保护性预热应激模型的创建及其信号转导通路机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨预热应激对大鼠中暑休克的保护作用及其信号转导机制
     方法:实验分为两部分。第一部分:保护性预热应激模型的创建及信号转导通路作用的研究。此部分分为两个实验:1.预热应激(42℃,15min)对大鼠中暑休克的保护作用。30只SD雄性大鼠随机分为预热应激组(42℃,15min,HS组)、预热应激对照组(不给予预热应激处理,SC组)和正常体温对照组(NC组),三组室温恢复20h。然后给予热暴露至其死亡,气象条件:干球温度(39.5±0.5)℃,湿球温度(34.0±0.5)℃,相对湿度(65±3)%。监测受热全程肛温等生理指标的变化及其生存时间、存活率,测定死亡时大脑皮层、心肌、肝脏的丙二醛(MDA)及热休克蛋白70(HSP70)的含量;2.预热应激后信号转导通路的研究。32只SD雄性大鼠随机分为HS组、SC组、NC组和蛋白激酶C抑制剂组(预热前10min注入蛋白激酶C抑制剂chelerythrine chloride,PKC组),同样室温恢复20h。给予热暴露,气象条件同前,受试时间为73min。期间全程监测生理指标,测定实验终止时大脑皮层、心肌和血清中MDA、一氧化氮(NO)含量。第二部分:保护性预热应激模型建立过程中信号转导作用机制的研究。此部分亦分为两个实验:1.保护性预热应激后PKC介导的细胞内信号转导通路中肿瘤坏死因子(TNF)、NO的研究。66只SD雄性大鼠随机分为预热应激后0h、2h、4h、8h、12h、24h组以及各时间点的对照组。检测各时间点血清TNF、NO的含量;2.保护性预热应激模型建立过程中PKC介导的细胞内信号转导通路对HSP70表达的影响。24只SD雄性大鼠随机分为HS组,NC组和PKC组,室温恢复20h后测定大脑皮层、心肌HSP70的含量。
     结果:第一部分:1.HS组热暴露后的生存时间、存活率明显高于SC组。中暑后,HS组血压、心率高于SC组,而肛温却明显低于SC组。死亡时,大脑皮层和肝脏MDA、HSP70含量较SC组明显增加;2.中暑
    
     后,相对于SC组,HS组表现出更高的血压、心率值,而肛温却明显下
     降,大脑皮层、心肌、血清中MDA、NO的含量亦显著降低。相对于
     HS组,PKC组表现出更低的血压、心率值,肛温却明显升高,大脑皮
     层、心肌和血清中MDA、NO含量均明显高于HS组。第二部分:1.预
     热应激后,大鼠血清 WF 4h达到峰值,NO sh达到峰值,并均较受热前
     明显升高;2.HS组心肌、大脑皮层HsP7二表达量较NC组显著增加,
     而PKC组心肌、大脑皮层HSP72的含量明显低于HS组。
     结论:1.预热应激(42 oC,15min)可以有效延缓热暴露大鼠中暑
     休克的到来,提高大鼠热耐受能力,降低中暑死亡率,填补了国内研究
     空白;2.预热应激增强了机体心脏储备,提高了心血管系统功能;3.预
     热应激可有效减轻中暑后体温调节中枢的损害,从而减轻中暑后机体体
     温调节能力的下降;4.预热应激可减轻中暑诱导的MDA、NO对机体的
     损害,同时还可提高机体对MDA的耐受能力,此研究结果国内外尚无
     报道:5.首次提出保护性热应激模型的概念:给予动物适当、短暂的热
     应激,从而使机体在细胞、器官、整体水平增强对抗外界有害应激的能
     力;6.首次观察到预热应激可在多器官组织水平激活PKC,并通过其诱
     导多器官组织HSP72的大量表达,从而使机体热耐受能力提高;7提出
     了“ TNF、NO可能是预热应激激活 PKC介导的信号转导通路的触发因
     子”的新见解。8.总结归纳出预热应激保护作用可能的信号转导通路图。
Objective To investigate protective effects of heat stress preconditioning on the heatstroke in rats and the mechanism of signal transduction about heat stress preconditioning.
    Methods The experiment consisted of two parts. The first part:the establishment of protective heat stress preconditioning model and investigation of effects of signal transduction pathway. This part included two experiments:1. Protective effects of heat stress preconditioning(42C,15min) on heatstroke in rats. 30 SD male rats were randomly divided into 3 groups:heat stress preconditioning group(42C,15min,HS group),sham heat stress control group(without heat stress preconditioning,SC group) and normal temperature control group(NC group). Three groups recovered for 20h at room temperature. Then all groups exposed to death in thermal environment(Td 39.5+0.5C,Tw 34.0+0.5C,relative humidity 65+3%). The existent time(interval between onset of heat stress and death),survival rate,the rectal temperatrue(Tr),heart rate(HR),mean arterial pressure(MAP) were measured continuously during heat exposure. The cerebral cortex,heart and liver were removed at the end of the experiment for detection of MDA and HSP70;2.1nvestigat
    ion of signal transduction pathway after heat stress preconditioning. 32 SD male rats were randomly divided into 4 groups:HS group,SC group,NC group and protein kinase C inhibitor group(inject protein kinase C inhibitor-chelerythrine chloride into rats' abdominal cavity lOmin before heat stress preconditioning,PKC group). Four groups recovered for 20h at room temperature. Then all groups exposed in thermal environment(Td 39.5+0.5C,Tw 34.0+0.5C,relative humidity 65 + 3%) for 73 min. The physiological index were measured continuously. The cerebral cortex,serum and heart were removed at the end of the experiment for detection of MDA and NO. The second part:Investigation of the
    
