铝合金中Portevin-Le Chatelier效应的实验研究和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Portevin-Le Chatelier(PLC)效应是指在一定的应变率和温度范围内,许多工程材料中会出现的一种不规则的塑性流动。其表现为连续的应力-时间曲线上的锯齿形起伏和应变-时间曲线上的阶梯状上升。而在空间上,这种不规则的塑性流动导致了应变局域化现象,表现为在试件表面上出现的静止的、跳跃的或连续传播的局部变形带。PLC效应是一种典型的多尺度效应问题,长期得到学术界的重视。通常都认为微观上溶质原子和可动位错之间的相互作用导致了该塑性失稳现象的发生,即动态应变时效。铝合金材料具有的较高的强度重量比使得其非常适合应用于汽车工业中。但铝合金在室温变形时就会发生PLC效应,这导致试件上几何扰动的增加以及颈缩应变的减小,从而会导致材料可成形性下降,制约了其在汽车部件中的使用。所以,开展铝合金PLC效应的研究具有重要的理论及工业应用价值。
     在溶质原子含量高于极限溶解度的合金材料中,多余的溶质原子将以析出相的形式存在。本文首先研究了在相同退火热处理条件下,不同析出相含量的两种铝镁合金5456和5052在不同加载应变率下的PLC效应。研究发现,析出相的存在增强了对可动位错的阻碍作用,析出相含量越大,对PLC效应产生影响越显著。
     其次,通过对5456和5052两种铝镁合金在相同的温度下保温时效不同的时间,使得溶质原子含量与析出相的含量同时发生变化。在相同的加载应变率下研究了溶质原子和析出相含量的变化对铝镁合金中的PLC效应所产生的影响,并比较了同样的实验条件下的2024铝铜合金中的溶质原子和析出相含量的变化对PLC效应所产生的影响。结果表明,在铝镁合金中,析出相含量的增加弥补了由于溶质原子的减少所带来的影响,溶质原子和析出相在PLC效应中所起到的作用相等。而在铝铜合金中,PLC效应中起主导作用的是溶质原子,析出相并未能弥补铜溶质原子含量减少所带来的影响。
     根据动态应变时效理论,通过施加不同的预变形,造成5456铝镁合金中的初始位错密度发生改变,研究了不同的位错密度对PLC效应产生的影响。研究中发现预变形对PLC效应的影响显著,而且随着预变形量的增加,临界应变出现反常的变化。
     最后在预变形实验的基础上,通过沿着试件的不同的方向进行的拉伸实验,研究了不同的晶粒取向对PLC效应产生的影响。结果表明,除了临界应变之外,各方向拉伸曲线上未见明显的区别,表现出各向同性。
     理论研究方面,基于动态应变时效过程中的热激活机制,综合考虑了溶质原子与位错的相互作用,位错与位错的相互作用以及伴随PLC效应的试件表面温度变化的影响,建立了一个宏观唯象模型。结合热传导方程,将该模型用于5456铝镁合金中,伴随着PLC效应出现的锯齿形屈服现象以及试件表面出现的温度变化现象的模拟研究中,很好的再现了红外测温实验中所观察到的PLC效应。由于模型中考虑了弹性变形的影响,PLC带出现时带外的弹性收缩现象也得到了很好的再现。模拟结果表明,相关的模型参数是率相关的,并且试件本身的温升对流动应力产生的影响很小。
Many engineering materials exhibit irregular plastic flow, which is referred to as Portevin-Le Chatelier(PLC) effect, in limited regimes of strain rate and temperature. The PLC effect manifests itself as temporal continuous stress serrations on stress-time curves or strain staircase behavior on strain-time curves respectively. Furthermore, the irregular plastic flow results in inhomogeneous deformation with various localization bands. These bands can be static, hopping and sometimes propagating along the specimen. The PLC effect is a kind of typical multi-scale effect and has been increasingly attractive to researchers since its discovery. The unstable plastic flow is generally understood as the consequences of solute-dislocation interaction at the microscopic level, namely, dynamic strain ageing (DSA). Aluminum alloy materials are very suitable for application in automobile industry due to the high strength-weight ratio. However, the PLC effect usually occurs at room temperature for aluminum alloy, which leads to the increasingly geometric perturbation in specimen and decreasingly necking strain. Thus, the material formability decreases, restricting its use in the car parts. Thus, the research on the PLC effect in aluminum alloy is of important theoretical and industrial application significance.
