新型医用钛合金的制备、热机械加工工艺及表面生物活化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对新型医用Ti-25Nb-2Zr(at%下同)钛合金的制备,热机械加工工艺及表面生物活性进行了研究。通过DSC、金相组织、XRD、拉伸试验,显微硬度及形状记忆效应及超弹性测试对微量锆元素对Ti-25Nb合金的相变、显微组织,力学性能及形状记忆效应等性能的影响进行了考察。同时进一步研究了热处理及冷加工工艺对Ti-25Nb-2Zr合金显微组织及力学性能的影响。此外,采用普通氧化法对Ti-25Nb-2Zr合金的表面进行改性,借助SEM、EDS、XRD、XPS及FTIR对改性后的合金表面及随后经过仿生生长的合金表面进行表征。通过实验研究及理论分析,主要得出以下结论:
     在Ti-25Nb合金中添加微量锆元素对于降低合金的相变点,抑制相析出及细化晶粒有一定的作用:合金中每增加1at%的锆元素,合金相变点约降低10K。合金的强度随锆含量的变化呈现先增加后减小的趋势;合金的弹性模量及显微硬度随锆含量的变化趋势则与抗拉强度相反,呈现先降低后升高的趋势。合金在锆含量为3at%时获得最高770MPa的抗拉强度,在锆含量为2at%时合金具有最低62GPa的弹性模量。锆元素的添加对合金的马氏体相变温度有影响:锆含量为2at%左右的合金在室温变形能生成马氏体,故其形状记忆效应较明显。
     Ti-25Nb-2Zr合金在β相变点以上固溶处理,空冷后保留等轴全β相组织,合金具有较低的强度和优异的塑性。随着固溶温度的增加,合金晶粒显著粗化,导致合金的强度及塑韧性下降。合金在350℃进行时效处理,在基体中析出硬脆相ω相;在450℃左右时效,在基体中析出相。合金在经过冷加工后,发生了应力诱发马氏体相变。由于马氏体相变和加工硬化的共同作用,导致合金的强度在冷形变量较小时增加不显著。
     Ti-25Nb-2Zr合金在空气中氧化,在300℃~600℃的温度区间内,表面氧化物将从亚稳态氧化钛先转变为锐钛矿,最终转变为金红石。合金经空气中500℃2h氧化后,SEM及AFM观察显示合金表面粗糙度明显增加。经空气中500℃2h氧化后的合金试样置于钙磷溶液中进行浸泡,并成功的在合金表面制备了钙磷层。XRD分析显示所得的钙磷层的主要成分为羟基磷灰石。XPS及FTIR分析表明钙磷层中含有CO32-离子。
This paper studied the preparation, thermal-mechanical processing technique and surface bioactivity of Ti-25Nb-2Zr (at %) alloy. The influence of small amount of Zr element to phase transformation, microstructure, mechanical properties and shape memory effect were examined by means of DCS, optical microscopy, XRD, tensile test, microhardness test, shape memory effect and superelasticity test. The relationship between microstructure, mechanical properties of Ti-25Nb-2Zr alloy and heat treatment and cold work technique was further studied. Meahwhile, the surface of Ti-25Nb-2Zr alloy was modified by oxidization in air. The surface of modified and subsequently immersed in Ca-P solution alloy were characterized by SEM, EDS, XRD, XPS and FTIR. After experiment and theoretical study, the following results are listed as follows:
     The addition of small amount of Zr element in Ti-25Nb alloy could lowerβtransus, prohibit precipitation of phase and refine its microstructure. Especially, the phase transformation temperature could be lowered by 10 K with addition of 1at% Zr element. The strength of Ti-25Nb alloy initially increased with increasing Zr content, and then it decreased with further addition of Zr element; while the migration trends of elastic modulus and microhardness with increasing Zr content are the opposite of that of the strength. The highest ultimate strength was obtained with 3at% Zr addition while the lowest elastic modulus was get by 2at% Zr addition. The addition of Zr element could influence the Ms of Ti-25Nb alloy. The alloys with 2at% Zr content could precipitate martensite when deformed in room temperature, so the shape memory effect of this alloy is more evident than other alloys.
     When Ti-25Nb-2Zr alloy was solution treated aboveβtransus, its phase structure retained fullyβphase with low strength and superior plasticity. As solution temperature rised, the microstructure get coarser which lead to the decrease of its strength and plasticity. When aged at 350℃,ωphase appeared in the the alloy; when aged at 450℃, phase emerged in the alloy. When the alloy was cold rolled, stress induced martensite transformation emerged in the alloy. Because of the co-work of martensite transformation and work hardening, the harden effect of the alloy was not obvious when the amount of cold work was small.
