PMOS/无机粉体复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机硅是一种无机-有机杂化材料,兼具无机材料和有机聚合物的特性,但是在500℃以上的应用环境中很难兼顾良好的耐高温性能与方便的室温固化性能,限制了有机硅材料在航空、航天、大功率集成电路等诸多行业的应用。本实验室合成了一种新型侧活性聚甲氧基硅氧烷树脂(PMOS),可以在室温下通过水解缩合反应形成高交联密度的基体树脂,具有良好的固化及施工工艺性能,但固化物的力学强度较低,不能直接用于耐高温粘接密封场合。因此,研究PMOS基复合材料不仅具有重要的现实应用意义,而且对耐高温高强度有机硅密封材料的研发具有指导意义。
     本论文使用一系列无机粉体对PMOS树脂进行高温强度与膨胀性能的调节,通过室温水解交联反应制备了PMOS/莫来石等复合材料,采用IR、XRD、SEM等方法研究了复合材料在高温有氧环境下的结构变化,通过TG、DSC等对复合材料的耐热性能进行考察,研究了复合材料的冲击强度、套接压剪强度、抗压强度、膨胀系数随温度的变化规律,并表征了复合材料的介电性能、耐介质性能、导热性能与阻燃性能。研究结果如下:
     1、莫来石、透锂长石、堇青石、熔融石英粉等材料具有独特的结构与性能特点,可以与PMOS树脂通过复配制备出具有耐高温低膨胀性能的新型复合材料。以有机锡作为催化剂,PMOS/无机粉体复合材料可以在室温下通过水解缩合反应实现交联固化,无机粉体的含量越高,材料的固化时间越短。
     2、PMOS/莫来石复合材料具有优良的耐高温性能、力学性能、耐介质性能、阻燃性能和介电性能。IR、XRD、SEM表明,随着温度的升高,PMOS/莫来石复合材料中的有机硅基体降解并发生了无机化转变,而莫来石晶体则逐渐生长。PMOS/莫来石复合材料的冲击强度、套接压剪强度、抗压强度等力学性能随老化温度的升高而发生变化,在100~500℃阶段,由于有机硅基体的降解导致复合材料的力学性能逐渐降低,冲击强度由2548J/m~2降为589J/m~2,套接压剪强度由23.08MPa降为11.76MPa,抗压强度由27.3MPa降为15.6MPa;而在500~800℃阶段,莫来石晶体的生长会使复合材料的力学性能有所提高,冲击强度由589J/m~2增大至924 J/m~2,套接压剪强度由11.76MPa增大至19.20MPa、抗压强度由15.6MPa增大至21.7MPa。TG、DSC测试表明,PMOS/莫来石复合材料的耐热性能优于PMOS树脂固化物,500℃时前者残留质量为96%,后者为87%;800℃时前者为93%,后者为82%。莫来石的加入提高了材料的耐热性能。PMOS/莫来石复合材料具有良好的耐介质性能和阻燃性能,在航空煤油中浸泡6个月后,材料的体积无变化,质量保持仍达到99.1%;材料的氧指数≥60,阻燃性能优良。PMOS/莫来石复合材料经过不同温度热处理后高频阶段的介电常数在6.5-9.0之间。
     3、PMOS/莫来石复合材料在高温环境中尺寸仍然保持稳定,具有较低的热膨胀系数,在100~200℃温度范围内,膨胀系数随着温度的升高而略有增大,且莫来石含量越高时复合材料的膨胀系数越小。
Polysiloxanes are semi-inorganic polymers with high thermal stability,good weather resistance,low surface tension,and unusually high permeability.Their degradation above 500℃and the needing of high crosslinking temperature,however,restrict their applications in many areas.Polymethylmethoxysiloxane(PMOS) with dense pendant Si-bound methoxy groups was synthesized in our laboratory,and PMOS could be cured at room temperature with moisture via hydrolytic condensation to form high crosslink density material.While PMOS also had some disadvantages in practical application and the major one lay in their low mechanical strength.
     In this thesis,a series of PMOS/inorganic powder composites were prepared at room temperature,with good thermal resistance and low expansion.The structure transformation of PMOS/mullite composite at elevated temperatures was characterized using IR,XRD and SEM.The thermal resistant performance was studied by TG and DSC.We also reported investigation of PMOS/mullite composite on impact strength, compress shear strength,compress strength,thermal expansion,dielectric strength,solvent resistance,heat conduction and fire retardant performance.
     1、Some inorganic powders such as mullite,petalite,cordierite and silica flour could be incorporated with PMOS at room temperature via dibutyltin dilaurate catalyst to prepare materials with good thermal resistance and low expansion.The higher mullite content,the sooner composite cured.