     In the alloy with solute content higher than the limiting solubility, the solute atoms failed to dissolve in matrix will precipitate from the solid solution and form precipitations. At first, the PLC effects in annealed 5456 and 5052 Al-Mg alloys with different precipitation contents are investigated under different applied strain rates respectively. The results indicate that precipitations strengthen the impediment to the motion of dislocations. The greater the contents of precipitations become, the more pronounced the influences on the PLC effect become.
     Secondly, 5456 and 5052 Al-Mg alloys are aged at the same temperature for different time, making the content of solute atoms and precipitations changing together. Then, tensile experiments under the same applied strain rate are carried out for the two alloys to investigate the effect of the simultaneous changes in the content of solute atoms and precipitations on the PLC effect. Also, this investigation is carried out for the 2024 Al-Cu alloy in the same way and the experimental results are compared with those in the Al-Mg alloys. The findings indicate that the increasing contents of precipitations make up the influences from the decreasing solute atoms. The effects of solute atoms and precipitations on the PLC effect are equivalent in Al-Mg alloy. However, in Al-Cu alloy, the effect of solute atoms is dominant in the PLC effect. The precipitations fail to make up the influences from the decreasing Cu solute atoms.
     In accordance to the DSA mechanism, the dislocation densities in 5456 Al-Mg alloy are changed by different prestrain magnitudes, and the effect of prestrain on the PLC effect is investigated. The experimental results indicate that the prestrain affects the PLC effect distinctly. The critical strain shows an abnormal evolution as well.
     Based upon the experiment of prestrain, tensile experiments are carried out along the different lattice directions in 5456 Al-Mg alloy. The findings show that the PLC effect does not present obvious difference with the lattice directions except the critical strain.
     A macroscopically phenomenological model is presented for the PLC effect based upon the DSA mechanism. The model takes into account the competition between the mobile dislocations and solute atoms, the interaction between dislocations, and the effect of temperature changes. Combined with a heat conduction equation, the model is finally used in the numerical simulations of the stress-strain curves and the temperature evolutions associated with the PLC effect in 5456 Al-Mg alloy. The numerical results reproduce the experimental findings in an infrared pyrometry experiment. The elastic shrinkage outside of deformation band is simulated as well by the consideration of elastic deformation in the model. It shows that the relevant parameters used in the simulation are rate-dependent and the influence on the flow stress from the temperature increment in specimen is minor.
引文
曹鹏涛. 2010.铝合金中Portevin-Le Chatelier效应的多尺度实验和机理研究. [D]:[博士].合肥:中国科学技术大学.
    曹鹏涛,张青川,符师桦,胡琦,高云. 2010. Al-Mg合金中锯齿形屈服现象的热分析[J].物理学报, 59(01): 458-465.
    冯端等著. 1998.金属物理学第一卷[M].北京:科学出版社.
    冯端等著. 1999.金属物理学第三卷[M].北京:科学出版社.
    龚兴龙. 1995.变形的实时光学测量[D]:[博士].合肥:中国科学技术大学.
    何国威,夏蒙棼,柯孚久,白以龙. 2004.多尺度耦合现象:挑战和机遇[J].自然科学进展, 14(2):121.
    孟德才. 2005. 5AO2铝合金内高压成形表面质量问题的研究[D]:[硕士].哈尔滨:哈尔滨工业大学,21.
    武恭,姚良均,李震夏等编著. 1997.铝及铝合金材料手册[M].北京:科学出版社.
    张静. 2011.和谐普考[J].汽车观察, 2.
    Ananthakrishna G, Sahoo D. 1981. A model based on nonlinear oscillations to explain jumps on creep curves [J]. J. Phys D: Applied Phys., 14:2081-2090.
    Ananthakrishna G, Noronha S J, Fressengeas C, Kubin L P. 1999. Crossover from chaotic to self-organized critical dynamics in jerky flow of single crystals [J]. Physical Review E, 60(5):5455-5462.
