城市住区室外热环境数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文试图在前人基础上,运用CFD技术进行住区室外热环境的数值模拟研究,定量分析了不同影响因子和不同建筑布局形式对城市住区热环境的影响情况,本文重点介绍了以下几个方面:
     首先,阐述本次研究的背景、目的、意义,由于城市人口的快速增长导致了住房需求的急剧膨胀,住区的建设得以快速发展,这种趋势不仅使城市大范围的热环境恶化,因此研究城市热环境对于降低小区内的热岛强度,实现小区热环境的优化,达到提高居民的热舒适度,节约建筑能耗以及将来的住区的规划等方面都具有指导作用。
     其次,对住区热环境数值模拟的软件与理论进行介绍。本次研究是运用CFD技术对建筑外部的空气流动情况进行模拟和预测,具体阐述了计算流体力学的一般的求解过程,并罗列了模拟时运用的相应参数,为下面的具体操作提供理论支撑。
     再次,采取垂直和水平同步观测方法,实测了2009年夏季杭州城西某高层住区的室外近地面气温、下垫面表面温度和近墙面气温状况,揭示了高层住区室外热环境的三维空间分布规律。结果表明:在静风或微风条件下高层住区在不同时段在不同方向的建筑体界面上的热环境三维分布存在明显差异。在垂直方向上,建筑体的遮阳作用是导致高层住区夏季昼间室外空气温度三维分布差异的最主要因素;在2-18层,东、南面近墙面气温约在12:00左右达到最高值,西、北面近墙面气温约在下午14:00达到最高值。在水平方向上,近地面气温和下垫面表面温度同时受不同下垫面特征与建筑体遮阳作用影响。上述规律可以为我国夏热冬冷地区高层住区的生态低碳节能的规划设计与建设提供科学依据。
     最后,选取杭州城西三个现实住区为模拟区域,应用多天夏季室外水平与垂直气温观察数据及CFD技术量化模拟了夏季不同建筑布局形式住区室外热环境的三维分布规律,比较了无风与微风条件下只考虑导热、同时考虑导热和自然对流两种情形下三种不同建筑布局形式住区的室外热环境空间分布特征。结果表明,住区内部的室外热环境受住区下垫面分布、太阳辐射和建筑物表面热物理属性等诸多因素影响,同时考虑导热和自然对流条件下室外模拟温度比仅考虑导热条件更接近于现实室外热环境,即分别相差约为1~3℃。在相似的下垫面特征、太阳辐射和建筑体表面热属性情况下,通常室外热环境在水平方向上建筑间距与建筑高度比值越小,各热源之间的干扰就越多,建筑物之间空气温度越高,在垂直方向上随着高度的变化室外热环境逐步由下垫面导热的影响为主转变为太阳辐射与自然对流为主的影响,纵向气温变化约为2~2.5℃,并且同时考虑导热和自然对流条件下比仅考虑导热条件的纵向气温变化要少2℃。点式高层布局住区的室外热环境优于围合高层与行列式多层布局住区。
This paper attempts to use CFD techniques to processing fine simulation study of thermal environment of settlements in the outdoor with the previous basis, and use quantitative analysis of the relationship between the different influence factors and the form of the architectural layout and the thermal environment of urban settlements, the article focuses on the following areas:
     First of all, the article explains that the background to the study, purpose, meaning, and the rapid growth of urban population has led to the rapid expansion of housing demand, and the construction of settlements gets development, this trend is not only to make a wide range deterioration of the thermal environment of the city, so the research of the urban heat environment have a guiding role to reduce the heat island intensity in the district, optimizing the thermal environment in the district. improve the thermal comfort of residents, save the building energy consumption and give future planning of settlements,.
     Secondly, the article introduces numerical simulation software and theory of the thermal environment of the settlements. This study uses CFD technology to study on air flow modeling and prediction of the buildings'outside, describing the process of solving the general computational fluid dynamics in detail, and list the corresponding parameters for the use of simulation, to provide theoretical support for the following specific operations.
     Thirdly, by choosing the combining method of vertical and horizontal synchronous observations, the outdoor surface temperature, underlying surface and near wall temperature were observed in a high-rise residential complex located on the west of Hangzhou in summer 2009, and three-dimensional distribution of high-rise residential outdoor thermal environment was analyzed. Results show that there is a big difference in 3D distribution regularity of outdoor thermal environment for high-rise buildings in different directions at different hours under the condition of static or breeze. In vertical direction, the near wall temperatures of eastern and southern wall peak at 12:00 from the 2nd to the 18th floor, while the western and northern near wall temperatures reach to a peak at about 14:00 pm. In a horizontal direction, the surface temperature and underlying surface temperature are not only related to the underlying characteristics, but also affected by building shade. The results could provide a scientific basis for the energy-saving planning and design and promote low-carbon and ecological high-rise residence area developing in hot summer and cold winter zone in China.