     2、PMOS/mullite composite could play many good performances.IR XRD and SEM characterized that during the thermal processing PMOS had a degradation reaction while mullite crystallite size grew.As a result, impact strength,compress shear strength and compress strength changed with the temperature.During 100~500℃,impact strength decreased from 2548J/m~2 to 589J/m~2,compress shear strength from 23.08MPa to 11.76MPa and compress strength from 27.3MPa to 15.6MPa.While during 500~800℃,impact strength increased from 589J/m~2 to 924 J/m~2, compress shear strength from 11.76MPa to 19.20MPa and compress strength from 15.6MPa to 21.7MPa.Results of TG and DSC showed that the residual mass of PMOS/mullite composite at 800℃was 93.4 wt%, higher than that of crosslinked PMOS.The incorporation of mullite improved thermal resistance of the material.After soak in jet fuel for six months,volume of composite did not change and residual weight was up to 99.1%.Oxygen index of composite was higher than 60%,showing high fire retardant performance.Dielectric constant after thermal degradation was between 6.5 and 9.0.
     3、PMOS/mullite composite had excellent dimensional stability at elevated temperatures.During 100 to 200℃,coefficient of thermal expansion was at 10-5℃~(-1) and decreased with the incorporation of mullite.
引文
[1]幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社,2000
    [2]Zhang Junying,Han yanming,Shiling,Yangqiaoyun.A Facile Methed for Synthesis of Advanced Polysiloxane and Application for Heat Resisting Adhesives.In:Proceeding of the 3~(rd) World Congress on Adhesion and Related Phenomena WCARP Ⅲ.Beijing,2006.503-505
    [3]周其凤,范星河,谢晓峰.耐高温聚合物及其复合材料合成、应用与进展.北京:化学工业出版社,2004
    [4]Comyn J.Moisture cure of adhesives and sealants[J].International Journal of Adhesion and Adhesives,1998,18:247-253
    [5]KuceraM,L anikovaJ,and JelinekM.J Po lym Sci,1961,53:301.
    [6]Thomas T H,Kendrick T C.J Po lym Sci:Part A 22,1969,7:537.
    [7]Critch ley J P,Knigh t G J,W righ tW W.Heat2Resistant Po lymers.New York:Plenum Press,1983,333.
    [8]曾黎明.功能复合材料及其应用[M].北京:化学工业出版社,2007
    [9]罗运军,桂红星.有机硅树脂及其应用[M].北京:化学工业出版社,2002
    [10]刘俊峰,胡友惠.聚氨酯改性有机硅体系性能的研究[J].高分子材料科学与工程.
    [11]孟季茹,梁国正,赵磊,秦华宇.环氧树脂有机硅复合材料的研制[J].化学新型材料,2002,28(9):33-35
    [12]刘媛.POSS改性有机硅树脂及对其复合材料性能的影响.哈尔滨工业大学研究生毕业论文,2006
    [13]李直隶.双酚A改性硅树脂研制[J/OL].有机硅材料及应用,1994,3
    [14]颜薇,李文铎,陈晋南.“SiO_2-有机硅”共聚物耐热涂料[J].化工学报.化工学报.2002,1,53(1):45-49
    [15]陈金周,李相魁.偶联剂对玻纤增强PF尼龙界面和性能的影响[J].工程塑料.1994,22(5):54-57
    [16]胡廷永,李文晓,林冀松,阎里选.玻璃纤维的表面处理及含量对GF/PVC性能的影响[J].玻璃钢/复合材料.1995,(1):21-23
    [17]陈平,陈辉,刘其贤.偶联剂对玻璃纤维/环氧基复合材料界面介电性能的影响研究[J].复合材料学报.1996,8,13(3):1-4
    [181 郭旭,黄玉东,曹海琳.玻璃纤维/甲基硅树脂复合材料高温及耐湿热性能的研究[J].航空材料学报.2004,8,24(4):45-48
    [19]闵春英,黄玉东,王磊,赵翼.溶胶-凝胶法制备SiO2杂化有机硅树脂及其耐热性能研究.化学与黏合.2006,8,26:372-375
    [20]AokiT,Iida Y.β2diketone and Hydrotalcite Stabilizer Compositions for Halogen2containing Polymers and Polymer Compositions Containing the Same[P].US,4427816.1984
    [21]舒文晓.聚苯乙烯/纳米水滑石复合材料的制备和表征.浙江大学硕士学位论文,2005
    [22]张军营,杨巧云,史翎.CaCO_3/聚甲氧基聚硅氧烷复合材料的性能研究[J].石油化工