    Ananthakrishnan G. 2007. Current theoretical approaches to collective behavior of dislocations [J]. Physics Reports, 440:113-259.
    Banerjee S, Naik U M. 1996. Plastic instability in an omega forming Ti-15% Mo alloy [J]. Acta Mater., 44:3667-3677.
    Benallal A, Berstad T, Borvik T. et al. 2006. Dynamic strain aging and related instabilities: experimental, theoretical and numerical aspects [J]. Eur. J. Mech., 25:397-424.
    Benallal A, Berstad T, B?rvik T et al. 2008. An experimental and numerical investigation of the behavior of AA5083aluminium alloy in presence of the Portevin-Le Chatelier effect [J]. International Journal of Plasticity, 24:1916-1945.
    Besnard G, Hild F, Roux S. 2006.“Finite-element”displacement fields analysis from digital images: application to Portevin-Le Chatelier bands [J]. Exper. Mech., 46: 789–803.
    Brechet Y, Estrin Y. 1995. On the influence of precipitation on the Portevin-Le Chatelier effect [J]. Acta Metall., 43(3):955-963.
    Brindley B J, Worthington P J. 1970. Yield Point Phenomena in Substitutional Alloys [J].Metallurgical Reviews, 145:101-114.
    Cai M C, Niu L S, Yu T et al. 2010. Strain rate and temperature effects on the critical strain for Portevin-Le Chatelier effect [J]. Materials Science and Engineering: A, 527:5175–5180.
    Chen Z J, Zhang Q C, Jiang Z Y et al. 2004. A macroscopic model for the Portevin-Le Chatelier effect [J]. J. Mater. Sci. Tech., 20:535-539.
    Cheng X M and Morris J G. 2000. The anisotropy of the Portevin-Le Chatelier effect in aluminum alloys [J]. Scripta Mater., 43: 651–658.
    Chihab K, Estrin Y, Kubin L P, Vergnol J. 1987. The kinetics of the Portevin-Le Chatelier bands in an Al-5at%Mg alloy [J]. Scripta Metall., 21:203-208.
    Chmelík F,Klose F B, Dierke H et al. 2007. Investigating the Portevin-Le Chatelier effect in strain rate and stress rate controlled tests by the acoustic emission and laser extensometry techniques [J]. Materials Science and Engineering: A, 462:53–60.
    Chrysochoos A, Louche H. 2000. An infrared image processing to analyse the calorific effects accompanying strain localization [J]. Int. J. Eng. Sci., 38:1759-1788.
    Corby C, Caceres C H, Lukac P. 2004. Serrated flow in magnesium alloy AZ91 [J]. Materials Science and Engineering: A, 387-389:22-24.
    Cottrell A H. 1949. Dislocation theory of yielding and strain ageing of iron [J]. Proceedings of the physical society of London section A, 62: 49-62.
    Cottrell A H. 1953. Dislocations and Plastic Flow in Crystals [M]. University Press, Oxford. Cottrell A H. 1953. A Note on the Portevin-Le Chatelier effect [J]. Philosophical Magazine, 44(355): 829-832.
    Cuddy L J, Leslie W C. 1972. Some aspects of serrated yielding in substitutional solid solutions of iron [J]. Acta Metall., 20:1157-1167.
    Cuniberti A. 2006. Serrated yielding in long-range ordered 18R Cu-Zn-Al single crystals [J]. Intermetallics, 14(7):776-779.
    Curtin W A, Olmsted D L, Hector Jr L G. 2006. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys [J]. Nature Materials, 5:875-880.
    Dierke H, Krawehl F, Graff S et al. 2007. Portevin-Le Chatelier effect in Al-Mg alloys: Influence of obstacles - experiments and modeling [J]. Comput. Mat. Sci., 39:106-112.
    Estrin Y, Kubin L P. 1986. Local strain hardening and nonuniformity of plastic deformation [J]. Acta Metall., 34: 2455-2464.
    Franklin S, Mertens F, Marder M. 2000. Portevin-Le Chatelier effect [J]. Physical Review E, 62:8195-8206.
    Fressengeas C, Beaudoin A, Lebyodkin M et al. 2005. Dynamic strain aging: A coupleddislocation-solute dynamic model [J]. Mat. Sci. and Eng., 400:226-230.
