变形镁合金挤压-剪切复合制备新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金被誉为21世纪资源与环境可持续发展的绿色材料,已成为世界各国普遍关注的焦点。镁合金由于其具有的六方晶体结构的特点,在室温变形条件下独立的滑移系少,导致室温塑性低,变形加工困难。目前,90%以上的镁合金是以铸件的形式获得应用,而不是像铝合金那样大部分以挤压材和板材的形式获得应用。未来镁合金的发展必将依靠变形镁合金产品的大规模生产应用,而变形镁合金产品的广泛应用必须依靠镁合金塑性加工技术的根本突破。
     主要针对传统的镁合金挤压棒材的变形能力比较差和强韧性差,大变形技术(如ECAP)又难以工业化推广,而且工艺复杂、成本高等常见问题,提出了一种新型的镁合金复合挤压方法,就是将传统的挤压(Extrusion)和大塑性变形方法等通道挤压(ECAP)相结合,也就是将压缩变径挤压(Extrusion)和剪切(Shearing)(一次或者连续二次)结合起来(简称ES)。发展了一种低成本变形镁合金的挤压技术原型,对镁合金棒材进行晶粒细化及织构控制,找到一种提高镁合金塑性变形的新途径,形成一些新型的镁合金复合成形理论。所取得的成果如下:
     采用现代塑性加工方法从应力状态、变形路径以及变形能等方面对镁合金变形行为进行了研究。ES挤压不仅具有一般挤压的特点,而且在局部受到四向压力,而且承受连续剪切力。建立了镁合金ES变形过程应力状态模型和滑移场模型,推导出了考虑摩擦和不考虑摩擦的包含一次压缩减径挤压和n次连续剪切的挤压力模型。根据能量守恒原理建立了ES变形过程中变形区的温度场温升数学模型。确立了ES变形过程中累积应变,建立了Zener-Hollomon参数和模具结构的关系。在正挤压阶段Z1参数与挤压速度v1、挤压比λ、铸锭半径R1温度T之间的关系为:
     在一次剪切阶段Z2参数和二次剪切Z3与挤压速度v2、棒料半径R2、温度T、剪切通道转角β、夹角ψ之间的关系为:
     根据ES变形的思想,设计并制造了适合于热模拟仪Gleeble1500D的一次剪切的ES挤压装置。基于Gleeble1500D热模拟测试,证明了ES挤压是可行的。从ES热模拟挤压过程的应力-应变曲线和挤压力曲线的特点,ES热模拟实验中镁合金发生了与一般动态再结晶过程不一样的再结晶过程,具有明显的两个动态再结晶阶段,被称为“双级动态再结晶”。在300℃、350℃挤压速度为2mm/s时,经过ES热模拟设备挤压后动态再结晶尺寸分别为2μm、4μm。在正挤压阶段,累积应变的值较小,动态再结晶的方式主要是不连续再结晶。在剪切阶段主要为连续动态再结晶机制。根据热模拟实验建立了ES变形过程中每个阶段Z参数(压缩减径阶段lnZ1和剪切阶段lnZ2 )和晶粒尺寸的关系: InZ1=0.36-0.002Ind ;InZ2=0.81-0.004Ind。
     借鉴多道次等通道挤压工艺的特点,设计并制造了多付适合工业卧式挤压机上的ES变形组合凹模(挤压比为32.1、18、11.6)。进行了ES工艺实验和中试生产。中试生产在挤压温度为420℃、400℃和370℃挤压速度为20mm/s时取得了成功,由于挤压机的挤压能力的局限,使得在350℃下没有挤压成功。对坯料的应力状态进行了计算机模拟分析,发现ES挤压过程局部坯料受到四向压应力,坯料所承受的压力和剪切力比普通挤压大,因此可以更有效的细化晶粒。初步利用计算机模拟的结果建立了ES挤压极限图,为ES挤压工艺参数的选择奠定了基础。针对ES挤压实验留存在ES模具内部的棒料(挤压比为32.1、18)进行了微观组织观察和计算机模拟。结果表明在较低温度下ES挤压可以得到尺寸很小的动态再结晶晶粒,挤压比增大可以有效的细化晶粒,挤压温度升高虽然可以提高再结晶的体积分数,但使得再结晶晶粒长大。挤压比32.1、挤压温度420℃的工艺可以得到小到1-2μm的细小晶粒;温度为450℃组织较均匀,但晶粒长大迅速,最终组织较粗大。针对中试生产(挤压比为11.6)的ES挤压和普通挤压棒料的不同位置进行了微观组织观察,发现在370℃和400℃的ES挤压可以有效的细化晶粒,不仅可以细化棒材表层晶粒,心部也得到了细化。在对于420℃下的ES挤压效果比普通挤压效果要差,主要原因是高温下ES挤压的温升比普通挤压高,使得晶粒长大。
     在具有有二次连续剪切的ES热变形过程中由模拟计算的挤压力-时间曲线,可以发现双级动态再结晶的现象,在ES挤压的起初阶段主要是不连续动态再结晶,在挤压压缩变径和转角剪切阶段为连续动态再结晶。ES挤压可以在一定程度上提高屈服强度、抗拉强度。ES挤压前块状的第二相在剪切后逐步变成弥散分布在Mg基体上的小颗粒。挤压和连续两次剪切使更多的晶粒取向发生改变,使得基面与非基面取向共存。
Magnesium alloys are known as sustainable development of resources and environment green material in the 21st century, have become the focus concerned by all the countries in the world. Due to its hexagonal structure magnesium alloys can be deformed difficultly at room temperature for there are few separate slip system, which results in a low temperature plastic deformation processing. Currently, more than 90% of the magnesium alloys are used in cast state, but aluminum alloys are applied as extruates and sheets. In the future development of magnesium alloys will rely on large-scale production applications of wrought magnesium alloy products. While the extensive use of the wrought magnesium alloy products must rely on fundamental breakthrough in plastic processing technology of magnesium alloy.