     Last, using three types of urban residential in the west of Hangzhou as simulation area, this study simulated the three-dimensional distribution of the outdoor building thermal environment with horizontal and vertical outdoor observed temperature data and CFD technique. Two scenarios were considered when comparing the breeze or calm wind condition:one with the heat conductivity and the other with both heat conductivity and natural convection case. The present paper aims at using different types of settlements to examine the spatial distribution of the outdoor thermal environment. The result showed that the outdoor settlements thermal environment is influenced by settlements underlying surface distribution, solar radiation and thermo physical properties of the buildings surface and many other factors, taking into account the heat conductivity and natural convection conditions, which is closer to reality than only considering the heat conductivity conditions. In similar circumstances underlying surface distribution, solar radiation and thermo physical properties of the buildings surface, the ratio of horizontal distance buildings and building height is smaller, the interference between heat sources is more frequently and the air temperature between buildings is higher. When the height of the vertical direction changes, the factors transform from underlying surface thermal to solar radiation and natural convection effects. The point-high building construction layout of the outdoor thermal environment is better than enclosed multi-level layout and the determinant settlements.
引文
[1]柳孝图.城市物理环境与可持续发展[M].南京:东南大学出版社1999.3.
    [2]Rosenfeld A. Mitigation of urban heat islands:materials, utility programs, updates[J]. Energy and Buildings,1995,22:255-265.
    [3]Murakami. CFD analysis of wind climate from human scale to urban scale[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999.81 (1-3):57--81.
    [4]陈卓伦.等.广州典型住宅小区微气候实测与分析[J].建筑学报,2008,(11):24-27.
    [5]李伟强,周孝清.广州市单体建筑室外微气候热环境研究[J].建筑科学,2009,,25(6):58-60.
    [6]霍小平.城市住区绿化体系研究[J].西安建筑科技大学学报(自然科学版),2007,,39(2):165-170.
    [7]张一平.等.昆明城市建筑物外壁表面热力效应研究一不同季节建筑物外墙壁面表温和近旁气温时空分布特征[J].地理科学.2004.24(5):597-604.
    [8]史洁.等.上海高层住宅夏季室内热环境调查研究[J].暖通空调,2007.37(5):p.118-121.64.
    [9]林波荣.李晓锋,朱颖心.太阳辐射下建筑外微气候的实验研究——建筑外表面温度分布及气流特征[J].太阳能学报.2001.22(3):327-333.
    [10]李晓锋.等.围合式住宅小区微气候的实验研究[J].清华大学学报(自然科学版),2003.43(12):1638-1641.
    [11]王威,等.不同地表状况下的温度分布比较研究[J].北方园艺,2001(4):24-26.
    [12]文远高.居住区绿化的降温效应与建筑节能[J].住宅科技.2003(6):46-48.
    [13]李灿,等.住区徽热环境测试方法[J].建筑科学,2007.23(8):61-64,75.
    [14]陈玖玖.等.建筑布局对小区热环境影响的数值分析[J].暖通空调.2004.34(8):13-16.
    [15]王金沙.山地城市建筑群微气候的测试与评价[D].重庆大学.2006.
    [16]谢玲.山地城镇不同地形特征的室外热环境特性研究[D].重庆大学,2006.
    [17]刘淑丽.山地城镇室外热环境的测试与评价[D].重庆大学.2004.
    [18]冯源.山地城镇室外热环境的模拟与预测[D].重庆大学,2005.
    [19]张红.山地城镇室外热环境研究与评价[D].重庆大学.2005.
    [20]陈恩水.付秀章.苏南城市区域夏季热环境分析[J].东南大学学报:自然科学版,1997.27(6):123-127.
    [21]Chen H. et al. Study on outdoor thermal environment of apartment block in Shenzhen. China with coupled simulation of convection, radiation and conduction[J]. Energy and Buildings,2004. 36(12):1247-1258.
    [22]王莺.重庆地区住宅建筑设计与气候[D].重庆大学,2003.
    [23]Tadahisa K, Alio M, Shoichi M. Investigation on the formation of thermal environment in an urban canyon [J]. Journal of Architecture, Planning and Environment Engineering (Transactions of AIJ)No.372,1987.
    [24]Oman S. BaHammam. Sustainable development of streetscape in the desert city of Riyadh-Saudi Arabia[C]. Proceedings of International Conference on Sustainable Development in Building and Environment.2003.
    [25]Sandifer S. Givoni B. Thermal Effects of Vines on Wall Temperatures—Comparing Laboratory and Field Collected Data[C]. Proceedings of the Annual Conference of the American Solar Energy Society.2002.
    [26]Nishimura N. et al. Novel Water Facilities for Creation of Comfortable Urban Micrometeorology[J]. Solar Energy.1998.64(4-6):197-207.
    [27]Oke T R.Boundary layer climates[M].Methuen.Longdon.1978.