    Garat V, Cloue J, Poquillon D, Andrieu E. 2008. Influence of Portevin-LeChatelier effect on rupture mode of alloy 718 specimens [J]. Journal of Nuclear Materials, 375:95-101.
    Graff S, Forest S, Strudel J L et al. 2004. Strain localization phenomena associated with static and dynamic strain ageing in notched specimen: experiments and finite element simulations. Mat. Sci. and Eng., 387:181-185.
    Graff S, Forest S, Strudel J L et al. 2005. Finite element simulations of dynamic strain ageing effects at V-notches and crack tips [J]. Scripta Mater., 52:1181-1186.
    Hahner P, Zigenbein A, Rizzi E et al. 2002. Spatio-temporal analysis of Portevin–Le Chatelier deformation bands: Theory, simulation, and experiment [J]. Phys. Rev. B., 65: 134109.
    Hahner P and Rizzi E. 2003. On the kinematics of Portevin-Le Chatelier bands: theoretical and numerical modeling [J]. Acta Mater., 51:3385-3397.
    Hild F, Roux S. 2006. Digital image correlation: from measurement to identification of elastic properties–a review [J]. Strain,42:69–80.
    Hirsch J. 1997. Aluminium alloys for automotive application [J]. Mater. Sci. Forum, 242: 33–50. Hirsch P B, Horne R W, Whelan M J. 1956. Direct observations of the arrangement and motion of dislocations in aluminium [J]. Philosophical Magazine, 1(7):677– 684.
    Hooper W H L. 1952. The influence of composition on the incidence of strain markings in aluminum alloys [J]. J. Inst. Metals, 81:563–568.
    Hopperstad O S, Borvik T, Berstad T, Benallal A. 2006. Finite element simulations of the Portevin-Le Chatelier effect in aluminium alloy [J]. J. Phys. IV, 134:435-441.
    Hopperstad O S, Borvik T, Berstad T et al. 2007. A numerical study on the influence of the Portevin-Le Chatelier effect on necking in an aluminium alloy [J]. Modell. Simul. Mater. Sci. Eng., 15: 747–772.
    Huang J C, Gray III G T. 1990. Serrated flow and negative rate sensitivity in Al-Li base alloys [J]. Scripta Metall., 24:85-90.
    Jiang D M, Kang S B, Kim H W. 1999. Microstructure and mechanical properties of Al–Mg alloy sheets for auto body application [J]. Mater. Sci. Tech., 15:1401–1407.
    Jiang H F, Zhang Q C, Sun L, Wu X P. 2006. Effect of solute concentration on the serrated flow in solution-treated Al-4%Cu alloys [J]. Chinese Physics, 15: 1051-1054.
    Jiang H F, Zhang Q C, Chen X et al. 2007. Three types of Portevin-Le Chatelier effect: Experiment and modeling [J]. Acta Mater., 55:2219-2228.
    Kilpatrick W, Brown D, McMurray R J, Leacock A G. 2010. The effect of serrated yielding on the determination of r-values in aluminium alloys and yield locus calibration [J]. Materials Scienceand Engineering: A, 527:7557-7564.
    Klose F. 2004. Experimental and numerical studies on the Portevin-Le Chatelier effect in Cu-Al and Al-Mg in strain and stress controlled tensile tests [D]: [Ph.D.]. Germany: Braunschweig TU.
    Kok S, Bharathi M, Beaudoin A et al. 2003. Spatial coupling in jerky flow using polycrystal plasticity [J]. Acta Mater., 51:3651-3662.
    Korbel A, Zasadzinski J, Sieklucka Z. 1976. A new approach to the Portevin-Le Chatelier effect [J]., Acta Metall., 24: 919-923.
    Kubin L P, Estrin Y. 1985. The Portevin-Le Chatelier effect in deformation with constant stress rate [J]. Acta Metall., 33:397-407.
    Kubin L P,Estrin Y. 1990. Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect [J]. Acta Metall., 38:697-708.
    Lebyodkin M A, Dunin-Barkovskii L R, Bobrov V S, Groger V. 1995. Statistical aspects of low temperature discontinuous deformation [J]. Scripta Metall., 33:773-780.
