谢氏宽漠王热休克蛋白基因的克隆及表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谢氏宽漠王Mantichorula semenowi Reitter隶属于鞘翅目Coleoptera拟步甲科Tenebrionidae漠甲亚科Pimeliinae漠甲族Pimeliini宽漠王属Mantichorula Reitter,是分布在我国内蒙古阿拉善东部、宁夏中北部和蒙古国南缘的一个特有物种,其成虫能在沙表74℃的极端高温下活动并利用小生境繁衍生息,受环境胁迫形成了特殊的生理生态适应特征。了解谢氏宽漠王的热休克蛋白(heat shock protein,HSP)基因调控,研究其在恶劣环境下的生物抗逆机制在理论和应用上都有重要的意义。
     本论文以谢氏宽漠王为研究材料。研究内容主要分为3个部分:
     第1部分:通过RT-PCR及RACE技术从谢氏宽漠王体内克隆获得与昆虫抗高温机制相关的2种不同hsp70基因的cDNA序列,并对其核苷酸和编码的蛋白序列进行了生物信息学分析;
     第2部分:通过同源克隆得到谢氏宽漠王β-actin基因,检测了β-actin基因作为分子内标的可靠性,并建立了1种以在昆虫体内稳定表达的管家基因β-actin为分子内标的半定量RT-PCR方法。以此方法对热激条件下谢氏宽漠王体内Mshsp70、Mshsc70基因的mRNA表达水平进行相对定量研究;
     第3部分:构建了谢氏宽漠王Mshsp70基因的原核表达载体,并在大肠杆菌DE3体内进行诱导表达,并以纯化后的蛋白免疫家兔制备抗体。
     研究结果如下:
     (1)谢氏宽漠王Mshsp70基因cDNA序列2137 bp,编码区长1950 bp,5′端非翻译区为19 bp,3′端非翻译区为168 bp。可编码649个氨基酸残基,理论分子量为71.34 KD,同源性分析表明该基因与异色瓢虫Harmonia axyridis的核苷酸序列相似性高达85%,推导的氨基酸序列与赤拟谷盗Tribolium castaneum蛋白序列相似性达92%。
     (2)谢氏宽漠王Mshsc70基因cDNA序列1908 bp,编码区长1808 bp,3'UTR为100 bp。编码601个氨基酸残基。理论分子量为57.85 KD,同源性分析表明该基因的核苷酸序列和蛋白序列与赤拟谷盗的序列相似性分别为80%,85%。
     (3)谢氏宽漠王β-actin基因cDNA序列全长1372 bp,包含一个长度为1131 bp的开放阅读框,编码376个氨基酸。5′和3′末端非翻译区域(UTR)分别为66 bp和175bp;该数据与其他动物β-actin基因核苷酸序列具有96%~99%高度同源性。将该序列提交GenBank,获得序列号为EU825991。β-actin表达量检测结果显示热激后不同恢复时间其表达量无明显变化,且与未经热激处理的对照相比无显著差异,可以作为研究受外界环境胁迫作用下昆虫体内不同基因表达水平高低的可靠内部参照标准。
     (4)通过半定量RT-PCR分析:谢氏宽漠王在未经热处理的正常条件下,Mshsp70和Mshsc70均有表达,但是室温恢复过程中,2个基因具有截然不同的表达趋势。经42℃热激1 h后立即诱导Mshsp70表达至最高峰;在恢复到室温的1~4 h内Mshsp70表达量逐渐降低,但仍然高于未热激对照组。而Mshsc70在42℃热激1 h后表达受到抑制,但在恢复2~4 h内有少量的表达。
     (5)利用高效原核表达载体pET-DsbA,成功构建了谢氏宽漠王Mshsp70基因的原核表达载体,并在大肠杆菌DE3中37℃培养,IPTG终浓度为1 mM诱导3 h获得成功表达。SDS-PAGE蛋白电泳显示,融合蛋白分子量约为60 KD,目的条带与预期分子量一致。利用His亲和层析纯化得到融合蛋白,以纯化后的蛋白免疫家兔制备HSP70抗体,经过Western Blot检测到与预期大小一致的特异性条带。
Mantichorula semenowi Reitter,1889 (Coleoptera:Tenebrionidae) is an endemic species distributed in the floating dune of Southeast Alxa, China and South Mongolia which adjoins China. The species evolved special physiological and ecological characteristics of adaptation under environmental stress. Its imago can survive on the surface of dune with extreme temperature as high as 70℃and use the microhabitat to produce offspring. The present results provide new insights into mechanisms used by M. semenowi to adapt to stressful environments.
     This thesis contains 3 parts.