     Deformation capacity、strength and toughness for the traditional extruded rods (profiles) of magnesium alloy is rather poor.Serve plasticity deformation technologies are difficult to be promoted to industrialize, and the processes are complicated, and costs are high. A new type of magnesium alloy composite extrusion method was presented which combines the traditional extrusion and the serve plastic deformation ECAP (equal channel anger pressing), that is to say extrusion and shearing (one or more than one) are combined (referred to ES).The ES may improve the industrialization preparation and processing of magnesium alloy rods (profiles). A kind of technology prototype with low-cost mass production has been developed to refine grains of magnesium alloys and control textures. And a way and new principles to improve the plastic deformation of magnesium have been found. New types of composite forming theories for magnesium alloy have been formed. The research results are as follows:
     Deformation behaviors of magnesium alloys were systematically studied including the stress state, deformation path as well as the deformation energy by using of modern plastic processing method.Stress states of magnesium alloy in ES deformation process have been analyzed.The differences between the ES extrusion and direct extrusion have been described.The billets are beared compression stress from the four-direction, then sheared by (once or multiple) continuous shearings.The required extrusion force per unit area with considering the deformation energy and friction has been derived.According to energy conservation principle mathematical models of temperature rise has been established in the ES deformation zone.Formulas of Accumulated strain and strain rate in the different phase during ES process have been established. Relationships between the Zener-Hollomon parameters and die structure parameters have been built.In the forward extrusion phase the function relationships Z1 parameter with the extrusion speed v1, extrusion ratioλ, the ingot radius R1, the temperature T as follows:
     In shearing stage the Z2 parameter function related to extrusion speed v2, rod radius R2, the temperature T, shear-channel angleβ, the fillet angleψis as follows:
     ES devices suitable for thermal simulation instrument Gleeble1500D have been designed and manufactured. A new recrystallization mode has been found out which was different from the traditional recrystallization process and known as the“the dual level dynamic recrystallization“in this paper. AZ31 magnesium alloy rods have been prepared at different temperatures based on thermal simulation devices. It was proved that ES extrusion was feasible. Microstructures have been observed and analyzed. The cast original 200μm can be refined into the 2μm, 4μm respectively with extrusion ratio 4 and preheat temperature 300℃, and 350℃respectively. And mathematical models of two-stage recrystallization have been established in ES process. In the extrusion stage, the accumulation strain value is smaller, dynamic recrystallization is mainly discontinuous recrystallization.Recrystallization mechanism in the shearing zones is continuous dynamic recrystallization.The relationship between Z parameters and grain size was established in ES deformation process based on thermal simulation experiment: InZ1=0.36-0.002Ind; InZ2=0.81-0.004Ind.
     According to ES thoughts and the deformation inhomogeneity in thermal simulation, characteristics of multi-channel channel and continuous extrusion process in industrial ES on the horizontal extruder, some ES combination dies used in industrial extrusion machine were designed and manufactured. Experimental and pilot production processes were carried out. AZ31 magnesium alloy billets had been extruded at different temperatures and different compression ratios. Pilot production was successful. The extrusion experiments with 18 extrusion ratio were successful, but the die was used only a few times.The analysis for stress state of the billets showed ES billet extrusion process by the four direction compressive stress, and billets were exerted continuous shear stress after the direct extrusion.The ES extrusion limit diagram was established preliminary for the ES extrusion process parameters with results of computer simulation and laid the foundation for the process choice. It was found from the results of ES extrusion that the limit diagram of the ES process can guide the ES process certainly.
     Finite element models were established according to ES process. It was found that there were many similarites between finite element simulation results and experimental results.1-2μm grain size of recrystallization grains can be obtained with extrusion ratio 32.1 and extrusion temperature 420℃. Microstructures were uniform with extrusion temperature of 450℃, but the grains grow rapidly, recrystallization grain size of about 6.3μm was obtained.
     Microstructures of ES and direct extrusion in pilot productions were compared. ES can not only refine grains on the surface effectively but the centers of the rods. ES extruded recrystallized fine grain size was obtained with ES extrusion temperature 370℃and 400℃, and the dynamic recrystallization volume fraction was much greater than direct extrusion.Typical recrystallization microstructures were appeared. But with the temperature increasing, the recrystallization and original grains grow rapidly at the extrusion temperature 420℃.