     When Ti-25Nb-2Zr alloy was oxidized in air, the surface oxide of the alloy transform first from metastable titania to anatase, then to stable rutile. When the alloy was oxided in air at 500℃for 2h, SEM and AFM observation showed that the surface roughness of the alloy increased evidently. When the specimen oxidized at 500℃for 2h was immersed in Ca-P solution, Ca-P layer was successfully prepared in the surface of the alloy. XRD analysis showed that the main content of the Ca-P layer was hydroxyapatite. XPS and FTIR analysis showed that CO32- ion existed in the Ca-P layer.
引文
[1]何宝明,生物医用钦及其合金材料的开发应用进展、市场状况及问题分析,新材料产业,2003, (7):23-28
    [2]陈光,崔崇,新材料概论,第1版,北京:科学出版社,2003: 52
    [3]Okazaki Y, et al. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V, Biomaterials, 1998 (19):1197-1215
    [4]金自宜,钛系生物医学材料,钛工业进展,1993,5:29
    [5]启明,新型生物体用β型钛合金的精密铸造,金属材料,1999(1):44
    [6]Matthew Donaehie. Biomedical alloys. Advanced Materials & Process, 1998, 154(1):63-65
    [7]胡耀君,中国钛发展的四十年,钛工业进展,1997,(2):1-9
    [8]李世普.生物医用材料导论.武汉:武汉工业大学出版社,2000: 37
    [9]Long M, Rack H J. Titanium alloys in total joint replacement—a materials science perspective, Biomaterials, 1998, 19: 1621~1639
    [10][英]威廉姆斯D F主编,朱鹤孙等译.医用与口腔材料.见:卡恩R W,哈森P,克雷默E J主编,材料科学与技术丛书,北京:科学出版社,1999: 29-63
    [11]俞耀庭,张兴栋,生物医用材料,天津:天津大学出版社,2000: 138
    [12] [日]作花济夫著,蒋幼梅等译,玻璃非晶态科学,北京:中国建筑工业出版社,1986:32
    [13]Topoleski L D T. Ph. D. Dissertation, University of Pennslvania, 1990
    [14]郭卫红,汪济奎,现代功能材料及其应用,北京:化学工业出版社,2002:76
    [15]浦素云编,金属植入材料及腐蚀,北京:北京航空航天大学出版社,1990:1
    [16]马如璋,蒋民华,徐祖雄,功能材料学概论,北京:冶金工业出版社,1999:563
    [17]Wang K. The use of titanium for medical applications in the USA. Materials Science and Engineering, 1996, 213A: 134~137
    [18]Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering, 1998, 243A: 231~236
    [19]Donachie M. Biomedical alloys. Advanced Materials & Processes, 1998, 7: 63~65
    [20]周彦邦,钛合金铸造概论,北京:航空工业出版社,2000:14
    [21]于思荣,金属系牙科材料的应用现状及部分元素的毒副作用,金属功能材料,2000,7(1):1-6
    [22]汪大林,江中明,牙科合金材料应用研究现状,特种铸造及有色合金,1998(3):42-44
    [23]阮建明,Grant M H,黄伯云.金属毒性研究(Ⅰ)[J].中国有色金属学报,2001,11(6):960~965
    [24]Zardiackas L D, Mitchell D W, Disegi J A, Charaterization of Ti-15Mo beta titanium alloy for orthipaedic implant applications,ASTM Symp.on Medicial Applications of Titanium and Its Alloys,The Material and Biological Issues, 1994,11:15~16
    [25]Ho W F, Ju C P, Chern Lin J H, Structure and properties of cast binary Ti-Mo alloys, Biomaterials,1999, 20: 2115~2122
    [26]Lin D J, Chern Lin J H, Ju C P, Structure and properties of Ti–7.5Mo–xFe alloys, Biomaterials, 2002,23:723~1730
    [27]Lin D J, Chern Lin J H, Ju C P, Effect of omega phase on deformation behavior of Ti–7.5Mo–xFe alloys,Materials Chemistry and Physics,2002, 76: 191~197
    [28]Lin D J, Chern Lin J H, Ju C P, Effect of chromium content on structure and mechanical properties of Ti-7.5Mo-xCr alloys, Journal of Materials Science, 2004, 14:1~7
    [29]Maeshima T, Nishida M, Shape Memory Properties of Biomedical Ti-Mo-Ag and Ti-Mo-Sn Alloys, Materials Transactions, 2004, 45: 1096~1100
    [30]Maeshima T, Ushimaru S, Yamauchi K, et al, Effects of Sn Content and Aging Conditions on Superelasticity in Biomedical Ti–Mo–Sn Alloys, Materials Transactions, 2006, 47(3): 513~517
    [31]Hosoda H, Hosoda N, Miyazaki S, Mechanical Properties of Ti-Mo-Al Biomedical Shape Memory Alloys,Trans. MRSJ, 2001, 26 (1): 243~246