     1.The cloning and expression analysis of Mshsp70 and Mshsc70 from M. semenowi. The cDNA was cloned using RT-PCR and RACE methods.
     2.The cloning and expression analysis ofβ-actin from M. semenowi. The cDNA was cloned using RT-PCR and RACE methods, and detected reliability ofβ-actin genes as internal control within insects after heat shock. To establish a stable expression in vivo geneticβ-actin steward for the internal control semi-quantitative RT-PCR method. By this method of heat shock the gene mRNA expression level of Mshsp70 and Mshsc70 relative quantitative were researched in M. semenowi.
     3.The Mshsp70 prokaryotic expression vector was constructed and in DE3 induction expression, to purify the protein making antibody in rabbit.
     The results are offered as follows:
     (1) The full-length cDNA of Mshsp70 is 2137 bp, containing a 3'-untraslate region of 168 bp, which encords a deduced 649 amino acid peptide with a predicted molecular mass of 71.34 KD, the result of sequence alignments analysis showed that this amino acids shares 80% identity with Harmonia axyridis and protein shares 85% identity with Tribolium castaneum.
     (2) The cDNA of Mshsc70 is 1908 bp, containing a 3'-untraslate region of 100 bp, which encords a deduced 601 amino acid peptide with a predicted molecular mass of 57.85 KD, the result of sequence alignments analysis showed that this nucleotide and protein shares 80% and 85% identity with Tribolium castaneum respectively.
     (3) The full-length cDNA ofβ-actin is 1372 bp, containing a 5'UTR of 66 bp and 3'UTR of 175 bp. The open reading frame ofβ-actin is 1131 bp, which encords a deduced 376 amino acid peptide. The result of sequence alignments analysis showed that this nucleotide share 96-99% identity with other animals. The sequence of theβ-actin was submitted to GenBank and assigned the accession number EU825991. Profiles ofβ-actin expression in different recovering time after heat shock were expressed similarly and not significantly different with that of the unstimulated control, suggesting an ubiguitous expression pattern can be used as internal control in gene mRNA expression level.
     (4) Semi-quantitative RT-PCR analysis showed that 1 h heat shock treatment at 42℃caused rapid increase of Mshsp70 mRNA, which reached maximum levels at the end of the heat shock treatment, and decreased gradually after being moved to room temperature. Expression of Mshsc70, however, was inhibited after heat-shock treatment:during recovering 2-4 h, the expression levels were only little times that of the control.
     (5) The Mshsp70 prokaryotic expression vector was constructed by prokaryotic vector pET-DsbA, and the recombined plasmid was transfected into DE3. After induction by cultivating 37℃, eventually concentration IPTG 1mM, the specific expression of the DsbA-fused protein was detected by SDS-PAGE. The result of SDS-PAGE showed that the molecular weight of the recombined protein is approximately 59.4 KD, which is consistent with its theory molecular weight. Using His affinity chromatography purified get fusion protein, to preparation HSP70 antibody, after western blot detected and expected the same size of specific bands.
引文
陈亮,2007.光滑鳖甲热休克蛋白70基因及抗冻蛋白基因表达规律的初步研究.新疆大学硕士研究生学位论文.
    邓顺,张友军,褚栋,2007.一种提取小型昆虫总RNA的有效方法.昆虫知识,44(4)593-596.
    郭兴中,徐仁宝,1997.热休克反应中蛋白质合成抑制的机制.生命的化学,17(2):22-24.
    黄培堂等译,2002.分子克隆实验指南.北京:科学出版社.1228-1232.
    焦传珍,2003.编码中国对虾Fenneropenaeus chinensis和凡纳对虾Litopenaeus vannamei一种HSP70的cDNA研究.中国科学院海洋研究所博士学位论文.
    焦传珍,王在照,李富花,张成松,相建海,2004.编码中国明对虾(Fenneropenaeus chinensis)1种组成型热休克蛋白70 (HSC70)的cDNA克隆、测序及其表达分析.科学通报,49(21):2178-2186.
    焦健华,马磊,张东辉,2007.白纹伊蚊β-肌动蛋白基因片段的克隆及其作为基因表达内参照的应用.中国病原生物学杂志,2(6):454-456.
    李建武,萧能(庚心),余瑞元,袁明秀,陈丽蓉,陈雅蕙,陈来同.1994.生物化学实验原理和方法.北京大学出版社.
    刘炎,2002.分子伴侣功能的研究进展.国外医学遗传学分册,25(2):70-73.
    聂忠清,吴永刚,蒙建洲,2006.分子伴侣的功能和应用.生命科学.18(1):84-89.
    任国栋,杨秀娟,2006.中国土壤拟步甲志(第一卷 土甲类).北京:高等教育出版社.12:1-225.