     In the ES during hot deformation, there are two obvious dynamic recrystallization stages, known as“the dual level dynamic recrystallization”. Discontinuous dynamic recrystallization happened mainly in the initial stages of ES extrusion. Continuous dynamic recrystallizations occur during continuous shearings.ES extrusion with low temperature can improve hardness (strength) obviously. ES can enhance magnesium alloy compression performance while raise yield strength, tensile strength.The second phase was sheared gradually and became granular during ES extrusion, and they were turned into 2-3μm particles dispersed in the Mg matrix. Two shearings made grain orientation change and basal plane and the coexistence of non-basal reorientate. There were several types of texture after extrusion, (0002) basal texture of the dominant position was reduced.
引文
[1]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:化学工业出版社,2005.
    [2]张津,章宗和等.镁合金及应用[M].北京:化学工业出版社,2004.
    [3]陈振华,夏伟军,严红革等.变形镁合金[M].北京:化学工业出版社,2005.
    [4]王强,张治民,张宝红.镁合金变形强韧化研究进展[J].材料导报,2006,20(431-434):30-35.
    [5]夏翠芹,刘平,任凤章.细晶变形镁合金的研究进展[J].材料导报,2006,20(9):23-28.
    [6]潘辉,刘晓烈,孙立喜,冯崇.镁及镁合金的晶粒细化[J].铸造设备研究,2007(5):39-43.
    [7]马怀宪.金属塑性加工学-挤压、拉拔与管材冷轧[M].北京:冶金工业出版社,1997.41-43.
    [8]陈刚,陈鼎,严红革.高性能镁合金的特种制备技术[J].轻合金加工技术,2003,31(6):40.
    [9]王渠东,丁文江.轿车用阻燃镁合金的研制[J].材料导报,2000,14(特刊):53.
    [10]李元元,张卫文,刘英等.镁合金的发展动态和前景展望[J].特种铸造及有色合金,2004,(1):14.
    [11]刘长瑞,王伯健,王庆娟等.镁合金AZ31常温下的塑性变形为[J].轻合金加工技术,2005,33(3):43-46.
    [12]叶永南.AZ31镁合金往复挤压成形热力耦合模拟研究[M].西安理工大学,2007.
    [13] Mabuch M,Kubota K,Higashi I.New recycling process by extrusion for machined chips of A291 magnesium and mechanical properties[J].MaterTrans JIM, 1995, 36:1249.
    [14] Hroyuki Watanabe,Hirosuke Tsutsui,Toshi Mukak.Grain Size Control ofCommercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recrystallization[J].Ma ter Trans JIM,2001,7:1200.
    [15]钟皓,陈琪,闫蕴琪等.AZ31镁合金的热挤压组织与力学性能分析[J].2007 3:52-56.
    [16]谢建新,刘静安.金属挤压理论及技术[M].北京:冶金工业出版社,2001.
    [17]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003.37-40.
    [18] Hyoung Seop Kim.Evaluation of strain rate during equal-channel angular pressing [J].J. Mater. Res., 2002, 17(1):172-179.
    [19] Mukai T, Watanabe H, Higashi K.Grain refinement of commercial magnesium alloys for high strain rate superplastic forming [J] .Materials Science form, 2000, 350P351:159-170.
    [20]黄光胜,汪凌云,范永革.AZ31B镁合金挤压工艺研究[J].金属成形工艺.2002,20(5):11-14.
    [21] Hsiang,Su-Hai,Kuo,Jer-Liang.An investigation on the hot extrusion process of magnesium alloy sheet[J].Journal of Materials Processing Technology,2003,140(9):6-12.
    [22] CHENYonun, WANGQu-dong, LibJinbao, ZHANGLu-jun, ZHAI Chun-quan. Microstructure and mechanical properties of AZ31 Mg alloy processed by high ratio extrusion[J].Tram.Nonferrous Met.Soc.China 2006, 16:875-s1878.
    [23] L.L. Chang, Y.N.Wang, X. Zhao, J.C. Huang .Microstructure and mechanical properties in an AZ31 magnesium alloy sheet fabricated by asymmetric hot extrusion[J].Materials Science and Engineering A.2008, A496:512–516.
    [24] Wiley J. Magnesium and its Alloys [M]. USA: Sons Inc, 1960: 177 180.
    [25] Segal V M, Reznikov V I, Drotyshevkij A E, et al. Plastic working of metals by simple shear [J].Russian Metallurgy,1981,1:99-105.
    [26] Valiev R Z , Krasilnikov N A , Tsenev N K. Plastic deformation of alloys wit h submicron grained structure[J].Materials Science and Engineering, 1991, A137:35-40.
    [27] J. ZRNIK, S. V. DOBATKIN, I. MAMUZI.PROCESSING OF METALS BY SEVERE PLASTIC DEFORMATION (SPD) STRUCTURE AND MECHANICAL PROPERTIES RESPOND [J] ,METALURGIJA, 2008, 47(3):211-216.