    Le Chatelier A. 1909. Influence du temps et de la temperature sur les essais au choc [J]. Revue de Me′tallurgie, 6:914–917.
    Li D M, Ghosh A. 2003. Tensile deformation behavior of aluminum alloys at warm forming temperatures [J]. Materials Science and Engineering: A, 352: 279-286.
    Li J J, Kim S, Lee T M et al. 2011. The effect of prestrain and subsequent annealing on the mechanical behavior of AA5182-0 [J]. Materials Science and Engineering: A, 528:3905-3914.
    Ling C P, McCormick P G. 1993. The effect of temperature on strain rate sensitivity in an Al-Mg-Si alloy [J]. Acta Metall., 41:3127-3131.
    Louat N. 1981. On the theory of the portevin-le chatelier effect [J]. Scripta Metall., 15: 1167-1170.
    Louche H, Vacher P, Arrieux R. 2005. Thermal observations associated with the Portevin–Le Chatelier effect in an Al–Mg alloy [J]. Materials Science and Engineering: A, 404:188-196.
    Luders W. 1860. Ueber die ?usserung der elasticit?t an stahlartigen Eisenst?ben und Stahlst?ben, undüber eine beim Biegen solcher St?be beobachtete Molecularbewegung [J]. Dingler’s Polytechnisches Journal, 155:18–22.
    Masson A P. 1841. Sur le′lasticite′des corpessolides [J]. Annales de Chimie et de Physique (third series), 3:461–462.
    Maziere M, Besson J, Forest S et al. 2008. Numerical modelling of the Portevin-Le Chatelier effect [J]. European Journal of Computational Mechanics, 17:761-772.
    McCormick P G. 1971.The Portevin-Le Chatelier effect in an Al-Mg-Si alloy [J]. Acta Metall., 19: 463-471.
    McCormick P G. 1972. A model for the Portevin-Le Chatelier effect in substitutional alloys [J]. Acta Metall., 20: 351-354.
    McCormick P G. 1973. The Portevin-Le Chatelier effect in a pressurized low carbon steel [J]. Acta Metall., 21: 873-878.
    McCormick P G. 1986. Dynamic stain ageing [J]. Trans.IndianInst.of Metals, 39:98-106. McCormick P G. 1988. Theory of flow localization due to dynamic strain aging [J]. Acta Metall., 36: 3061-3067.
    McCormick P G, Ling C P. 1995. Numerical modelling of the Portevin-Le Chatelier effect [J]. Acta Metall., 43(5): 1969-1977.
    Miguel M C, Vespignani A, Zapperi S et al. 2001. Intermittent dislocation flow in viscoplastic deformation [J]. Nature, 410:667-671.
    Mizera J, Kurzydlowski K J. 2001. On the anisotropy of the Protevin-Le Chatelier plastic instabilities in Al-Li-Cu-Zr alloy [J]. Scripta Mater., 45: 801-806.
    Mulford R A and Kocks U F. 1979. New observations on the mechanisms of dynamic strain aging and of jerky flow [J]. Acta Metall., 27: 1125-1134.
    Murray J L. 1982. The Al-Mg (Aluminum-Magnesium) System [J]. Bulletin of Alloy Phase Diagrams, 3:60-74.
    Naka T, Nakayama Y, Uemori T et al. 2003. Effects of temperature on yield locus for 5083 aluminum alloy sheet [J]. J. Mater. Process. Tech., 140: 494-499.
    Nakada Y, Keh A S. 1970. Serrated flow in Ni-C alloys [J]. Acta Metall., 18: 437-443.
    Neuhauser H. 1990. Patterns, Defects and Materials Instabilities [M]. NATO ASI Series E, Applied Sciences, 183: 241-276.
    Neuhauser H. 1993. Collective micro shear processes and plastic instabilities in crystalline and amorphous structures [J]. International Journal of Plasticity, 9:421-435.
    Nikulin I, Kaibyshev R. 2011. Deformation behavior and the Portevin-Le Chatelier effect in a modified 18Cr-8Ni stainless steel [J]. Materials Science and Engineering: A, 528:1340-1347.