    任国栋,于有志,1999.中国荒漠半荒漠的拟步甲科昆虫.河北保定:河北大学出版社.77-79.
    任国栋,于有志,马峰,1993.荒漠环境与拟步甲适应.宁夏农学院学报,14(增刊):85-92.
    唐婷,柳峰松,任国栋,2008.谢氏宽漠王HSP70基因cDNA片段的克隆及热激条件下的表达.昆虫学报,51(4):365-371.
    王海鸿,雷仲仁,2005.昆虫热休克蛋白的研究进展.中国农业科学,38(10):2023-2034.
    王彦波,周绪霞,许梓荣,2003.热应激蛋白70的研究进展.免疫学杂志,19(3):79-82.
    武金霞等,2005.生物化学实验原理与技术.保定:河北大学出版社.92-96.
    肖春霞,杜予州,强承魁,2006.昆虫热休克蛋白研究概况.广东农业科学,5:110-112.
    杨帆,2008.赤拟谷盗细胞色素P450 CYP345D3 cDNA基因克隆与序列分析.西南大学硕士学位论文.
    姚勤,高路,陈克平,胡志刚,2005.荧光定量PCR检测家蚕核型多角体病毒在其宿主体内的增殖动态.昆虫学报,48(6):871-875.
    袁均林,梅尚筠,梅星元,1993.家蚕热休克蛋白基因的表达.生物化学杂志,9(3):368-371.
    张其中,吴信忠,高劲松,潘金培,2003.近江牡蛎HSC70蛋白基因cDNA片段的克隆及Southern杂交和RT-PCR.动物学报,49(5):708-712.
    张伟,2000.热休克基因转录的调节:热休克转录因子(HSF)的结构与功能.第三军医大学学报.22(2): 198-200.
    张永强,王进军,丁伟,2004.昆虫热休克蛋白的研究概况.昆虫知识,40(1):16-19.
    周方,2008.小菜蛾热休克蛋白基因的克隆与mRNA热激表达研究.福建农林大学硕士学位论文.
    朱玉贤,李毅.2002.现代分子生物学.北京:高等教育出版社.282-283.
    Adams C, Rinne RW,1982. Stress protein formation:gene expression and environmental interaction with evolutionary significance. Int Rev Cytol.,79:305-315.
    Ajit KS, Subhash CL,2000. Tissue-specific variations in the induction of Hsp70 and Hsp64 by heat shock in insects. Cell Stress & Chaperones,5 (2):90-97.
    Amin J, Fernandez M, Ananthan J,1994. Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro. J. Biol. Chem.,269:4804-4811.
    Ananthan J, Goldberg AL, Voellmy R,1986. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science,232:522-524.
    Bader SS, Price B, Mannheim-Rodman L, Calderwood S,1992. Inhibition of heat shock gene expression does not block the development of thermotolerance. J Cell Physiol,151:56-62.
    Baldaia L, Maisonhautr C, Porcheron P,1987. Effect of heat shock on protein synthesis in Locusta migratoria epidermis, Arch. Insect Biochem.Physiol.,4:225-231.
    Barrallo A, Gonzalez-Sarmiento R, Garcia-Isidoro M, Cidad P, Porteros A, Rodriguez RE,1999. Differential brain expression of a new beta-actin gene from zebrafish (Danio rerio). Eur. J. Neurosci., 11(1):369-372.
    Beckmann RP, Lovett M.& Welch WJ,1992. Examining the funtion and regulation of hsp70 in cells subjected to metabolic stress. J. Cell Bio,117:1137-1150.
    Berger EM, Mariono G, Torrey D.,1985. Expression of Drosophila hap70-cat hybrid gene in Aedes cells induced by heat shock. Somat. Cell Mol. Genet.,11:371-378.
    Boever DS, Vangestel C, Backer DP, Croubels S, Sys SU,2008. Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens. Vet. Immunol. Immunopathol.,122(3-4):312-317.
    Boina D, Subramanyam B,2004. Relative susceptibility of Tribolium confusumlife stages exposed to elevated temperatures. Journal of Economic Entomology,97(6):2168-2147.
    Boone AN, Vijayan MM,2002. Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes:Effect of heat shock and heavy metal exposure. Comp. Biochem. Physiol. C,132: 223-233.
    Bork P, Sander C, Valencia A,1992. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc natl Acad Sci USA,89:7290-7294.
    Bruce JL, Price BD, Coleman N, Calderwood SK,1993. Oxidant injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res,53:12-15.
    Carretero MT, Carmona MJ, Diez JL,1991.Thermotolerance and heat shock proteins in the Chironous. J.Insect physiol.,37:239-246.