    [28]钟皓,陈琪,闫蕴琪等.AZ31镁合金的热挤压组织与力学性能分析[J].2007,3:52-56.
    [29] K. Matsubara a, Y. Miyahara a, Z. Horita a, T.G. Langdon.Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP [J].Acta Materialia, 2003, 51:3073–3084.
    [30] Li Yuan-Yuan, Liu Ying, NGAITgiLeo, et al. Effects of die angle on microstructures and mechanical properties of AZ31 magnesium alloy processed by equal channel angular pressing [J]. Trans Nonferrous Met Soc China 2004; 01:53–8.
    [31] R.Z.Valiev, T.G.Langdon.Developments in the use of ECAP processing for grain refinement [J].Rev.Adv.Mater.Sci, 2006, 13:15-26.
    [32] Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metall. 1981, 29: 1865-187.
    [33] Comstock H B.Magnesium and magnesium compounds-a material survey[C].U.S.Bureau of Mines Information Circular, 1963,128.
    [34] Kojima Y. Project of platform science and technology for advanced magnesium alloys [J].Material Transactions, 2000, 42(7):1154-1159.
    [35] B.L.Mordik, T.Ebert.Magnesium properties-applications-potential [J].Materials Science and Engineering, 2001, 302(1):37-45.
    [36]陈勇军,王渠东,翟春泉等.制备超超细晶材料的U形转角往复挤压模具[P].中国实用新型专利CN200510026810.5
    [37]王渠东,陈勇军,翟春泉等.制备超超细晶材料的S形等通道往复挤压[P] .中国实用新型专利No. 200420114965. 5.
    [38]王渠东,陈勇军,翟春泉等.制备超超细晶材料的C形等通道往复挤压模具[P] .中国实用新型专利No. 200420114966. X.
    [39]陈勇军,王渠东.折线式挤压成型装置[P].中国专利:CN1709603,2005-12-21.
    [40] Kim H K, Kim W J.Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation[J].Materials Science and Engineering A,2004,385:300-308.
    [41] JIN L, LIN D L, MAO D L, et al. Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion [J]. Materials Letters, 2005, 59 (18): 2267-2270.
    [42] K. Matsubara a, Y. Miyahara a, Z. Horita a, T.G. Langdon. Acta Materialia, 2003, 51: 3073–3084.
    [43] Agnew S R, Horton J A, Lillo T M, et al.Enhanced ductility in strongly textured magnesium produced by equal channel angular processing.Scripta Materialia [J]. 2004, 50(3):377-381
    [44] YOSHIDA Y, CISAR L, KAMADO S, et al. Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy [J].Materials Transactions,2003, 44 (4): 468-475.
    [45] JIN L, LIN D L, MAO D L, et al. Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion [J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing.2006, 423 (1-2): 247-252.
    [46] JIN L, LIN D, MAO D, et al. An electron back-scattered diffraction study on the microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion [J].Journal of Alloys and Compounds, 2006, 426 (1-2): 148-154.
    [47] Yang X, Miura H, Sakai T.Dynamic evolution of new grains in magnesium alloy during hot deformation [J].Mater Trans.2003, 419-422:509-514.
    [48] Chino Y, Sassa K, Kamiya A, et al. Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet [J]. Materials Science and Engineering A, 2006, 441: 349-356.
    [49] Perez-Prado MT, Valle JA, Ruano OA.Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding [J]. Scripta Materialia, 2004, 51: 1093-1097.
    [50] H.K. Lin, J.C. Huang, T.G. Langdon.Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP[J] .Materials Science and Engineering A ,2005,402:250–257.
    [51] L.L. Chang, Y.N.Wang, X. Zhao, J.C. Huang .Microstructure and mechanical properties in an AZ31 magnesium alloy sheet fabricated by asymmetric hot extrusion [J]. MaterialsScience and Engineering A. 2008, A 496:512-516.
    [52]简炜炜,康志新,李元元.多向锻造ME20M镁合金的组织演化与力学性能[J] .中国有色金属学报, 2008,l8(6):23-29.
    [53] Q.D. Wang et al.Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method [J]. Materials Letters,2007,61 :4599–4602.
    [54] Barnett M R. Quenched and annealed microstructures of hot worked magnesium AZ31 [J]. Mater Trans. 2003, 44: 571-577.
    [55] Hui Zhang, Qiqi Yan, Luoxing Li.Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process [J]. Materials Science and Engineering, 2008, A486:295-299.
    [56] Y.H. Ji et al. Finite element analysis of severe deformation in Mg–3Al–1Zn sheets through differential-speed rolling with a high speed ratio [J]. Materials Science and Engineering A, 2007, 454–455: 570-574.
    [57]刘先兰,张文玉,刘楚明.异步轧制AZ31镁合金板材组织[J].中南大学学报,2008(12),39 (6):1244-1249.
    [58] Chino Y, Sassa K, Kamiya A, et al. Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes [J]. Materials Science and Engineering: A, 2008, 473:195-200.
