高血流肺血管重建中内皮细胞NF-κB的活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     先天性心脏病(congenital heart disease, CHD)是儿童常见的先天畸形之一,发病率为7‰~8‰,而肺动脉高压(pulmonary hypertension, PH)可发生于先天性心脏病演变过程的各个阶段,左向右分流型先天性心脏病导致肺动脉高压的治疗成为目前国内外备受关注的临床问题。左向右分流型先天性心脏病时,由于肺血流量增加,导致肺动脉切应力(shear stress,SS)增加,肺动脉内皮结构和功能发生改变,可引起明显的血管内皮受损。内皮细胞受损后,破坏了内皮的屏障作用以及内皮细胞和平滑肌细胞之间的肌—内皮连接,也损伤了内皮细胞对平滑肌细胞的调控作用,从而使血管平滑肌细胞(vascular smooth muscle cell,VSMC)失去控制而增殖,引起肺血管重建。肺血管重建是血管对外界环境变化的一种适应性改变,同时又是肺动脉高压发生的病理生理基础。血管内皮细胞(vascular endothelial cell, VEC)处于直接与血流接触的界面,对血管壁正常生理功能起屏障作用,又具有感受器功能,还是合成传导介质的中枢,将切应力刺激转化为细胞的生物效应,因此,血管内皮对调控血管张力和肺动脉压力起重要作用。如果增加的肺血流量(pulmonary flow, PF)超过一定限度,使血管的反应性增强损伤了内皮细胞对血管张力的调控机制,就可能导致肺动脉高压。
     1986年,Sen和Baltimore首先从B淋巴细胞核抽提物中检测到一种能与免疫球蛋白κ轻链基因增强子κB序列(GGG ACT TTC)特异结合的核蛋白因子,称之为NF—κB。此后人们发现它存在于许多类型的细胞中,包括血管内皮细胞、平滑肌细胞和心肌细胞。该因子能够和许多基因上启动子区域的固定核苷酸序列(nucleotide sequence)结合而启动基因转录的功能,在机体的免疫应答、炎症反应及细胞的生长调控等方面发挥重要作用,与多种心血管疾病的发生和发展有关。NF—κB是细胞内最重要的核转录因子,在许多细胞刺激介导的细胞信息的转录调控中起核心作用,参与多种基因的表达和调控,是细胞激活的标志。能激活NF-κB的因素很多,包括各种应激性刺激、多种炎性细胞因子(如TNF-α、IL-1β)、有丝分裂原、氧自由基、蛋白激酶C等。当细胞受到上述刺激时,蛋白激酶被激活,使IκBα蛋白调节区的Sef32/36磷酸化,进而N端的2个赖氨酸残基与遍在蛋白结合而发生遍在蛋白化。最后在蛋白酶小体的作用下IκBα发生裂解,暴露出Rel蛋白上的核定位信号(NLS),导致NF-κB-IκB复合体解体,活化后的NF-κB即迅速从细胞质移位于细胞核,入核的NF-κB二聚体与靶基因上的K B位点发生特异性结合,从而启动和调控相关靶基因的转录。
     研究证实,血管内皮细胞受到外界因子刺激后,首先会激活NF—κB,后者与细胞粘附分子基因结合,使其表达上调,这些粘附分子的基因都含有NF—κB的结合位点,在白细胞附着、侵入和迁移于血管中具有重要作用,NF—κB的激活被视为血管内皮细胞受损的始动机制之一。血管平滑肌细胞的增殖和游走受许多基因调控,NF—κB的激活同样是血管平滑肌的必经始动环节。我们研究高血流肺血管重建中内皮细胞NF—κB激活状态以及介导的细胞生物学作用对肺动脉高压形成的影响及其调控作用,将对了解肺动脉高压的成因和靶向性的干预治疗起重要作用。
     研究目的
     本研究通过检测高血流肺血管重建中肺动脉内皮细胞中NF—κB的活性及使用NF-κB阻断剂吡咯烷二硫基甲酸盐(PDTC)进行干预后的变化,有助于寻找高肺血流引起的肺动脉高压的病理生理成因,通过调节NF—κB的激活抑制肺血管平滑肌细胞的增殖,为肺动脉高压的预防和治疗提供理论依据和新的途径。
     研究方法
     50只4周龄Wistar大鼠编号,计算机随机分为4个组,其中,分流组Tn15只,手术后PDTC阻断组Ti15只,假手术对照组Co10只,正常对照组Cn10只。将Tn组和Ti组共30只大鼠通过套管连接法建立左侧颈总动脉-颈外静脉分流,其中PDTC阻断实验组(Ti)15只大鼠于术前1h开始腹腔注射PDTC,剂量为120mg·kg-1·d-1,术后持续注射2周,Co组大鼠除了不进行颈总动脉-颈外静脉吻合外,其余手术程序与实验组完全相同。连续饲养12周后,采用心导管术测量肺动脉收缩压(pulmonary arterial systolic pressure, PASP),计算Qp/Qs;测压后开胸取肺动脉、肺组织和心脏,计算右心室与左心室+室间隔[right ventricle/left ventricle+septum, RV/(LV+SP)]的重量之比,估计右心室肥厚程度。肺组织切片HE染色光镜下观察肺血管形态学改变,测量并计算中等血管中膜厚度所占管径百分比(MT%);分离大鼠肺动脉内皮细胞,提取核蛋白,制备DNA引物,通过凝胶迁移率实验(EMSA)测定各组内皮细胞NF-κB与特定基因识别序列相结合的活性。
