖通空调,1998,28(2):1~4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700