    [59] Sun H Q, Shi Y N, Zhang M X, et al. Plastic strain-induced grain refinement in the nanometer scale in an Mg alloy [J]. Acta Materialia, 2007, 55: 975-982.
    [60] Valle J A, Pérez-Prado M T, Ruano O A. Deformation mechanisms responsible for the high ductility in an Mg AZ31 alloy analyzed by electron backscattered diffraction[J].Metallurgical and Materials Transactions A, 2005, 36: 1427-1438.
    [61] Chino Y, Lee J S, Sassa K, et al. Press formability of a rolled AZ31 Mg alloy sheet with controlled Texture [J]. Materials Letters, 2006, 60: 173-176.
    [62] Yang X, Miura H, Sakai T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation [J]. Mater. Trans. 2003, 44: 197-203.
    [63] J. ZRNIK et al. PROCESSING OF METALS BY SEVERE PLASTIC DEFORMATION (SPD)– STRUCTURE AND MECHANICAL PROPERTIES RESPOND PROCESSING OF METALS BY SEVERE PLASTIC DEFORMATION (SPD)– STRUCTURE AND [J]. METALURGIJA, 2008, 47 (3): 211-216.
    [64]唐宁,汪明朴,娄花芬.双辊铸轧AZ31镁合金板坯的物相分析[J] .中国有色金属学报,2009,19(3):433-439.
    [65]彭大暑.金属塑性加工原理[M].长沙:中南大学出版社, 2004.205-225.
    [66]艾维超(Avitzur,B.)著.Metal Forming and Processes, McGraw-Hill, 1968.
    [67]陈彬,林栋樑,曾小勤等.等通道角挤压对AZ91镁合金组织性能的影响[J].热加工工艺,2006,35(13):23-26.
    [68]何宜柱,陈大宏,雷廷权.热变形动态软化本构模型[J].钢铁,1999,34(9):29-33.
    [69]金蕾,徐有容.C-Mn钢热变形行为及其流变应力模型的研究[J].上海大学学报(自然科学版),1999,5(2):123-127.
    [70] Segal V M, Rereznikov V I, Drobyshebskiy A E Kopylov V I, et al. Metally [J].1981,1:115(English transaction: Russian Metallurgy, 1981, 99).
    [71] H P Stuwe,A F Padilha,F.SiciliaoJr.Competition bettween recovery and recrystallizatrion[J],Materials science and engineering.2002,A333:361-367.
    [72] Iwahashi Y, Horita Z, Nemoto M, Langdon TG.The process of grain refinement in equal-channel angular pressing [J]. Acta Mater 1998, 46:3317–31.
    [73] WATANABE H, TSUTSUI H, and MUKAI I, ISHIKAWA K, OKANDA Y, KOHZU M, HIGASHI K. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamicrecrystallization [J].Materials Transactions, 2001, 42:1200?1205.
    [74] A Laasraoui, J Jonas. Rrediction of steel flow stresses at high temperature and strain rates [J]. Metallurgical transactions A, 1991, 22A: 1545 -1558.
    [75] Segal VM .Materials processing by simple shear[J].Mater Sci Eng,1995,A197(2):157.
    [76]张广俊,龙思远,曹凤红.AZ61镁合金在不同挤压温度下的组织与力学性能[J].特种铸造及有色合金,2009,29(3):270-274.
    [77]魏伟,陈光.等径角挤压的上限解分析[J],有色金属,2005,57(1):23-27.
    [78] Hroyuki Watanabe,Hirosuke Tsutsui,Toshi Mukak[J].Ma ter Trans JIM,2001,7:1200
    [79] LOF J. Elasto-viscoplastic FEM simulations of the aluminum flow in the bearing area for extrusion of thin-walled sections [J].Journal of Materials Processing Technology, 2001, 114:174?183.
    [80] I.J.Beyerlein, L.S. Tóth. Progress in Materials Science, Texture evolution in equal-channel angular extrusion [J].2009, 54:427–510.
    [81] Rice, J.G., Schnipke, R.J.A Monotone Streamline Upwind Finite Element Method for Convection
    [82] Avedesian Michael M, Baker Hugh. Magnesium and magnesium alloys [M], ASM International, 1999.
    [83] Dahle A.K., StJohn D.H., and Danlop G.L. Developments and challenges in utilization of agnesium alloys [J]. Materials Forum, 2000, 24:167-182.
    [84] A. J. den Bakker, W. H. Sillekens, J. Bohlen, K. U. Kainer and G. Barton: Proc. 6th Int. Conf. on‘Magnesium alloys and their applications’[D], (ed. K. U. Kainer). 324; 2003, Weinheim, Wiley-VCH.
    [85] ROUSSE D R. Numerical predictions of two-dimensional conduction, convection, and radiation heat transfer.I.Formulation [J]. International Journal of Thermal Sciences, 2000, 39(3):315?31.
    [86]翟秋亚,王智民,袁森,蒋百灵.挤压变形对AZ31镁合金组织和性能的影响[J],西安理工大学学报,2002,18(3):254-259.