     研究结果
     ①颈总动脉-颈外静脉分流导致肺循环血流量增加,Qp/Qs平均值为2.32±0.44;Tn组肺动脉收缩压(PASP)明显高于Cn组(P<0.01),Ti组PASP与Cn组相比差异无统计学意义(P>0.05),Co组与Cn组相比无明显差异。②与对照组(Co和Cn组)相比,Tn组肺动脉管腔狭窄或闭塞,内膜增厚,部分内膜脱落,平滑肌细胞排列紊乱、过度增生和肥大;Ti组内膜肿胀,部分脱落,中膜无明显肥厚;Cn组与Co组相比无明显差异。Co组MT%及RV/(LV+SP)与Cn组相比无差异,Tn组MT%及RV/(LV+SP)明显高于对照组(Co和Cn组)(P<0.01),Ti组MT%及RV/(LV+SP)与对照组(Co和Cn组)相比差异不明显(P>0.05)。③Tn组NF—κB活性明显高于Cn组(P<0.01),Ti组NF—κB活性低于Cn组(P<0.01),而Co组与Cn组相比无明显差异。
     研究结论
     高肺血流所致的大鼠肺血管收缩和结构重建与NF—κB的活性增强有关,阻断剂PDTC可以通过阻断高血流所致的NF—κB信号通路从而干预肺血管重建。
Background
     Congenital heart disease is a common congenital malformation,with 7%o-8%o incidence.Pulmonary hypertension develop in every development stage of congenital heart disease,therefore, many clinical doctors, at home and abroad,pay close attention to the treatment of left-to-right shunt cogenital heart disease.Pulmonary flow increases in left-to-right shunt cogenital heart disease,which makes shear stress to pulmonary artery increase,lead to pathological changes of structure and function pulmonary in arterial endothelium,thus,vascular endothelium is markedly damaged.Close behind,the barrier function of endothelium and endothelial-mucular conjunction are damaged,meanwhile the mechnism of endothelium modulating vascular smooth muscle cells,which induce vascular endothelial cells to proliferate uncontrolledly.So,pulmonary vascular remolding happens.On the one hand,it is a adaptive change to enviroment,the other hand, it is the physiopathologic found of pulmonary hypertension.Vascular endothelial cell that lies on the surface layer sensing blood flow is a physiological barrier,a sensor and a centor of production of conductive mediators.It can convert stress to biological effect.Accordingly,vascular endothelium plays an important part in angiotasis and pulmonary artery pressure.If increased pulmonary flow exceeds a limit,which damages regulation mechnism of endothelium to angiotasis,pulmonary hypertension happens.