    [28]Yang F. Lau S S Y. Qian F. Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery[J]. Building and Environment.2010.45(1):115-134.
    [29]Giridharan R. et al. Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong[J]. Building and Environment.2007.42(10): 3669-3684.
    [30]Gordon B. B. The microclimates of a suburban Colorado{(USA)} landscape and implications for planning and design[J]. Landscape and Urban Planning.2000.49(3-4):97-114.
    [31]Terjung W H. O'Rourke P. Simulating the causal elements of urban heat islands[J]. Boundary Layer Meteorology 1980(19).93-188.
    [32]Eichhorn J. Entwicklung und Anwendung eines dreidimensionalen mikroskaligen Stadtklimamodells[D]. PhD thesis. Univ. Mainz. Germany.1989.
    [33]Wang H. Takle E S. A numerical simulation of boundary layer flows near shelterbelts [J].Boundary Layer Meteorology.1995.75.141-173.
    [34]Watanabe T. Bulk parameterization for a vegetated surface and its application to a simulation of nocturnal drainage flow[J]. Boundary Layer Meteorology.1994.70.13-35.
    [35]Michael B. Heribert F. Simulating surface—plant—air interactions inside urban environments with a three dimensional numerical model[J]. Environmental Modelling & Software 1998 (13):373-384.
    [36]Murakami S, Ooka R, Mochida A, Yoshida S, Kim S. CFD analysis of wind climate from human scale to urban scale[J]. Journal of Wind Engineering and Industrial Acronymic.1999, 81(1-3):57-81.
    [37]林波荣.李莹,等.居住区室外热环境的预测、评价与城市环境建设[J].城市环境与城市生态,2002.15(1):41-43.
    [38]林波荣.李莹,朱颖心.利用改进的CTTC模型对住区热环境进行预测与评价[C]中国建筑学会建筑物理分会第八届年会.2000.天津.
    [39]孙越霞,等.基于CTTC和STTC模型的城市热岛分析[J].煤气与热力.2005.25(5):11-17.
    [40]Yan Q Y.C. Using computational tools to factor wind into architectural environment design[J].Energy and Buildings.2004.36(12):1197-1209.
    [41]Stathopoulos T. Baskaran B A. Computer simulation of wind environmental conditions around buildings[J]. Engineering Structures,1996.18(11):876-885.
    [42]Li W. Wang F, Bell S. Simulating the sheltering effects of windbreaks in urban outdoor open space[J]. Journal of Wind Engineering and Industrial Aerodynamics.2007,95(7):533-549.
    [43]马剑.陈水福.平面布局对高层建筑群风环境影响的数值研究[J].浙江大学学报:工学版,2007.41(9):1477-1481.
    [44]赵炎.住宅小区室外热环境的实测与模拟[D].重庆大学.2008.
    [45]Fazia Ali-Toudert. H M. Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons[J]. Solar Energy.2007.81:742-754.
    [46]张志勤.喷泉周围热环境实验和理论研究[D].清华大学.2004.
    [47]Chen H. et al. Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation[J]. Building and Environment.2009.44(11): 2290-2299.
    [48]Li X. et al. Numerical analysis of outdoor thermal environment around buildings[J]. Building and Environment.2005.40(6):853-866.
    [49]He.1. Hoyano A. Asawa T. A numerical simulation tool for predicting the impact of outdoor thermal environment on building energy performance[J]. Applied Energy,2009,86(9):1596- 1605.
    [50]金建伟.街区尺度室外热环境三维数值模拟研究[D].浙江大学,2010.
    [51]赵玉心.FLUENT系列软件介绍[EB/OL].http://www.cfluid.com/bbs/viewthread.php?tid=41188.2003-1-7.
    [52]徐昉.计算流体力学(CFD)在可持续设计中的应用[J].建筑学报,2004(8):65-67
    [53]王福军.计算流体力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [54]窦懋羽.重庆住宅小区的热环境分析方法和设计策略研究[D].重庆大学,2007.
    [55]高亚锋.适于城市住区规划的室外热环境实测与模拟研究[D].重庆大学,2011.
    [56]陈云浩.等.上海城市热环境的空间格局分析[J].地理科学,2002.22(3):317-323.
    [57]于勇.FLUENT入门与进阶教程[M].北京理工大学出版社.2008.
    [58]Reducing Urban Heat Islands:Compendium of Strategies Trees and Vegetation. U.S. EPA[D].2008.
    [59]王伟武,邵宇翎.高层住区夏季昼间室外热环境三维分布规律研究——以杭州市为例[J].建筑学报,2011,(2):23-27.
    [60]Yang F, Stephen S Y Lau, Qian F. Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery[J].Building and Environment,2010. (45):115-134.
    [61]薛瑾.城市热岛产生的空间机理与规划缓减对策[D].浙江大学,2008.
    [62]冉茂宇,刘煜.生态建筑[M].北京:华中科技大学出版社,105-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700