    [87]胡基贵,李落星,莫见虎.AZ31镁合金热挤压变形过程温度变化与控制[J].矿冶工程,2007,27(4):20-25.
    [88] Xue Q, Beyerlein IJ, Alexander DJ, Gray III GT. Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing [J]. Acta Mater 2007, 55:655–68.
    [89]徐淑波.等通道弯角挤压(ECAP)变形机理[D],山东大学博士学位论文,2006.
    [90]王新,王迎新,曾小勤.AZ31B管材挤压数值模拟及挤压极限图的建立[J].锻压装备与制造技术,2006,4:57-62.
    [91]张水忠.挤压工艺及模具设计[M] .化学工业出版社,2009.
    [92]陈彬,林栋樑,曾小勤.等通道角挤压对AZ91镁合金组织性能的影响[J] .热加工工艺,2006,35(13):23-27.
    [93]李英杰,张秀芝,李锋.镁合金等通道转角挤压的研究[J].科学之友,2008,35:15-18.
    [94]黄光胜,汪凌云,黄光杰等.均匀化退火对AZ31B镁合金组织与性能的影响[J].重庆大学学报(自然科学版).2004,27(11):18-21.
    [95]张先宏,崔振山,阮雪榆.镁合金塑性成形技术-AZ31B成形性能及流变应力[J].上海交通大学学报,2003,37(12):1874-1877.
    [96] Hsiang,Su-Hai,Kuo,Jer-Liang.An investigation on the hot extrusion process of magnesium alloy sheet[J].Journal of Materials Processing Technology,2003,140(9):6-12.
    [97] Yin Dengfeng, Zheng Ziqiao, Yu Zhiming.Rare Metal Materials and Engineering [J], 2003, 32(9): 736.
    [98] CHEN Yon un , WANG Qu-dong , LibJinbao , ZHANG Lu-jun , ZHAI Chun-quan.Microstructure and mechanical properties of AZ31 Mg alloy processed by high ratio extrusion[J].Tram.Nonferrous Met.Soc.China,2006,sl:875-s1878.
    [99]叶永南.AZ31镁合金往复挤压成形热力耦合模拟研究[M].西安理工大学,2007.
    [100]尹从娟,张星,张治民.挤压温度和挤压比对AZ31镁合金组织性能的影响[J].有色金属加工, 2008,37(1),44-46.
    [101] L.L. Chang, Y.N.Wang, X. Zhao, J.C. Huang .Microstructure and mechanical properties inan AZ31 magnesium alloy sheet fabricated by asymmetric hot extrusion [J]. Materials Science and Engineering A.2008,A496:512–516.
    [102] Xia K,et a1.Equal channel angular pressing of magnesium alloyAZ31[J].Mater Sci EngA,2005,410-411:324.
    [103] Ma tsubara K,Miyahara Y,Horita Z,et a1.Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP[J].Acta Mater,2003,5l:3073.
    [104]黎文献,镁及镁合金.长沙:中南大学出版社,2005.
    [105]王忠堂,张士宏,莫立华等,镁合金管材挤压工艺及组织性能研究[J],锻压机械,2002,1:12-16.
    [106]卢庆亮.准晶增强Mg-Zn-Y合金的ECAP变形组织及力学性能[D],山东大学博士学位论文,2006.
    [107]陈振华,镁合金[M].北京:化学工业出版社.2004.
    [108] JIAO Ji-cheng, ZHA O Chuan-ling, SHAO Wei.Study on Modeling and Simulation at No.3 Continuous Caster in Jigging[J],Journal of System Simulation,2007, 19( 23):5482-5486
    [109] GUO Zhen-yu, AN Qiang, CHENG Bo, CAO etc. Research on Work Roll Temperature with Improved Differential Evolution in Hot Strip Rolling Process [J], Journal of System Simulation,2007,19(21):4877-4880
    [110]罗蓬,夏巨谌等.基于等径角挤压(ECAP)的超细晶铸造镁合金制备研究[J].稀有金属材料与工程2005,(9):1493-1496.
    [111]刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展[J].中国有色金属学报.2006,16(1):1-10.
    [112]尹从娟,张星,张治民.热挤压工艺对AZ31镁合金组织性能的影响[J].热加工工艺,2007,36 (21):63-64.
    [113]刘英,陈维平,张卫文等.等通道转角挤压后AZ31镁合金的微观结构与性能[J].华南理工大学学报(自然科学版),32(9):50-53.
    [114]蔡薇,齐亮,饶克.挤压温度对AZ31镁合金组织性能的影响[J].轻合金加工技术,2008, 36(3):23-16.
    [115] Irene J Beyerlein, LászlóS Tóth.Texture evolution in equal-channel angular extrusion[J].Progress in Materials Science, 2009, 54(4): 427–510.
    [116] Jin L, Lin D, Mao D, et al.Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion[J]. Materials Letters, 2005, 59(18):2267-2270.
    [117]汤成刚,热挤压模拟实验装置的设计与实验研究[D],重庆大学硕士论文.