    [32]Kim H Y, Ohmatsu Y, Kim J I, Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys, Materials Transactions, 2004, 45: 1090~1095
    [33]Maeshima T, Nishida M, Kim J I, et al, Shape Memory and Mechanical Properties of Biomedical Ti-Sc-Mo Alloys, Materials Transactions, 2004, 45: 1101~1105
    [34]Gordin D M, Gloriant T, Texier G, et al, Development of aβ-type Ti–12Mo–5Ta alloy for biomedical applications cytocompatibility and metallurgical aspects, Journal of Materials Science, 2004, 15: 885~891
    [35]Gordina D M, Glorianta T, Nemtoib G, et al, Synthesis, structure and electrochemical behavior of a beta Ti–12Mo–5Ta alloy as new biomaterial, Materials Letters, 2005, 59: 2959~2964
    [36]Banerjee R, Nag S, Stechschulte J, et al, Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys, Biomaterials, 2004, 25: 3413~3419
    [37]Hao Y L, Li S J, Sun S Y, et al, Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys, Materials Science and Engineering A, 2006,441: 112~118
    [38]Ikeda M, Komatsu S, Sugimoto T, et al, Effect of two phase warm rolling on aging behavior and mechanical properties of Ti-15Mo-5Zr-3Al alloy, Materials Science and Engineering A, 1998, 243: 140~145
    [39]Tokaji K, Shiota H, Bian J C, Fatigue crack propagation inβTi-15Mo-5Zr-3Al alloy, Materials Science and Engineering A, 1998, 243: 155~162
    [40]Nomura N, Kohama T, Oh I H, et al, Mechanical properties of porous Ti-15Mo-5Zr-3Al compacts prepared by powder sintering, Materials Science and Engineering C, 2005, 25: 330~335
    [41]Kim H Y, Ohmatsu Y, Kim J I, et al, Effect of Nb Addition on Shape Memory Behavior of Ti–Mo–Ga Alloys,Materials Transactions, 2006, 47: 518~522
    [42]Laheurte P, Eberhardt A, Philippe M J, A Influence of the microstructure on the pseudoelasticity of a metastable beta titanium alloy, Materials Science and Engineering A, 2005, 396: 223~230
    [43]Baker C, The Shape-Memory Effect in a Titanium-35wt.% Niobium Alloy, Metal Science Journal, 1971, 5: 92~100
    [44]Kim H Y, Satoru H, Kim J I, et al, Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys, Materials Transactions, 2004, 45(7): 2443~2448
    [45]Takei F, MiuraT, Miyazaki S, et al, Stress-induced martensitic transformation in a Ti-Ni single crystal, Scripta Metallurgica, 1983, 17: 987~992
    [46]Ajit K M, James A D, Paul K, et al, Beta Titanium Alloys in the 1990's, Warrendale, TMS of AIME, 1993: 61~71
    [47]Geetha M, Singh A K, Gogia A K, et al, Effect of thermomechanical processing on evolution of various phase in Ti-Nb-Zr alloys, Journal of Alloys and Compounds, 2004, 384: 131~144
    [48]Kim J I, Kim H Y, Inamura T, et al, Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys, Materials Science and Engineering A, 2005, 403: 334~339
    [49]Kim J I, Kim H Y, Inamura T, et al, Effect of Annealing Temperature on Microstructure and Shape Memory Characteristics of Ti–22Nb–6Zr(at%) Biomedical Alloy, Materials Transactions, 2006, 47: 505~512
    [50]Inoue A, Wadab T, Wang X M, et al, Bulk non-equilibrium alloys and porous glassy alloys with unique mechanical characteristics, Materials Science and Engineering A, 2006, 442: 233~242
    [51]Takahashi E, Sakurai T, Watanabe S, et al, Effect of Heat Treatment and Sn Content on Superelasticity in Biocompatible TiNbSn Alloys,Materials Transactions, 2002, 43: 2978~2983
    [52]Matsumoto H, Watanabe S, Hanada S, Beta TiNbSn Alloys with Low Young’s Modulus and High Strength, Materials Transactions, 2005, 46(5): 1070-~1078