    
    
    mechanism of signal transduction during establishment of protective heat stress preconditioning model. This part included two experiments:1. Study of tumor necrosis factor(TNF) and NO in PKC signal transduction pathway after heat stress preconditioning. 66 SD male rats were randomly divided into Oh group,2h group,4h group,8h group,12h group,24h group and control groups of each time point. The serum were separated and the concentration of TNF and NO were measured between Oh and 24h after heat stress preconditioning respectively. 2. Influence of PKC signal transduction pathway on the expression of HSP72 during establishment of the model. 24 SD male rats were randomly divided into 3 groups:HS group,NC group and PKC group. All groups recovered for 20h at room temperature. Then HSP72 of the cerebral cortex and myocardium were detection.
    Results The first part:1. Compared with SC group,existent time and survival rate increased significantly in HS group after heat exposure. MAP and HR were higher,but Tr was lower in HS group after heatstroke. At the end of experiments the content of MDA and HSP70 in the cerebral cortex and liver increased significantly vs SC group. 2. Compared with SC group,MAP,HR were higher,but Tr and MDA,NO in cerebral cortex,myocardium and serum was lower in HS group. Compared with HS group,the content of MDA and NO in the cerebral cortex,serum and myocardium increased significantly in PKC group,however MAP and HR was lower. The second part:1. The concentration of TNF reached the peak 4h after hat stress preconditioning. The concentration of NO amounted to peak 8h after hat stress preconditioning. 2. compared with NC group,the content of HSP72 in cerebral cortex and myocardium increased significantly in HS group. After application of chelerythrine chloride(a potent,selective PKC inhibitor),the content of HSP72 in cerebral cortex and myocardium decreased significantly compared with HS group.
    Conclusion 1. Heat stress preconditioning(42C,15min) delayed the
    
    
    heatstroke,enhanced thermotolerance and decreased death rate after heatstroke,which filled up the vacancy in China. 2. Heat stress preconditioning could enhance heart reserve and
引文
1 扬柯.中暑研究进展。广西中医学院学报,2000,17(2):68-70.
    2 Knochel JP. Environmental heat illness. Arch intern med, 1974, 133 (5):841-6.
    3 罗炳德,邹飞,万为人,等.复方人参制剂对热应激大鼠的保护作用研究.中国工业医学杂志,2001,14(3):136-8.
    4 毛定安,杨于嘉,尹飞,等.热应激反应对大鼠感染性脑水肿、肿瘤坏死因子-α、一氧化氮的影响及意义.中风与神经疾病杂志,1998,15(4):198-200.
    5 Yamashita N, Hoshida S, Nishida M, et al. Time course of tolerance to ischemia-reperfusion injury and induction of heat shock protein 72 by heat stress in the rat heart. J Mol Cell Cardiol, 1997, 29(7): 1815-21.
    6 Hotchkiss R, Nunnally I, Lindquist S, et al. Hyperthermia protects mice against the lethal effects of endotoxin. Am J Physiol, 1993, 265 (6 Pt 2): R1447-57.
    7 Yang YL, Lin MT. Heat shock protein expression protects against cerebral ischemia and monoamine overload in rat heatstroke. Am J Physiol, 1999, 276 (6 Pt 2):: H1961-7.
    8 Karmazyn M, Mailer K, Currie RW. Acquisition and decay of heat-shock-enhanced postischemic ventricular recovery. Am J Physiol, 1990, 259 (2 Pt 2): H424-31.
    9 De Maio A, Beck SC, Buchman TG. Induction of translational thermotolerance in liver of thermally stressed rats. Eur J Biochem, 1993, 218 (2): 413-20.
    10 Villar J, Edelson JD, Post M, et al. Induction of heat stress proteins is associated decreased mortality in an animal model of acute lung injury. Am Rev Respir Dis, 1993, 147(1): 177-181.
    11 Sambrook J, Fritsch EF, Maniatis T.金冬雁,黎孟枫译.分子克隆实验指南.第二版.北京:科学出版社,1999.870-97.
    