    [118]贾俐俐,挤压工艺及模具,机械工业出版社,2004
    [119]曹韩学,合金预成形铸坯模压成形技术基础研究[D],重庆大学博士学位论文,2007
    [120] Lang Y, Shyong L.Finite element analysis of strain conditions after equal channel angular extrusion [J]. J Mater Process Technol 2003, 140:583-7.
    [121] Lee SC, Ha SY, Kim KT, Hwang SM, Huh LM, Chung HS.Finite element analysis for deformation behavior of an aluminum alloy composite containing SiC particles and porosities during ECAP [J]. Mater Sci Eng A 2004, 371:306–12.
    [122]温景林,丁桦,曹富荣.有色金属挤压与拉拔技术[M].北京:化学工业出版社.2007.
    [123] Suo Tao, Li Yulong, Deng Qiong, Liu Yuanyong. Optimal pressing route for continued equal channel angular pressing by finite element analysis [J].Mater SciEng A 2007, 466:166–71.
    [124] Smolyakov Andrey A, Vyacheslav P, et al. Three-dimensional numerical simulations of multi-pass equal-channel angular pressing by a variation difference method and comparison with experiment [J]. Mater Sci Eng A, 2008, 493:148–59.
    [125] Luis Pérez CJ, Luri R. Study of the ECAE process by the upper bound method considering the correct die design [J]. Mech Mater 2008, 40:617–28.
    [126] Chung SW, Somekawa H, Kinoshita T, Kim W, Higashi K. The non-uniform behavior during ECAE process by 3D FVM simulation [J]. Scr Mater 2004, 50:1079–83.
    [127] Jiang Hong, Fan Zhiguo, Xie Chaoying.3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion[J]. Mater Sci Eng A 2007, 485:409-14.
    [128] Kim I, Kim J, Shin DH, Lee CS, et al. Effects of equal channel angular pressing temperature on deformation structures of pure Ti [J]. Mater Sci Eng 2003, 342:302–10.
    [129] Luis-Pérez C. On the correct selection of the channel die in ECAP processes [J]. ScrMater 2004; 50:387–93.
    [130] ShinDH, KimBC, ParkK-T, ChooWY.Microstructural changes in equal channel angular pressed low carbon steel by static annealing [J].Acta Mater 2000, 48:3245–52.
    [131] LiS, BourkeMAM, et al.Finiteelementanalysisoftheplasticdeformationzone and working load in equal channel angular extrusion [J]. Mater Sci Eng A,2004,382:217-36.
    [132] Valiev RZ, editor.Ultrafine-grained materials prepared by severe plastic deformation [J]. Ann des Chim Sci des Mater,1996,21:369.
    [133] Zhernakov VS, Latysh VV, Zharikov AI, Valiev RZ. The developing of nanostructure SPD Ti for structural use [J]. Scr Mater 2001,44:1771–4.
    [134] Koike J,Ohyama R,Kobayashi T,et a1.Grain boundary sliding in AZ31 magnesium alloy at room tempe rature to 523K[J].Metall Trans,2003,4:445.
    [135]刘英,陈维平,张卫文等.等通道转角挤压对AZ31镁合金组织和性能的影响[J].华南理工大学学报,2004,9:50-54.
    [136]尹从娟,张星,张治民.热挤压工艺对AZ31镁合金组织性能的影响[J].热加工工艺, 2007, 36(21):63-64.
    [137]艾桃桃,冯小明.等通道转角挤压工艺参数对镁合金组织与性能的影响[J].轻金属,2009,2:12-18.
    [138]罗永新,李落星.DEFORM在等温挤压研究中的应用[J].湖南工业职业技术学院学报,2006,6(3):13-15.
    [139]谭险峰,陈伟,周庆.2A50铝合金等方形通道转角挤压工艺研究[J].塑性工程学报,2009,16:125-129.
    [140]刘英,陈维平,张卫文等.等通道转角挤压后AZ31镁合金的微观结构与性能[J].华南理工大学学报(自然科学版), 2004,32(9):12-16.
    [141]张青来,王粒粒,张士宏.AZ31镁合金薄板的制备和其组织与性能研究[J],金属热处理,2006,31(9):34-37.
    [142]郭强.镁合金高温单向压缩及多向变形行为研究[D],湖南大学博士论文,2007.
    [143] Ma tsubara K,Miyahara Y,Horita Z,et a1.Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP[J].Acta Mater,2003,5l:3073.
    [144] Sakai T, Jonas JJ.Dynamic recrystallization: Mechanical and microstructural considerations [J]. Acta Metal.1984, 32:189-209.
    [145] Y.J. Chen et al. Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression [J].Journal of Alloys and Compounds, 2008, 462:192-200.
    [146] Valiev R ZKovzmkovAV,Mrdyukov P R.Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J].Mater Sci Eng,1993,A168:141.
    [147] Galiyev A, Kaibyshev R, Sakai T.Continuous dynamic recrystallization in magnesium alloy [J]. Mater Sci Forum. 2003, 419-422:509-514.
    [148]刘腾张伟吴世丁姜传斌李守新徐永波.双相合金Mg-8Li-IA1的等通道转角挤压[J]2003,29(8):790-794.