    [53]Kim J I, Kim H Y, Hosoda H, et al, Shape Memory Behavior ofTi–22Nb–(0.5–2.0)O(at%) Biomedical Alloys, Materials Transactions, 2005, 46(4) : 852~857
    [54]Fukui Y, Inamura T, Hosoda H, et al, Mechanical Properties of a Ti-Nb-Al Shape Memory Alloy, Materials Transactions, 2004, 45(4): 1077~1082
    [55]Inamura T, Fukui Y, Hosoda H, et al, Relationship between Texture and Macroscopic Transformation Strain in Severely Cold-Rolled Ti-Nb-Al Superelastic Alloy, Materials Transactions, 2004, 45(4): 1083~1089
    [56]Inamura T, Kinoshita Y, Kim J I, et al, Effect of {001}<110>texture on superelastic strain of Ti–Nb–Al biomedical shape memory alloys, Materials Science and Engineering A, 2006, 438–440: 865~869
    [57]Hosoda H, Kinoshita Y, Fukui Y, Inamura T, et al, Effects of short time heat treatment on superelastic properties of a Ti–Nb–Al biomedical shape memory alloy, Materials Science and Engineering A , 2006, 438–440: 870~874
    [58]Masumotoa K, Horiuchi Y, Inamura T, et al, Effects of Si addition on superelastic properties of Ti-Nb-Al biomedical shape memory alloys, Materials Science and Engineering A ,2006, 438-440: 835~838
    [59]Horiuchi Y, Inamura T, Hosoda H, et al, Effect of boron addition on transformation behavior and tensile properties of Ti-Nb-Al alloy, Materials Science and Engineering A ,2006, 438-440: 830~834
    [60]Inamura T, Fukuib Y, Hosoda H, et al, Mechanical properties of Ti-Nb biomedical shape, memory alloys containing Ge or Ga, Materials Science and Engineering C, 2005, 25: 426~432
    [61]Tang X, Ahmed T, Rack H J, Phase tansformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys, Journal of Materials Science, 2000, 35: 1805~1811
    [62]Hona Y H, Wang J Y, Pana Y N, Influence of hafnium content on mechanical behaviors of Ti–40Nb–xHf alloys, Materials Letters, 2004, 58: 3182~3186
    [63]Lee C M, Ho W F, Ju C P, et al, Structure and properties of Titanium–25 Niobium–x iron alloys, Journal of Materials Science, 2002, 13: 695~700
    [64]Kim H Y, Oshika N, Kim J I, Martensitic Transformation and Superelasticity of Ti-Nb-Pt Alloys, Materials Transactions, 2007, 48: 400~406
    [65]Ping D H, Mitarai Y, Yin F X, Microstructure and shape memory behavior of a Ti–30Nb–3Pd alloy, Scripta Materialia, 2005, 52: 1287~1291
    [66]Ping D H, Cui C Y, Yin F X, TEM investigations on martensite in a Ti–Nb-basedshape memory alloy, Scripta Materialia, 2006, 54:1305~1310
    [67]Horiuchi Y, Inamura T, Kim H Y, et al, X-ray Diffraction Analysis of Ti-18 mol%Nb Based Shape Memory Alloys,Containing 3d Transition Metal Elements, Materials Transactions, 2006, 47: 1209~1213
    [68]Horiuchi Y, Nakayama K, Inamura T, et al, Effect of Cu Addition on Shape Memory Behavior of Ti-18 mol%Nb Alloys, Materials Transactions, 2007, 48: 414~421
    [69]Hao Y L, Li S J, Sun S Y, et al, Super-elastic titanium alloy with unstable plastic deformation, Applied Physics Letters, 2005, 87: 901~906
    [70]Zheng C Y, Li S J, Tao X J, et al, Calcium phosphate coating of Ti–Nb–Zr–Sn titanium alloy, Materials Science and Engineering C, 2006, 27: 824~831
    [71]Nobuhito S, Mitsuo N, Toshikazu A, et al, Effect of Ta content on mechanical properties of Ti-30Nb-Xta-5Zr, Materials Science and Engineering C, 2005, 25: 370~376
    [72]Elias S, Schneider G, Schneider S, et al, Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys, Materials Science and Engineering A, 2006, 432: 108~112
    [73]Nag S, Banerjee R, Fraser H L, Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys Materials Science and Engineering C, 2005, 25: 357~362