    Chen T, Guo J, Han C, Yang M, Cao X,2009. Heat shock protein 70, released from heat-stressed tumor cells.initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol,182(3):1449-59.
    Craig EA, Ingolia TD, Manseau LJ,1983. Expression of Drosophila heat-shock cognate genes during heat shock and development. Cell Dev. Biol.,99:418-426.
    Dawn AP, John T, Susan LP, Viitanen R, Jaenicke A, Horwich FU, Hartl RJ,1993. The Role of Heat-Shock Proteins in Thermotolerance and Discussion. Phil. Trans. R. Soc. Lond. B 339:279-286.
    Denlinger DL, Lee REJr, Yocum GD,1992. Role of chilling in the acquisition of cold tolerance and the capacitation to express stress proteins in the dispausing pharate larvae of the gypsy moth, Lymantria dispar. Arch. Insect Biochem.Physiol.,21:271-280.
    Denlinger DL, Yocum GD.1998. Physiology of heat sensitivity. In:Hallman GJ & Denlinger DL. eds. Temperature Sensitivity in Insects and Application in Integrated PestManagement. Oxford:Westview Press.29.
    Ensor JE, Wiener SM, McCrea KA, Viscardi RM, Crawford EK, Hasday JD,1994. Differential effects of hyperthermia on macrophage interleukin-6 and tumor necrosis factor-expression. Am J Physiol Cell Physiol,266:C967-C974.
    Feder ME. Hofmann GE,1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology.Annu. Rev. Physiol,61:243-282.
    Filby AL, Tyler CR,2007. Appropriate "housekeeping" genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol. Biol.,10(8):1471-2199.
    Fittinghoff GM, Riddiford LM,1990. Heat sensitivity and protein synthesis during heat shock in the tobacco hornworm, Manduca sexta. J. Comp.physiol.,16B:349-359.
    Flaherty KM, Deluca-Flaherty C, Mckay DB,1990. Three-dimensional structure of the ATPase fragment of a 70kDa heat-shock cognate protein.Nature,346:623-628.
    Flanagan SW, Ryan AJ, Gisolfi CV, Moseley PL,1995. Tissue-specific HSP70 response in animals undergoing heat stress. Am J Physiol Regulatory Integrative Comp Physiol,268:R28-R32.
    Franzellitti S, Fabbri E,2005. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem. Biophys. Res. Commun.,336(4):1157-1163.
    Georgopoulos C, Welch WJ,1993. Role of the major heat-shock proteins as molecular chaperones. Annu. Rev. Cell Biol.9:601-634.
    Gething MJ, Sambrook J,1992. Protein folding in the cell. Nature,355(6355):33-45.
    Goidin D, Mamessier A, Staquet MJ, Schmitt D, Odile BV,2001. Ribosomal 18S RNA Prevails over Glyceraldehyde-3-Phosphate Dehydrogenase and b-Actin Genes as Internal Standard for Quantitative Comparison of mRNA Levels in Invasive and Noninvasive Human Melanoma Cell Subpopulations. Analytical Biochemistry.295,17-21.
    Gong WJ, Golic KG,2006. Loss of HSP70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat-shock and neurodegeneration. Genetics,172:275-286.
    Guilhot F, Roy L, Martineua G, Guilhot J, Millot F,2007. Immunotherapy in chronic myelogenous leukemia. [J]. Clin Lymphoma Myeloma,7(Suppl 2):S64-70.
    Guttman SD, Glover CVC, Allis CD, Gorovsky MA,1980. Heat shock, deciliation and release from anoxia induce the synthesis of the same polypeptides in starved. T. pyriformis.Cell,22:299-307.
    Hahn GM, Li GC,1982. Thermotolerance and heat shock proteins in mammalian cells. Radiat Res,92: 452-457.
    Hall DM, Buettner GR, Oberley LW, Xu L, Matthes RD, Gisolfi CV,2001. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol,280: H509-H521.
    Hall DM, Oberley TD, Moseley PL, Buettner GR, Oberley LW, Weindruch R, Kregel KC,2000. Caloric restriction improves thermo tolerance and reduces hyperthermia-induced cellular damage in old rats. FASEB J,14:78-86.
    Hall DM, Xu L, Drake VJ, Oberley LW, Oberley TD, Moseley PL, Kregel KC,2000. Aging reduces adaptive capacity and stress protein expression in the liver after heat stress. J Appl Physiol,89: 749-759.
    Hartl FU,1996. Molecular chaperones in cellular protein folding. Nature 381:571-580.
    Henle KJ, Leeper DB,1982. Modification of the heat response and thermo tolerance by cycloheximide, hydroxyurea and lucanthone in CHO cells. Radiat Res,90:339-347.