    
    12 Lin MT, LIU HH, Yang YL. Involvement of interleukin-1 receptor mechanisms in development of arterial hypotension in rat heatstroke. Am J Physiol, 1997, 273(Heart Circ. Physiol.42) : H2072-77.
    13 刘远谋,姚泰.血液循环.见:姚泰,主编.生理学.第五版.北京:人民卫生出版社,2001,102-7
    14 Ignarro LJ, Ross G, Tillisch J. Pharmacology of endothelium-derived nitric oxide and nitrovasodilators. West J Med, 1991, 154(1): 51-62.
    15 Bouchama A, Parhar RS, El-Yazigi A, et al. Endotoxemia and release of tumor necrosis factor and interleukin 1 α in acute heatstroke. J. Appl. Physiol, 1991, 70(6): 2640-44.
    16 Ulich T.R, Guo K.Z, Irwin B, et al. Endotoxin-induced cytokine gene expression in vivo Ⅱ: Regulation of tumor necrosis factor and inteleukin-1 α/β expression and suppression. Am. J. Pathol, 1990, 137(5): 1173-85.
    17 罗炳德,闫文生,万为人,等.热性发热兔血浆脂多糖(LPS)浓度与生理反应的变化.中国应用生理学杂志,1998,14(2):166-9.
    18 Gathiram P, Wells MT, Brock-Utne JG, et al. Prevention of endotoxemia by non-absorbable antibiotics in heat stress. J Clin Pathol, 1987, 40(11): 1364-68.
    19 Le Greves P, Sharma Hs, Westman J, et al. Acute heat stress induces edema and nitric oxide synthase upregulation and downregulates mRNA levels of the NMDAR1, NMDAR2A and NMDAR2B subunits in the rat hippocampus. Acta. Neruochir. Suppl (Wien), 1997, 70275-8.
    20 Hall DM, Buettner GR, Matthes RD, et al. Hyperthermia simulates nitric oxide formation: electron paramagnetic resonance detection of NO-heme in blood. J.APPl. Physiol, 1994, 77(2): 548-53.
    21 Morita K, Ihnken K, Buckberg GD, et al. Role of controlled cardiac reoxygenation in reducing nitric oxide production and cardiac oxidant damage in cyanotic infantile hearts. J Clin Invest, 1994, 93(6): 2658-66.
    22 Wang P, Zweier JL. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem, 1996, 271(46): 29223-30.
    
    
    23 Brady A J, Warren JB, Poole-Wilson PA, et al. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol. 1993, 265(1 Pt 2): H176-82.
    24 Cheng XS, Shimokawa H, Momii H et al. Role of superoxide anion in the pathogenesis of cytokine-induced myocardial dysfunction in dogs in vivo. Circulation, 1997, 96(suppl): 1605.
    25 Oyama J, Shimokawa H, Momii H, et al. Role of nitric oxide and peroxynitrite in the cytokine-induced sustained myocardial dysfunction in dogs in vivo. J Clin Invest, 1998, 101(10): 2207-214.
    26 Liu P, Hock CE, Nagele R et al. Formation of nitric oxide,superoxide,and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol, 1997, 272(5 pt 2): H2327-36.
    27 Lorente JA, Landin L, Renes E, et al Role of nitric oxide in the hemodynamic changes of sepsis. Crit Care Med, 1993, 21(5): 759-67.
    28 Bourcier T, Sukhova G, Libby P. The nuclear factor kappa-B signaling pathway participates in dysregulation of vascular smooth muscle cells in vitro and in human atherosclerosis. J Biol Chem, 1997, 272(25): 15817-24.
    29 Morishita R, Sugimoto T, Aoki M, et al. In vivo transfection of cis element "decoy" against nuclear factor-kappaB binding site prevents myocardial infarction. Nat Med, 1997, 3(8):894-9.
    30 Bechman JS, Koppenol WH. Nitric oxide,superoxide,and peroxynitrite: the good,the bad,and the ugly. Am J Physiol, 1996, 271(cell physiol 40): c1424-37.
    31 Otani H, Engelman RM, Rousou JA, et al. Cardiac performance during reperfusion improved by pretreatment with oxygen free-radical scavengers. J Thorac Cardiovasc Surg, 1986, 91(2): 290-5.
    32 Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K~+ channels and myocardial preconditioning. Cric Res, 1999, 84 (9):973-9.
    