    [74]Nobuhito S, Mitsuo N, Toshikazu A, et al, Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys, Materials Science and Engineering C, 2005, 25: 363~369
    [75]Qazi J I, Marquardt B, Allard L F, et al, Phase transformations in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys, Materials Science and Engineering C, 2005, 25: 389~397
    [76]Zhou Y L, Mitsuo N, Toshikazu A, Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications,Materials Science and Engineering A, 2004, 371: 283~290
    [77] Zhou Y L, Mitsuo N, Toshikazu A, Decomposition of martensite during aging treatments and resulting mechanical properties of Ti-Ta alloys Materials Science and Engineering A, 2004, 384: 92~101
    [78]Ikeda M, Komatsu S, Nakamura Y, Effects of Sn and Zr Additions on Phase Constitution and Aging Behavior of Ti-50 mass%Ta Alloys Quenched fromβSingle Phase Region, Materials Transactions, 2004, 45: 1106~1112
    [79]Kuroda D, Kawasaki H, Yamamoto A, et al, Mechanical properties and microstructures of new Ti–Fe–Ta and Ti–Fe–Ta–Zr system alloys, Materials Science and Engineering C, 2005, 25: 312~320
    [80]黄永光,外科植入用钛合金材料及其标准化,钛工业进展,2002,(1):13~16
    [81]曾晟宇,赵乃勤,崔振铎,等.金属生物材料表面改性研究的进展.材料保护,2000,33(1):5~8
    [82]刘敬肖,杨大智,王伟强等,表面改性在生物医用材料研究中的应用.材料研究学报,2000,14 (3):225-233
    [83]松下富春,佑木佳男,人造骨关节用无钒耐热钛合金的开发,《まてりあ》1999,38(3),240
    [84]De Groot K, Geesink R G T, Serekian P, et al. Plasma sprayed coatings of hydroxylapatite. J Biomed. Mater. Res., 1987, 21: 1375
    [85]Thomas K A, Kay J F, Cook S D, et al. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed. Mater. Res., 1987, 21: 1395
    [86]Lin F H, Hsu Y S, Lin S H and Sun J S. The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials, 2002, 23:4029
    [87]Shi W, Kamiya A, Zhu J and Watazu A. Properties of titanium biomaterial fabricated by sinter-bonding of titanium/hydroxyapatite composite surface-coated layer to pure bulk titanium. Mater. Sci. Eng., 2002, A337: 104
    [88]郑学斌,丁传贤,等离子喷涂制备HA/Ti复合涂层研究—Ⅰ.结构、组成和力学性能,无机材料学报,2000,15(5):987~902
    [89]郑学斌,丁传贤,等离子喷涂制备HA/Ti复合涂层研究—Ⅱ.生物学性能,无机材料学报,2000,15(5):1083~1088
    [90]Jie Weng, Qing Liu, J.G.C. Wolke, et al.. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. 1997, 18 (15): 1027~1035
    [91]宁聪琴,周玉,雷廷权等,纯钛表面HA/BG生物复合涂层的组织结构研究.材料科学与工艺,2000,8(3):30~33
    [92]Cheang P, Khor K A. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials, 1996, 17 (5): 537~543
    [93]陈俊英,杨萍,冷永祥等,掺杂氧化钛薄膜的制备与血液相容性研究,功能材料,2000,31(2):212~214
    [94]Lamy D, Pierre A C and Heimann R B. Hydroxyapatite coatings with a bond coat of biomedical implants by plasma projection. J. Mater. Res., 1996, 11(3):680~685
    [95]Zhang X, Gubbels G H M, Terpstra R A, et al. Toughening of calcium hydroxyapatite with silver particles. Journal of Materials Science, 1997, 32:235~243
    [96]Harald Schmidt, Maziar Soltani-Farshi. Effect of nitrogen implantation on the hydrogen depth distribution and fatigue properties of Ti6Al4V, Mater. Sci. Eng., 1998, A248: 73~77
    [97]张亚平,高家诚,文静,钛合金表面激积光熔凝一步制备复合生物陶瓷涂层,材料研究学报,1998,12(4):423~427
    [98]张亚平,高家诚,文静,激光熔覆生物陶瓷涂层生物相容性的研究,材料科学与工程,1999,17(3):20~22
    [99]Wen H B, De Wijin J R, Liu Q, et al. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatment. Biomaterials, 1997, 18(22): 1471
    [100]Bunker B C, Rieke P C, Tarasevich B J, et al. ceramic thin-film formation on functionalized interface through biomimetic processing. Science, 1994, 264: 48