    Hightower LE,1980. Cultured cells exposed to amino acid analogues or puromycin rapidly synthesizes several poly-peptides. J. Cell Physiol,102:407-424.
    Horigane M, Ogihara K, Nakajima Y, Honda H, Taylor D,2007. Identification and expression analysis of an actin gene from the soft tick, Ornithodoros moubata (Acari:Argasidae). Arch. Insect Biochem. Physiol.,64(4):186-199.
    Hsu AL, Murphy CT, Kenyon C,2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science,300(5628):2033.
    Hume SP, Marigold JCL,1980. Transient, heat-induced thermal resistance in the small intestine of mouse. Radiat Res,82:526-535.
    Ingolia TD, Craig EA,1982. Four small heat shock proteins are related to each other and mammalian a-crysallin. PNAS,79:525-529.
    Jaattela M, Wissing D,1993. Heat shock proteins protect cells from monocyte cytotoxicity:possible mechanism of self-protection. J Exp Med,177:231-236.
    Johnston RN, Kucey BL,1988. Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science,242:1551-1554.
    Joplin KH, Denlinger DL,1990. Developmental and tissue specific control of the heat shock induce 70 Kda related proteins in the fleshfly Sarcophage crassipalis. J. insect physiol.,36:239-249.
    Joplin KH, Yocum GD, Denlinger DL,1990. Cold shock elicits expression of heat shock proteins in the flesh fly.Sarcophage crassipalpis. J. Insect physiol.,36:825-834.
    Juliann GK, George CT,1998. Heat Shock Protein 70 kDa:Molecular Biology, Biochemistry, and Physiology. Pharmacol. Ther.,80 (2):183-201.
    Kanteng WS, Phlla BA,1991. Flavonoid,but not protein kinase C inhibitors, prevents stress protein synthesis during erythrophagocytosis[J]. Biochem Biophys Res Commun,180:308-314.
    Karapanagiotou EM, Syrigos K, Saif MW,2009. Heat shock protein inhibitors and vaccines as new agents in cancer treatment. Expert Opin Investig Drugs,18(2):161-74.
    Karp G,1999. Cell and molecular biology:concepts and experiments.[M]. New York:John Wiley & Sons Inc.,204-206.
    Kevin C, Kregel,2002. Molecular Biology of Thermoregulation Invited Review:Heat shock proteins: modifying factors in physiological stress responses and acquired thermo tolerance. Integrative Physiology Laboratory, Department J Appl Physiol.,92:2177-2186.
    Kim JH, Yu YS, Kim JH, Kim YJ, Heo JW, Kim CJ,2003. Immunoreactivity of constitutive and inducible heat shock protein 70 in human fetal retina. Korean J Ophthalmol,17(1):14-18.
    Kluger MJ, Rudolph K, Soszynski D, Conn CA, Leon LR, Kozak W, Wallen ES, Moseley PL,1997. Effect of heat stress on LPS-induced fever and tumor necrosis factor. Am J Physiol Regulatory Integrative Comp Physiol,273:R858-R863.
    Krebs R, Bettencourt B,1999. Evolution of thermotolerance and variation in the heat shock protein. Am Zool,39:910-919.
    Kroeger PE, Sarge KD, Morimoto RI,1993. Mouse heat shock transcription factors 1 and 2 prefer a trimetric binding site but interact differently with the HSP70 heat shock element. Molecular and Cellular Biology,13(6):3370-3383.
    Kurusu M, Awasaki T, Masuda-Nakagawa LM, Kawauchi H, Ito K, Furukubo-Tokunaga K,2002. Embryonic and larval development of the Drosophila mushroom bodies:concentric layer subdivisions and the role of fasciclin Ⅱ. Development,129:409-419.
    Landry J, Bernier D, Chretien P, Nicole LM, Tanguay RM, Marceau N,1982. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res,42:2457-2461.
    Landry J, Chretien P,1983. Relationship between hyperthermia-induced heat-shock proteins and thermotolerance in Morris hepatoma cells. Can J Biochem Cell Biol,61:428-437.
    Landry J, Chretien P, Lambert H, Hickey E, Weber LA,1989. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol,111:237-253.
    Laszlo A,1988. Evidence for two states of thermotolerance in mammalian cells. Int J Hyperthermia,4: 513-526.
    Leung SM., Senisterra G, Ritchie KP, Sadis SE, Lepock JR, Hightower, LE,1996. Thermal activation of the bovine HSC70 molecular chaperone at physiological temperatures:physical evidence of a molecular thermometer. Cell Stress Chaperones 1:78-89.
    Lewis MJ, Pelham HR,1985. Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. Dur Mol Biol Organ J,4:3137-3143.