    Onodera R, Morikawa T, Higashida K. 1997. Computer simulation of Portevin-Le Chatelier effect based on strain softening model [J]. Materials Science and Engineering: A, 234-236: 533-536.
    Park D, Morris J G.1993. The Portevin-Le Chatelier effect in an Al-Mn-Mg alloy [J]. Scripta Metall., 29:365-369.
    Penning P. 1972. Mathematics of the Portevin-Le Chatelier effect [J]. Acta Metall., 20:1169-1175. Phillips V A, Swain A J, Eborall R. 1952. Yield-point phenomena and stretcher-strain markings in aluminum–magnesium alloys [J]. J. Inst. Metals, 81: 625–647.
    Piobert G, Morin A J, Didion I. 1842. Commission des Principes du Tir [J]. Mémorial del’Artillerie, 5: 501–552.
    Pink E, Grinberg A. 1981. Serrated flow in a ferritic stainless steel [J]. Materials Science and Engineering: A, 51(1): 1-8.
    Pink E, Grinberg A. 1982. Stress drops in serrated flow curves of Al5Mg [J]. Acta Metall., 30:2153-2160.
    Pink E. 1989. The effect of precipitates on characteristics of serrated flow in AlZn5Mg1 [J]. Acta Metall., 37:1773-1781.
    Portevin A, Le Chatelier F. 1923. Sur un phénomène observélors de l'essai detraction d'alliages en cours de transformation [J]. Comptes Rendus de l'Académiedes Sciences, 176: 507-510.
    Portevin A, Le Chatelier F. 1924. Heat treatment of aluminium-copper alloys [J]. Transactions of the American Society of Steel Treating, 5:457–478.
    Ranc N, Wagner D. 2005. Some aspects of Portevin-Le Chatelier plastic instabilities investigated by infrared thermography [J]. Materials Science and Engineering: A, 394:87-95.
    Rizzi E and Hahner P. 2004. On the Portevin-Le Chatelier effect: theoretical andnumerical results [J]. International Journal of Plasticity, 20:121-165.
    Rosenhain W, Archubutt S L. 1919. On the inter-crystalline fracture of metals under prolonged application of stress [J]. Proceedings of the Royal Society of London, 96:55-68.
    Samantaray D, Mandal S, Bhaduri A K. 2009. A comparative study on Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel [J]. Computational Materials Science, 47:568-576.
    Savart F. 1837. Recherches sue les vibrations longitudinales [J]. Annales de Chimie et de Physique (second series), 65: 337–402.
    Shabadi R, Kumar S, Roven H J et al. 2004. Characterization of PLC band parameters using laser speckle technique [J]. Materials Science and Engineering: A, 364: 140-150.
    Shabadi R, Kumar S, Roven H J et al. 2004. Effect of specimen condition, orientation and alloy composition on PLC band parameters [J]. Materials Science and Engineering: A, 382: 203-208.
    Sivakesavam O, Saha G G, Raghavan K S. 1988. Characteristics of serrated flow in commercial Cu-Be-Co alloy [J]. Mater. Sci.Tech., 4:578-585.
    Springer F. 1991. Quantitative investigations on dynamic strain aging in polycrystalline CuMn alloys [J]. Scripta Metall., 25: 2739-2744.
    Sun L, Zhang Q C, Cao P T. 2009. Influence of solute cloud and precipitates on spatiotemporal characteristic of Portevin-Le Chatelier effect in A2024 aluminum alloys [J]. Chinese Physics B, 18(8): 3500-3507.
    Tabata T, Fujita H, Nakajima Y. 1980. Behavior of dislocations in Al-Mg single crystals observedby high voltage electron microscopy [J]. Acta Metall., 28:795-805.
    Taylor, G.I., Quinney, H. 1934. The latent energy remaining in a metal after cold working proceedings of the Royal Society A413 [J]. Proc. Roy. Soc., 143:307-326.
    Thevenet D, Mliha-Touati M, Zeghloul A. 1999. The effect of precipitation on the Portevin-Le Chatelier effect in an Al–Zn–Mg–Cu alloy [J]. Materials Science and Engineering: A, 266(1-2):175-182.