    [101]Chu C L, Zhu J C, Yin Z D, et al. Hydroxyapatite-Ti functionally graded biomaterial fabricated by powder metallurgy, Mater. Sci. and Tech., 1999, A271: 95-100
    [102]Puieo D A. Retention of enzymatic activity immobilized on silanized and Ti-6Al-4V[J]. J Biomed. Mater. Res., 1997, 37: 222
    [103]黄伟久,李兆峰.医用钛合金表面改性进展,材料导报,2006,20:369-372
    [104]卫敏仲,顾汉卿,医用金属材料表面改性与修饰的研究进展,透析与人工器官,2005,16(1),32-40
    [105]吕厚山主编,人工关节外科学,北京:科学出版社,1998:4
    [106]Golden M A, Hanson S R, Kirkman T R, et al. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J Vasc. Surg., 1990, 11(6): 383
    [107]David G C, Buddy D R. Biomedical surface science: Foundations to frontiers. Surface Science, 2002, 500: 28~60
    [108]Peter T, Christina G. Macrophage interactions with modified material surfaces. Current Opinion in Solid State and Materials Science, 2001, 5: 163~176
    [109]Matthew T, Efrosini K, Markus B. The role of surface science in bioengineered materials. Surface Science, 2002, 500:61~83
    [110]Kevin C, Olbriich, Thomas T, et al. Surfaces modified with covalently-immobilized adhesive peptides affect fibroblast population motility. Biomaterials, 1996, 17(8): 868
    [111]冯颖芳,康浩方,张震,钛合金医用植入物材料的研究及应用,稀有金属,2001,25(5):251~254
    [112]Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 2002, 42 (1): 35-56,
    [113]Coogant P, Latta D.M, Snow E T, Costa, M. Toxicity and carcinogenicity of nickel compounds. Critical Reviews in Toxicology, 1989; 19 (4): 341-384.
    [114]Regina L, Messer W, Sanford Bishop and Linda C. Lucas. Effects of metallic ion toxicity on human gingival fibroblasts morphology. Biomaterials, 1999, 20: 1647-1657
    [115]Stanley A. Brown, Lilian J. Farnsworth et al. In vitro and in vivo metal ion release. Journal of Biomedical Materials Research, 1988; 22: 321-338
    [116]Duerig T W, Albrecht J, Richter D, Fischer P.Formation and reversion of stress induced martensite in T1-10V-2Fe-3Al. Acta Metall, 1982, 30 (12): 2161-2173.
    [117]Grosdidier T, Philippe M J. Deformation induced martensite and superelasticity in aβ-metastable titanium alloy. Materials Science and Engineering A, 2000, 291 (1): 218-223.
    [118]Takahashi E, Sakurai T, Watanabe S, Masahashi N, Hanada S. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys. Materials Transactions, 2002, 43 (12): 2978-2983.
    [119]Maeshima T, Nishida M. Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys, Materials Transactions, 2004, 45 (4): 1096-1100.
    [120]Zhou T, Aindow M, Alpay S P, Blackburn M J, Wu M H. Pseudo-elastic deformation behavior in a Ti/Mo-based alloy. Scripta Materialia, 2004, 50 (3): 343-348.
    [121]Fukui Y, Inamura T, Hosoda H, Wakashima K., Miyazaki S. Mechanical properties of a Ti-Nb-Al shape memory alloy. Materials Transactions, 2004, 45 (4): 1077-1082.
    [122]Kim H Y, Ohmatsu Y, Kim II J, Hosoda H, Miyazaki S. Mechanical properties and shape memory behavior of Ti-Mo-Ga alloys. Materials Transactions, 2004, 45 (4): 1090-1095.
    [123]Lei C Y, Pak J S L, Inoue H R P, Wayman C M. Proceedings of the International Conference on Martensitic Transformations, 1992: 539.
    [124]Sasano, H, Suzuki, T. Titanium: Science and technology, Proceedings of the 5th International Conference on Titanium, 1985: 1667-1674.
    [125]Kim H Y, Hashimoto S, Kim J I, Inamura T, Hosoda H, Miyazaki S. Effect of Ta addition on shape memory behavior of Ti-22Nb alloy Materials Science and Engineering A, 2006,417 (1-2): 120-128.