    Li GC,1985. Elevated levels of 70,000 dalton heat shock protein in transiently thermotolerant Chinese hamster fibroblasts and in their stable heat resistant variants. Int J Radiat Oncol Biol Phy,.11: 165-177.
    Li GC, Laszlo A,1985. Amino acid analogues while inducing heat shock proteins sensitize CHO cells to thermal damage. J. Cell Physiol,122(1):91-97.
    Li GC, Meyer JL, Mak JY, Hahn GM,1983. Heat-induced protection of mice against thermal death. Cancer Res,43:5758-5760.
    Li GC, Werb Z,1982. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster ovary cells. Proc Natl Acad Sci USA,79:3218-3222.
    Li L, ShenqLi GC,1995. Effects of expressing human HSP70 and its deletion derivatives on heat killing and on RNA and protein synthesis. Exp Cell Res,217 (2):460-468.
    Li YP, Bang DD, Handberg KJ, Jorgensen PH, Zhang MF,2005. Evaluation of the suitability of six host genes as internal control in real-time RT-PCR assays in chicken embryo cell cultures infected with infectious bursal disease virus. Vet Microbiol.,110(3-4):155-165.
    Lin SS, Long TW, Duo JN, Ya QC, Wei X, Ke ZX,2006. The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacteria challenge and naphthalin stress. Fish & Shellfish Immunology 21:335-345.
    Lindquist S,1981. Regulation of protein synthesis during heat-shock. Nature,293:311-314.
    Lisa L, Dragana M, Maisie L, John JH,2000. Stress-induced, tissue-specific enrichment of hsp70 mRNA accumulation in Xenopus laevis embryos. Cell Stress & Chaperones,5(1):36-44.
    Madden LA, Sandstrom ME, Lovell RJ, Mcnaughton L,2007. Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids. 34(4):511-516.
    Mahroof R, Zhu KY, Neven L, Subramanyam B, Bai J,2005. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera:Tenebrionidae). Comparative Biochemistry and Physiology,141:247-256.
    Marber MS, Mestril R, Chi SH, Sayen R, Yellon YM, Dillman WH,1995. Overexpression of the rat inducible 70-kDa heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest,95:1446-1456.
    Marengo EB, Moraes LV, Faria M, Fernandes BL, Carvalho LV, Tambourgi DV, Rizzo LV, Portaro FC, Camargo AC, Santanna OA,2008. Administration of M. leprae Hsp65 interferes with the murine lupus progression. PLoS ONE,3(8):25-30.
    McGarry TJ, Lindquist S,1985. The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader. Cell,42:903-911.
    Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A, Gastpar R, Issels RD,2002. Heat shock protein 70:role in antigen presentation and immune stimulation. Int J Hyperthermia,18(6): 563-75.
    Mizzen LA, Welch WJ,1988. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol,106:1105-1116.
    Moseley PL,1997. Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol,83: 1413-1417.
    Moseley PL,2000. Exercise, stress, and the immune conversation. Exerc Sport Sci Rev,28:128-132.
    Muller E, Munker R, Issels R, Wilmanns W,1993. Interaction between tumor necrosis factor-_ and hsp70 in human leukemia cells. Leuk Res,17:523-526.
    Multhoff G,2006. Heat shock proteins in immunity. Handb Exp Pharmacol, (172):279-304.
    Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R,1997. Heat shock protein 72 on tumor cells. J Immunol,158:4341-4350.
    Nakai A, Tanabe M, Kawazoe Y,1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activ-ator. Mol. Cell Biol.,17:469-481.
    Newman AE, Xiao C, Robertson RM,2004. Synaptic thermoprotection in a desert-dwelling Drosophila species. J. Neurobiol,64:1-11.
    Nover L,1991. Heat shock response. Boca Raton, Florida:CRC Press.
    Ohtsuka K, Hata M,2000. Molecular chaperone function of mammalian ideas Hsp70 and Hsp40--a review. Int J Hyperthermia._16(3):231-45.
    Palter, KB., Watanabe, M., Stinson, L., Mahowald, AP. and Craig, EA.,1986. Expression and localization of Drosophila melanogaster HSP70 cognate proteins. Mol. Cell. Biol.,6:1187-1203.
    Parsell, DA, Lindquist, S,1993. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins. Annu. Rev. Genet.27:437-496.
    Pederson T,2000. Half a century of "the nuclear matrix". Mol. Biol. Cell,11(3):799-805.
    Pelham HR,1982. A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene [J]. Cell,30:517-520.
    Pelham HR,1986. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell,46:959-961.
    Pelletier Y,1998. Determination of the lethal high temperature for the Colorado potato beetle (Coleoptera: Chrysomelidae). Canadian Agricultural Engineering,40(3):185-189.