    
    33 Metzger J, Dore SP, Luaterburg BH. Oxidant stress during reperfusion of ischemic liver: no evidence for a role of xanthine oxidase. Hepatology, 1988, 8(3): 580-4.
    34 Baines CP, Cohen MV, Downey JM. Signal transduction in ischemic preconditioning: the role of kinases and mitochondrial K(ATP) channels. J Cardiovasc Electrophysiol, 1999, 10(5): 741-54.
    35 Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science, 1992, 258(5082): 607-14.
    36 Johannes FJ, Prestle J, Eis S, et al. PKCu is a novel, atypical member of the protein kinase C family. J Biol Chem, 1994, 269(8): 6140-8.
    37 Akimoto K, Mizuno K, Osada S,etal. A new member of the third class in the protein kinase C family, PKC lambda, expressed dominantly in an undifferentiated mouse embryonal carcinoma cell line and also in many tissues and cells. J Biol Chem, 1994, 269(17): 12677-83.
    38 Herbert JM, Augereau JM, Gleye J et al. Chelerythrine is a potent and specific inhibitor of protein kianse C. Biochem Biophys Res Commun, 1990,172(3): 993-9.
    39 Light PE, Sabir AA, Allen BG,etal. Protein kinase C-induced changes in the stoichiometry of ATP binding activate cardiac ATP-sensitive K+ channels. A possible mechanistic link to ischemic preconditioning. Circ Res, 1996, 79(3): 399-406.
    40 Ritossa FM. A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia, Basel, 1962, 18: 571-3.
    41 Morimoto R, Fodor E. Cell-specific expression of heat shock proteins in chicken reticulocytes and lymphocytes. J Cell Biol, 1984, 99(4 Pt 1): 1316-23.
    42 Beckmann RP, Mizzen LE, Welch WJ. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science, 1990, 248(4957): 850-4.
    43 Milarski KL, Morimoto RI. Mutational analysis of the human HSP70 protein: distinct domains for nucleolar localization and adenosine triphosphate binding. J Cell Biol, 1989, 109(5): 1947-62.
    
    
    44 Munro S, Pelham HR. An hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell, 1986, 46(2): 291-300.
    45 Martin J, Langer T, Boteva R, etal Hartl FU.Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature, 1991, 352(6330): 36-42.
    46 Ellis R J, van der Vies SM.Molecular chaperones. Annu. Rev. Biochem, 1991 (60): 321-47.
    47 Kone BC. Nitric oxide in renal health and disease. Am J Kidney Dis, 1997, 30(3): 311-3.
    48 Nakano M, Knowlton AA, Dibbs Z, et al. Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation, 1998, 97(14): 1392-1400.
    49 朱冠山,秦一中,万谟彬,等.TNF对小鼠急性肝坏死的双重作用.第二军医大学学报,1997,18(2):173-6.
    50 Malyshev IYu, Manukhina EB, MikoyanVD, et al. Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Lett, 1995, 370(3):159-62.
    51 Membrillo-Hernandez HJ, Coopamah MD, Anjum MF, et al. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a "Nitric oxide Releaser," and paraquat and is essential for transcriptional responses to oxidative stress. J Biol Chem, 1999,274(2):748-54.
    52 Kitakaze M, Hori M, Takashima S, et al. Ischemic preconditioning increases adenosine release and 5'-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Circulation, 1993, 87(1):208-15.
    53 车玉英,贾国良,陈士良.缺血预处理和“腺苷预处理”对兔心肌梗塞面积的影响.中国危重病急救医学,1997,9(9):515.
    54 Maulik N, Engelman DT, Watanabe M, et al. Nitric oxide/carbon monoxide. A molecular switch for myocardial preservation during ischemia. Circulation, 1996, 94(9 Suppl): Ⅱ398-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700