    [126]Kim H Y, Ikehara Y, Kim J I., Hashimoto S, Kim J I, Hosoda H, Miyazaki S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Materialia, 2006, 54: 2419-2429
    [127]Min X H, Emura S, Zhang L, Tsuzaki K. Effect of Fe and Zr additions onωphase formation inβ-type Ti-Mo alloys. Materials Science and Engineering A, 2008, 497:74-78
    [128]郭鸿镇,合金钢与有色合金锻造,西安:西北工业大学出版社,1999:55
    [129]吕炎,锻件缺陷分析与对策,北京:机械工业出版社,1999:173
    [130]谢麒,实用锻压技术手册,北京:机械工业出版社,2003:136
    [131]Maeshima T, Ushimaru S, Yamauchi K, et al. Effects of Sn Content and Aging Conditions on Superelasticity in Biomedical Ti–Mo–Sn Alloys, Materials Transactions, 2006, 47(3): 513~517
    [132]Lei C, Wu M, Mc L, Schetky D, Burstone C. A Study of pseudoelastic beta Titanium for orthodontic application, SMST-97, Proceedings of the Second International Conference on ShapeMemory and Superelastic Technologies, Monterey, California: Monterey Institute of Advanced Studies, 1997,503~508.
    [133]Matsumoto H, Wantanabe S, Hanada S. Microstructures and mechanical properties of metastableβTiNbSn alloys cold rolled and heat treated. Journal of Alloys and Compounds, 2007, 439: 146–155
    [134]E.A.鲍利索娃等著,钛合金金相学[M],陈石卿译,北京:国防工业出版社,1986:173~175
    [135]Wangman G. Proceedings of the Eighth world conference on titanium. Ti’95Science and Technology. OCT, 1995: 895-902
    [136]周建中,铸造Ti-15-3合金显微组织及性能的研究[硕士学位论文],黑龙江,哈尔滨工业大学,2001
    [137]Moffat D L, Larbalestier D C. The compctition between martensite and omega in quenched Ti-Nb alloys. Metallurgical and Materials Transactions A, 1988, Vol 19, No.7: 1677-1686
    [138]Yang Guanjun, Zhang Tao, Phase Transformation and mechanical properties of the Ti50Zr30Nb10Ta10 alloy with low modulus and Biocompatible. Journal of Alloys and Compounds, 2005, Vol. 392: 291-294
    [139]Yang G J, Zhang T. Phase Transformation and mechanical properties of a newβTitanium alloy with low modulus. Ti-2003 Science and Technology, 2003: 1551-1557.
    [140]Smith W F,工程合金的组织和性能,北京:冶金工业出版社,1993: 502-504
    [141]Morinaga M, Kato M, Kamiura T et al. Theretical Design ofβ-type Titanium Alloys. 92’Titanium: Science and Technology, 1992, Vol. 1: 217-224
    [142]Morinage M, Yukawa N, Maya T. Theretical Design of Titanium Alloys. 88’Titanium: Science and Technology, 1988, 1601-1606
    [143]Yan W Q. Nakamura T. Kawanabe K. et al, Apatite layer-coated titanium for use as bone bonding implants, Biomaterials. 1997, 18(17): 1185~1190
    [144]张玉梅,郭天文,李佐臣,钛及钛合金在口腔科应用的研究方向,生物医学工程学杂志, 2000, 17(2): 206~208
    [145]阮建明,Grant M H,黄伯云,金属毒性研究,中国有色金属学报.,2001, 11: 960-965
    [146]孙皎,薛淼,今井弘一,牙科金属材料的组成对细胞毒性影响的研究,中国生物医学工程学报,1997,16(2):154~159
    [147]顾汉卿,徐国风,生物医学材料学,天津:天津科技翻译出版社,1993:8
    [148]邬鸿彦,HAP的结构及物理性能,四川师范大学学报(自然科学版),1996,19(5):55~58
    [149]Goyenvalle E. Guyen N J M. Aguado E. et al, Bilayered calcium phosphate coating to promote osseointergration of a femoral stem prosthesis, J Mater Sci Mater Med, 2003, 14: 219~227
    [150]Hamdi M. Ide-Ektessabi A, Surface and Coatings Technology. Preparation of hydroxyapatite layer by ion beam assisted simultaneous vapor deposition, 2003, 163-164: 362~367
    [151]Lusquinos F, Pou J, Arias J L.et al, Alloying of hydroxyapatite onto Ti6Al–4V by high power laser irradiation, J. Mater. Sci. : Mater. Med, 2002, 13: 601~605
    [152]Najdoski Z Majhi M P. Grozdanov I S, A simple chemical method for preparation of hydroxyapatite coatings on Ti6Al4V substrate, J. Mater. Sci. : Mater. Med, 2001, 12: 479~483
    [153]Lui Y P. Li S T. Zhu R F. et al, Formation of ultrafine particles in heat treatedplasma-sprayed hydroxyapatite, Surface and Coatings Technology, 2003, 165: 65~70
    [154]Cao Y. Weng J. Chen J Y. et al, Water vapour-treated hydroxyapatite coatings after plasma spraying and their characteristics, Biomaterials, 1996, 17: 419~424
    [155]Kokubo T. Miyaji F. Kim H M, Spontaneous Formation of Bonelike Apatite Layer on Chemically Treated Titanium Metals. J Am Ceram Soc, 1996, 79: 1127-1129
    [156]Andrade M C de. Filgueiras M R T. Ogasawara T.et al, Nucleation and growth of hydroxyapatite on titanium pretreated in NaOH solution: Experiments and thermodynamic explanation, J Biomed Mater Res, 1999, 46: 441~446
    [157]Pereira M M. Hench L L, Mechanisms of hydroxyapatite formation on porous gel-silica substrates, J Sol Gel Sci Technol, 1996, 7: 59-68
    [158]Feng B. Chen J Y. Qi S K, Carbonate apatite coatingon titanium induced rapidly by precalcification, Biomaterials, 2002, 23: 173~179
    [159]Takadama H. Kim H M. Kokubo T.et al, XPS syudy of the process of apatite formation on bioactive Ti-6Al 4V alloy in simulated body fluid, Science and Technology of Advanced Materials, 2001, 2: 389~396
    [160]莫畏,邓国珠,陆德祯等,钛冶金,北京:冶金工业出版社,1979:172
    [161]叶锡生,焦正宽,张立德等,板钛矿基TiO2纳米晶的结构相变和热稳定性,材料研究学报,1999,13(5):487-491.