    Pirkkala L, Nykanen P, Sistonen L,2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal,15:1118-1131.
    Price BD, Calderwood SK,1992. Ca2+ is essential for multistep activation of the heat shock factor in permeabilized cells. Molecular and Cellular Biology,11(6):3365-3368.
    Prohaszka Z,2007. Chaperones as part of immune networks. [J]. Adv Exp Med Biol,594:159-66.
    Prouty WF, Karnovsky MJ, Goldberg AL,1985. Degradation of abnormal proteins in Escherichia coli. J.biol. Chem,250:1112-1118.
    Riabowol KT, Mizzen LA, Welch WJ,1988. Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science,242:433-436.
    Richard IM, Santoro MG,1998. Stress-inducible responses and heat shock proteins:New pharmacologic targets for cytoprotection. Nature Biotechnology,16:833-838.
    Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SA, Denlinger DL,2007. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci U S A,104(27): 11130-11137.
    Ritossa FM,1962. A new puffing pattern induced by heat shock and DNP in Drosophilia [J]. Experientia, 18:571-573.
    Rizana M, Kun YZ, Lisa N, Bhadriraju S, Jianfa B,2005. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology, Part A,141:247-256.
    Robert R, Lawrence IG,2000. cDNA cloning and expression of a hormone-regulated heat shock protein (hsc 70) from the prothoracic gland of Manduca sexta Insect Biochemistry and Molecular Biology,30: 579-589.
    Roigas J, Wallen ES, Loening SA, Moseley PL,1998. Heat shock protein (HSP72) surface expression enhances the lysis of a human renal cell carcinoma by IL-2 stimulated NK cells. Adv Exp Med Biol, 451:225-229.
    Ruder GK, Ovsenek N, Herkkila JJ, et al.,1989. Examination of heat shock gene expression in nerve cord isolated from heat-stressed Amreican cockroach, Periplaneta Americana.Biochem. Cell Bio.,67: 168-178.
    Rybczynski R, Gilbert LI,2000. cDNA cloning and expression of a hormone-regulated heat shock protein (hsc 70) from the prothoracic gland of Manduca sexta. Insect Biochemistry and Molecular Biology,30: 579-589.
    Santacruz H, Vriz S, Angelier N,1997. Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. Dev. Genet.,21: 223-233.
    Sciandra JJ Subjeck JR,1983. The effect of glucose on protein synthesis and thermo sensitivity in Chinese hamster ovary cells. J Biol Che,.258:12091-12093.
    Severson E,1990. Heat stress induce enhancement of heat shock protein gene activity in the honey bee (Apis mellifera.) Experientia,46:737-739.
    Shi YJ, Yu JR, Cen XN, Zhu Q, Ren HY,2005. Influence of HSP70 on combined method of hyperthermia and immunologic effector cells to treat cancer. Beijing Da Xue Xue Bao,37(2):175-178.
    Shipley J, Qian Y, Levasseur J, Kukreja R,1995. Expression of the stress proteins HSP-27 and HSP-72 in rat hearts does not correlate with ischemic tolerance after heat-shock. Circulation,92:3139-3142.
    Silvia F, Elena F,2005. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochemical and Biophysical Research Communications,336:1157-1163.
    Singh AK, Lakhotia SC,2000. Tissue-specific variations in the induction of Hsp70 and Hsp64 by heat shock in insects. Cell Stress & Chaperones,5 (2),90-97.
    Snyder YM, Guthrie L, Evans GF, Zuckerman SH,1992. Transcriptional inhibition of endotoxin-induced monokine synthesis following heat shock in murine peritoneal macrophages. J Leukoc Biol,51: 181-187.
    Serensen JG, Dahlgaard J, Loeschcke V,2001. Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii:down regulation of HSP70 expression and variation in heat-stress resistance traits. Funct. Ecol,15:289-296.
    Sφrensen, JG, Kristensen TN, Loeschcke V,2003. The evolutionary and ecological role of heat-shock proteins. Ecol. Lett.6:1025-1037.
    Srivastava P,1993. Peptide-binding heat shock proteins in the endoplasmic reticulum:role in immune response to cancer and in antigen presentation. Adv Cancer Res,62:153-177.
    Stanley K, Fenton B,2000. Amember of the HSP60 gene family from the peach potato aphid,Myzuspersicae(Sulzer). InsectMolecularBiology,9(2):211-215.
    Stephanou G, Alahiotis SN, Marmaras VJ,1983. Heat shock response in Ceratitis capitata. Comp. Biochem. Physiol.,74B:425-432.
    Sung DY, Guy CL,2003. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol,132:979-987.