    [23]吴永刚,马懿,李敬泽,姜郁英.无机刚性粒子增韧PP的研究[J].中国塑料.1999,4,13(4):29-33
    [24]李东明,漆宗能,碳酸钙增强聚丙烯复合材料的断裂韧性[J].高分子材料科学与工 程.1991,7(2):18-25
    [25]Iwamoto T,Mackenzie J D.J Mater Sci,1995,30:2566
    [26]Nunes S P,Schultz J,Peinenann K V.J Mater Sci Lett,1996,15:1139
    [27]傅强,王贵恒,刘春晓.HDPE/CaCO_3共混物中的“芯-壳”模型[J].高分子材料科学与工程.1993,5,(3):120-125
    [28]贾颖,雷圣功,吴其晔.刚性无机粒子改性HDPE的研究[J].塑料技术.1996,(3):4-9
    [29]成江.填料级配对填充复合体系性能的影响.南京大学研究生毕业论文,1998
    [30]王世敏,吴崇浩,赵雷等.聚二甲基硅氧烷/SiO_2杂化材料的制备与性能的研究,材料科学与工程学报2003,21(2):205-207
    [31]Miyata S,Kuroda M.Method for inhibiting the thermal or ultraviolet degradation of thermoplastic resin and thermoplastic resin composition having stability to thermal or ultraviolet degradation[P].US,4299759.1981
    [32]向后芳之,丸岛尚贵.盐素化安定方法[P].公开特许公报,昭602184536.1985
    [33]佐藤义则,赤林宏,赤岭博司,等.新规树脂组成物[P].公开特许公报,昭592140261.1984
    [34]唐卫华,金日光.我国刚性粒子增韧HDPE的研究进展[J].现代塑料加工应用.2001,4,13(2):59-64
    [35]Thio Y S,Argon A S,Cohen R E,Weinberg M.Toughening of isotactic polypropylene with CaCO_3 particles[J].Polymer.2002,43(13):3661-3674
    [36]Roger Rothon.Particulate-filled polymer composites[J].Polymer Testing.1996,(15):397
    [37]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构[J].高分子材料科学与工程.1998,3,14(2):12-15
    [38]孟季茹,梁国正,秦华宇,赵磊.刚性粒子增韧增强聚合物的研究概况[J].改性塑料.2002,31(2):47-50
    [39]傅平秋,刘高魁,郭九皋,王冠鑫.烧结莫来石的某些矿物学特征,矿物学报,1992 9vol 12.No3 235-242
    [40]魏坤,贺伦燕,石燕.莫来石材料的研究现状及应用功能材料1993 24(1)
    [41]倪文,陈娜娜,赵万智,刘凤梅.莫来石的工艺矿物学特性及其应用地质与勘探1995,30(3)26-27
    [42]Mandal S,Chakrabarti S,Das S K,et al.Synthesis of Low Expansion Ceramics in Lithia-alumina-silica System with ZirconiaAdditive Using the Powder Precursor in the Form of Hydroxyhydrogel[J].Ceramics International,2007,33(2):123-132.
    [43]方邺森,方金满,任敷孟.节能陶瓷原料——含锂矿物[J].硅酸盐通报,1986,(4):3436.
    [44]吴建峰.高分子网络法合成纳米ZnO粉体的XRD分析[J].功能材料,2007,38:84-88.
    [45]郝建民.富铝莫来石相的XRD定量[J].现代仪器,2001,3:26-30.
    [46]史翎,段雪.阻燃剂的发展及在塑料中的应用[J].塑料..2002,3(31):11-15.
    [47]王永强,牛正发.含硅阻燃剂的新进展[J].塑料工业,2003,31(2):9-12
    [48]欧育湘,李松岳.新型非卤阻燃剂——硅系阻燃剂.塑料技术,1993(2):9
    [49]贾修伟,刘治国.硅系阻燃剂研究进展.化学进展,2003,22(8):818
    [50]李永华,曾幸荣,刘波等.有机硅树脂与溴系阻燃剂协同阻燃ABS的研究.塑料工业, 2004,32(1):13
    [51]吴金坤.有机硅在无卤阻燃化技术中的应用.化工新型材料,1997(2):7
    [52]张增光,贵大勇.聚硅氧烷阻燃剂的研究进展.塑料.2007,36(4):86-89
    [53]贾修伟,刘治国.硅系阻燃剂研究进展[J].化工进展,2003,22(8):818-822
    [54]LEE W S,KIM S W,KOO B H,et al.Synthesis anmicrostructure of Y2O3-doped ZrO2-CeO2 composite nano-particles by hydrothermal process[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,313/314(2):100-104.
    [55]TANI E,YOSHIMURA M.Formation of ultrafme tetragonalZr02 powder under hydrothermal conditions[J].J Am Ceram Soc,1983,66(1):11-14.
    [56]AGLI G D,ESPOSITO S,MASCOLO G,et al.Films by slurrycoating of nanometric YSZ(8mol%Y2O3)powders synthesizedby low-teinperature hydrothermal treatment[J].Journal of theEuropean Ceramic Society,2005,25:2017-2021.
    [57]Aubebert R,Aubineau C.Kinetics of styrene polymerization at ultrahigh conversion.J Chem.Phys[J].1969,66:414-420
    [58]汤子强.聚苯乙烯热解反应动力学.太原理工大学学报[J].1999,30(5):497-499

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700