    [162]何志,赵永年,邹广田等,薄膜沉积过程中Ti02的金红石相向锐钛矿相转变,光散射学报,1999,11(3):198-202.
    [163]司乃潮,贾志安,傅明喜,液态成型技术,北京:化学工业出版社,2004;118-119
    [164]Scofield J H, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, 1976, 8(2): 129-137
    [165]Shimizu R, Yoshihara K, Jitsuyo Ohje Denshibunkoho, Kyoritsu Shuppan, Tokyo, Japan, 1989: 222.
    [166]Asami K, Chen S -C, Habazaki H, Hashimoto K, The surface characterization of titanium and titanium-nickel alloys in sulfuric acid, Corros. Sci, 1993, 35: 43-49.
    [167]Olsson C–O A, Landolt D, Atmospheric oxidation of a Nb–Zr alloy studied with XPS, Corros. Sci, 2004, 46: 213-224.
    [168]Atanassova E, Tyuliev G, Paskaleva A, Spassov D, Kostov K, XPS study of N2 annealing effect on thermal Ta2O5 layers on Si, Appl. Surf. Sci, 2004, 225: 86-99.
    [169]Wagner C D, in: Briggs D, Seah M P (Eds.), Practical Surface Analysis, second ed., Wiley, New York, 1990: 595-634.
    [170]Wen C E, Xu W, Hu W Y, Hodgson P D, Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications, Acta Biomaterialia, 2nd TMS Symposium on biological materials science Volume 3, Issue 3, May 2007: 403-410.
    [171]Wu W, Nancollas G H, Kinetics of heterogeneous nucleation of calcium phosphates on anatase and rutile surfaces, J. Colloid Sci., 1998, 199: 206-211.
    [172]Lin C -M, Yen S -K, Biomimetic growth of apatite on electrolytic TiO2 coatings in simulated body fluid, Mater. Sci. Eng. C, 2006,26: 54-64.
    [173]Svetina M, Colombi Ciacchi L, Sbaizero O, Meriani S, De Vita A, Deposition of calcium ions on rutile (110): a first-principles investigation, ActaMater. 2001, 49: 2169-2177.
    [174]Uchida M, Kim H -M, Kokubo T, Fujibayashi S, Nakamura T, Structural dependence of apatite formation on titania gels in a simulated body fluid, J.Biomed. Mater. Res., 2003, 64: 164-170.
    [175]Yang B, Uchida M, Kim H -M, Zhang X, Kokubo T, Preparation of bioactive titanium metal via anodic oxidation treatment, Biomaterials, 2004, 25: 1003-1010.
    [176]王夔,生物无机化学,北京:清华大学出版社,1988,69~87
    [177]Chang M C, Tanaka J, FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials, 2002, 23 (24): 4811~4818
    [178]Wagner C D, Riggs W M, et al. Handbook of X-ray photoelectron spectroscopy. Minnesota: Perkin-Elmer, 1979
    [179]Pentti Tengvall, Hans Elwing, Lars Sjoqvist, Ingemar Lundstrom, Lars Magnus Bjursten, Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium, Biomaterials, 1989, 10(2): 118-120
    [180]梁英教,车荫昌主编,《无机物热力学手册》,东北大学出版社,1993:55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700