    Teiten MH, Reuter S, Schmucker S, Dicato M, Diederich M,2009. Induction of heat shock response by curcumin in human leukemia cells. Cancer Lett. Epub ahead of print.
    Tisseres A, Mitchell HK, Tracy UM,1974. Protein synthesis in salivary glands of Drosophila melanogaster, relation to chromosome puffs. J. Mol. Biol, (84):389-398.
    Todryk S, Melcher A, Hardwick N, Linardakis E, Bateman A, Colombo M, Stoppacciaro A, Vile R,1999. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol,163:1398-1408.
    Ulmasov KA, Shammakov S, Karaev K, Evgenev MB,1992. Heat-shock proteins and thermoresistance in lizards. Proc. Natl. Acad. Sci. USA,89:1666-1670.
    Urano M,1986. Kinetics of thermotolerance in normal and tumor tissues:a review. Cancer Res,46: 474-482.
    Vandekerckhove J, Weber K,1984. Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins. J. Mol. Bio,179(3):391-413.
    Vander ZJ, Rhoom GC, Wilke JL, Simon N, Reinhold H,1983. Whole-body hyperthermia in cancer therapy:a report of a phase Ⅰ-Ⅱ study. Eur J Cancer Clin Oncol,19:1189-1200.
    Velazquez, JM, Sonoda, S, Bugaisky G, Lindquist S,1983. Is the major Drosophila heat-shock protein present in cells that have not been heatshocked?J. Cell Biol.,96:286-290.
    Wallen ES, Buettner GR, Moseley PL,1997. Oxidants differentially regulate the heat shock response. Int J Hyperthermia,13:517-524.
    Wang S, Yin X, Tang J,2004. Thermal resistance of different life stages of codling moth (Lepidoptera: Tortricidae). Journal of Stored Products Research,40(5):565-574.
    Wang XH, Zhou CS, Huang LH, Zhang SF, Guo W, Kang L,2007. cDNA cloning of heat shock proteins and their expression in the two phases of the migratory locust. Insect Mol Biol,16(2):207-19.
    Weitzel G, Pilatus U, Rensing L,1985. Similar dose response of heat shock protein synthesis and intracellular pH change in yeast. Exp Cell Res,159:252-256.
    Welch WJ,1991. The role of heat shock proteins as molecular chaperones. Curr. Opin. Cell Biol.3: 1033-1038.
    Welch WJ. Suhan JP,1986. Cellular and biochemical events in manmmalian cells during and after recovery from physiological stress. J. Cell Biol,103(5):2035-2052.
    Weshler Z, Kapp DS, Lord PF, Hayes T,1984. Development and decay of systemic thermotolerance in rats. Cancer Res,44:1347-1351.
    Whyard S, Wyatt GR, Walker VK,1986. The heat shock response in Locusta migratoria. J.Comp.physiol., 156:813-817.
    Wright EJ, Sinclair EA, Annis PC,2001. Laboratory determination of the requirements for control of Trogoderma variabile (Coleoptera:Dermestidae) by heat. Journal of Stored Products Research,38(2): 147-155.
    Wu C,1984. Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature,311(5981):81-84.
    Yamashita M, Hirayoshi K, Nagata K,2004. Characterization of multiple members of the HSP70 family in platyfish culture cells:molecular evolution of stress protein HSP70 in vertebrates. Gene,336: 207-218.
    Yocum GD.2001. Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle J. Insect Physiol.,47:1139-1145.
    Yost HJ, Lindquist S,1986. RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell,25:185-193.
    Yost HJ, Lindquist S,1991. Heat shock proteins affect RNA processing during the heat shock response of Saccharomyces cerevisiae. Mol. Cell Biol.,11:1062-1068.
    Zatsepina OG, Ulmasov KA, Beresten SF, Molodtstov VB, Rybtsov SA, Evgenev MB,2000. Thermotolerant desert lizards characteristically differ in terms of heat-shock system regulation. J. Exp. Biol,203:1017-1025.
    Zatsepina OG, Velikodvorskaia VV, Molodtsov VB, Garbuz D, Lerman DN, Bettencourt BR, Feder ME., Evgenev MB,2001. A Drosophila melanogaster strain from sub-equatorial Africa has exceptional thermotolerance but decreased HSP70 expression.J. Exp. Biol,204:1869-1881.
    Zhou F, Xiang Z, Peiling L, et al.,2001. The expression and changes of heat shock pretein70, MDA and has morheology in rat cortex after diffuse axonal injury with second Insult. J.Clin.Neurosci., (8):250.
    Zhu X, Zhao X, Burkholder WF,1996. Structural analysis of substrate binding by the molecular chaperone Dnak. Science,272(5268):1606-1614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700