    Tong W, Tao H, Zhang N et al. 2005. Time-resolved strain mapping measurements of individual Portevin-Le Chatelier deformation bands [J]. Scripta Mater., 53:92–97.
    Tong W, Zhang N. 2007. On serrated plastic flow in an AA5052-H32 sheet [J]. ASME J. Eng. Mater. Technol., 129:332–341.
    Tsukahara H. and Iung T. 1999. Piobert-Luders and Portevin-Le Chatelier instabilities: Finite element modelling with abaqus [J]. J. Phys. IV, 9:157-164.
    Van den Beukel A. 1975. Theory of the effect of dynamic strain aging on mechanical properties [J]. Phys. Stat. Sol. (A), 30:197-206.
    Venkadesan S, Phaniraj C, Sivaprasad P V, Rodrigues P. 1992. Activation energy for serrated flow in a 15Cr-5NiTi-modified austenitic stainless steel [J]. Acta Metall., 40:569-580.
    Verma R, Ghosh A K, Kim S, Kim C. 1995. Grain refinement and superplasticity in 5083 Al [J]. Materials Science and Engineering: A, 191: 143-150.
    Wen W, Zhao Y M, Morris J G. 2005. The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys [J]. Materials Science and Engineering: A, 392: 136–144.
    William K R, Jones S E. 1998. A revised form for the Johnson-Cook strength model [J]. International Journal of Impact Engineering, 21:609-624.
    Wowk D L. 2008. Effects of prestrain on the strain rate sensitivity of AA5754 sheet [D]: [Ph. D.]. Canada: Queen’s University, 1-2.
    Xiang G F, Zhang Q C, Liu H W et al. 2007. Time-resolved deformation measurements of the Portevin-Le Chatelier bands [J]. Scripta Mater., 56:721-724.
    Zaiser M, Hahner P. 1997. Oscillatory Modes of Plastic Deformation: Theoretical Concepts [J]. Phys. Stat. Sol. (b), 199:267-330.
    Zavattieri P D, Savic V, Hector Jr et al. 2009. Spatio-temporal characteristics of the Portevin-Le Chatelier effect in austenitic steel with twinning induced plasticity [J]. International Journal of
    ZPlasticity, 25:2298-2330. bib H. and Aifantis E. 1988. On the localization and postlocalization behavior of plastic deformation. III. On the structure and velocity of the Portevin-Le Chatelier bands [J]. Res Mechanica, 23:293- 305.
    Zhang C S, Leotoing L, Guines D, Ragneau E. 2010. Experimental and numerical study on effect of forming rate on AA5086 sheet formability [J]. Materials Science and Engineering: A, 527:967-972.
    Zhang Q C, Toyooka S, Meng Z et al. 1999. Investigation of slipband propagation in aluminum alloy with dynamic speckle interferometry [C]. The SPIE conference on Nondestructive Evaluation of Aging Materials and Composites III, Newport Beach, California: SPIE. Zhang Q C, Toyooka S, Wu X. 2001. Study of propagation and pulsation of slip band using dynamic digital speckle interferometry [C]. The third International Conference on Experimental Mechanics, Beijing: SPIE.
    Zhang Q C, Wu X P. 2003. Investigation of propagation and pulsation of slip band using dynamic DSPI [J]. Proceedings of SPIE, 5058:257-265.
    Zhang Q C, Jiang Z Y, Jiang H F et al. 2005. On the propagation and pulsation of Portevin-Le Chatelier deformation bands: An experimental study with digital speckle pattern metrology [J]. International Journal of Plasticity, 21: 2150-2173.
    Zhang S, McCormick P G, EstrinY. 2001. The morphology of Portevin-Le Chatelier bands: finite element simulation for Al–Mg–Si [J]. Acta Metall., 49(6): 1087-1094.
    Zhu S M, Nie J F. 2004. Serrated flow and tensile properties of a Mg-Y-Nd alloy [J]. Scripta Mater., 50:51-55.
    Ziegenbein A, Hahner P, Neuhauser H. 2000. Correlation of temporal instabilities and spatial localization during Portevin-Le Chatelier deformation of Cu-10 at.% Al and Cu-15 at.% Al [J]. Computational Materials Science, 19:27-34. ? ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700