    [149]周建.7075铝合金在锻造过程中显微组织的演化和工艺模拟.东北大学硕士学位论文.辽宁:东北大学,2003:43-45.
    [150]丁文江,镁合金科学与技术[M].北京:科学出版社,2006.
    [151]罗蓬,夏巨谌,胡侨丹等.基于等径角挤压(ECAP)的超细晶铸造镁合金制备研究[J].2005,43(9): 1493-1496.
    [152] Kim W J,An C W,Kim Y S,et al.Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing.Scripta Materialia,2002, 47(1):39-44
    [153] WANG Y N, HUANG J C.Texture analysis in hexagonal materials [J].Materials Chemistryand Physics, 2003, 81(1):11-26.
    [154] YANG P, YU Y, CHEN L, et al.Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31 [J]. Scripta Materialia, 2004, 50 (8):1163-1168.
    [155] KALIDINDI S R.Incorporation of defromation twinning in crystal plasticity models [J].Journal of Mechanics and Physics of Solids, 1998, 46:267.
    [156] A gnew S R, Horton J A, Lillo T M, et al.Enhanced ductility in strongly textured
    [157] Magnesium produced by equal channel angular processing [J].Scripta Materialia, 2004, 50(3):377-381
    [158] Huang C X,Yang G,Deng B,et al.Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing[J].Philosophy Magazine,2007, 87(31):4949-4971.
    [159] Aghion E, Bronfin B. Magnesium Alloys Development towards 21st Century [J]. Material Science Forum, 2000, 50-351:19-28.
    [160] ZAN w H,YU Y,LAWRENCE C,et a1.Microstructures and tensile properties of wrought magnesium alloys processed byECAE[J].Materials Forum,2003,419-422(1):243-248.
    [161] Yu Y, Lawrence C, Shigeharu K. Effect of microstructural factors on tensile properties of an ECAE-Processed AZ3 I Magnesium alloy [J]. Materials Transactions, 2003, (4): 468.
    [162] zao Hong Liang.Micostructure and mechanical properties of AZ31 Mg alloy processed by high ratio extrusion[J].Tram.Nonferrous Met.Soc.China, 2006, s1:875-s1878.
    [163]宋军辉.热塑性变形对镁合金微观组织与性能的影响[D],大连理工大学硕士论文,2009.
    [164]冯小明艾桃桃张会.等通道角挤压AZ31镁合金的微观组织与力学性能[J].特种铸造及有色合金,2008,28(7):498-500
    [165]常丽丽.变形镁合金AZ31的织构演变与力学性能[D],大连理工大学博士论文,2009.
    [166] Y. Gan, S.T. Chou, Z.Q. Xiao. Modeling and Simulation of Continuous Casting Process of Steel [M]. Beijing: metallurgical Industry Press, 2001:152.
    [167] S. Chakraborty, P. Dutta, A generalized formulation for evaluation of latent heat functions in enthalpy-based macroscopic models for convection–diffusion phase change processes, Metall. Mater. Trans. 2001,B 32:562-564.
    [168]黎文献,镁及镁合金[M].长沙:中南大学出版社,2005.
    [169]高志,肖刚,周亚军.铝材铸轧过程中辊-板系统温度场的数值分析[J],湘潭大学自然科学学报,2000,22(4): 84-87.
    [170] Rosochowski A, Olejnik L, Richert M. 3D-ECAP of square aluminum billets [J]. AdvMethods Mater Forming 2007, 10:215–32.
    [171]陈彦博,赵红亮,翁康荣.有色金属轧制技术[M].北京:化学工业出版社. 2004
    [172]张晓明,张军锋,刘相华.双辊铸轧薄带过程中铸速对熔池内温度场的影响[J].东北大学学报(自然科学版).2006.27(7):759-763.
    [173] Tang Yin-bo,Deng Nan-yang, Main Quality Defects And Controlling Methods for CC Beam Blank[J],Journal of Anhui vocational college of Metallurgy and Technology ,2006, 16(2):17-19.
    [174]马宏声.有色金属铸锭生产技术[M].北京:化学工业出版社.2004.
    [175] QI L H, SHI Z K, LI H J, CUI P L, HAN H M. Simulation of liquid infiltration and semi-solid extrusion for composite tubes by quasi-coupling thermal-mechanical finite element method[J].Journal of Materials Science,2003,38:3669?3675.
    [176] B. C. H. Venneker, L. Katgerman.Modelling issues in macrosegregation predictions in direct chill castings [J]. Journal of Light Metals, 2002, 3:149–159.
    [177] Dominated Flows [J] .Computer Methods in Applied Mechanics and Engineering, 1985, 48:313-327.
    [179] M. Schikorraa, L. Donatib, L. Tomesanib, Microstructure analysis of aluminum extrusion: Prediction of microstructure on AA6060 alloy [J]. Journal of materials processing technology 2008, 201:156-162.
    [180]王渠,东林,金保,彭立明,往复挤压变形对ZK60镁合金力学性能的影响[J].金属学报,2008.44( 1): 55-58。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700