     In 1986,Sen and Baltimore firstly detect a neucleoprotein factor which can specially bind to gene enhanserκB sequence(GGG ACT TTC) of immunoglobulinκL-chain,which is called NF-κB.After this,it is found in many kinds of cells,including vascular endothelial cells、smooth muscle cells and cardiac muscle cells. NF-κB can bind to specified nucleotide sequence of promotor domain,to start genetic transcription in immune response、inflammatory reaction and growth regulation of cells,which relate to diverse of onset and development of cardiovascular diseases. NF-κB is the most important nuclear factor in cells and plays a crucial part in signal transduction mediated by cell stimulus.Factors which can activate NF-κB are great deal,including various kinds of irritable stimulus,multiple cytokins(e.g.TNF-a,IL-1β),mitogen, oxygen free radical,protein kinase C,et al.When above-mentioned stimulus effect cells, protein kinases are activated, which make Sef32/36 of IκBa protein-regulation domain phosphorylates,and then 2 diaminocaproic acid residue of N-terminal bind to ubiquitin-ubiquitination. At last under the proteasome'function, IκBαschizolysis, nuclear localization signal on Rel protein snagged,lead to NF-κB-IκB-compound resolute,as result activated NF-κB rapidly enter into nucleus and specialy bind toκB site at target gene to start and regulate transcription of related target gene.
     Study confirm that vascular endothelial cell suffer outside stimulus,then firstly activate NF-κB,the latter bind to cell adhesion molecule gene and make it expression up-regulate.These adhesion molecule genes contain binding sites of NF-κB,which play an important part in coherence,invasion and immagration to blood vessel of white blood cell.So, activation of NF-κB is deemed to one of the start-up mechnism of damage to vascular endothelial cell.We study NF-κB activated condition of endothelial cell and cytobiologic function mediated by it to influence on pulmonary hypertension and regulation,which play an important part in understanding cause and target intervention treatment of pulmonary hypertension.
     Objective
     Through detecting activation of NF-κB in pulmonary endothelial cells of pulmonary vacular remolding induced by high blood flow and changes after given a block agent (PDTC) of NF-κB,the study conduce to search for physiopathologic causes of pulmonary hypertension induced by high pulmonary blood and provide theory basis and new path to PH by regulating NF-κB pathway to inhibite proliferation of pulmonary vascular smooth muscle cells.
     Research Methods
     Number 50 Wistar rats,aged 4w,randomly group 4 by computer,shunt group (Tn) 15,blocked by PDTC after operation group(Ti) 15,sham operation control group(Co) 10,negative control group 10 (Cn).30 rats(Tn+Ti) are seted up left common carotid artery-left external jugular vein shunt by telescoped joint,of the total 15 rats(Ti group) are given PDTC by intraperitoneal injection before operation lh,dosage 12Omg·kg-1·d-1after this,continue 2w;except not undertaking shunt operation,Co group rats own the identical operative procedure.After conscutively raising 12w, cardiac catheterization are used to survey pulmonary arterial systolic pressure,to calculate Qp/Qs;After then, to open the chest and remove the lung and the heart;Calculate the weight ratio of right ventricle and left ventricle plus septum to estimate the hypertrophy of the right ventricle.Lung tissue slices dyed by HE are observed in morphologic change of pulmonary vessels by light microscope,measure and calculate MT%(percentage of tunica media thickness making for caliber) of medium vessles.Dissociate pulmonary arterial endothelial cells,extract neucleoprotein,prepare DNA primer,determine the binding activity of endothelial cells in every group and special gene recognition sequence by ESMA(electrophoretic mobility shift assay)
     Research Results
     ①Left common carotid artery-left external jugular vein shunt lead to increase of pulmonary blood flow,the general average of Qp/Qs is 2.32±0.44.Compared to Cn group,PASP of Tn group significantly increases(P<0.01),the increase of Ti group'PASP have no statistical significance(P>0.05). Cn group and Co group have no significant difference.②Compared to control group, Tn group,pulmonary arterial lumina narrow or occlude;endomembranes thicken,part of them ablate;vacular smooth muscle cell array disorder,hyperplasia and hypertrophy;Ti group,endomembrane swells,some of them ablate,tunica media is not obviously thickening;Cn group and Co group have no significant difference.Tn group,MT% and RV/(LV+SP) significantly higher than control group (P<0.01);Ti group compared to control group, MT% and RV/(LV+SP) have no significant difference.③Ti group activation of NF-κB is significantly higher than control group (P<0.01),Tn group significantly lower than control (P<0.01).
     Conclusion
     Rat pulmonary blood vessels construction and constructure remolding are related to augmented activaty of NF-κB.PDTC can interfere in pulmonary vascular remolding by blocking NF-κB signaling way induced by high blood flow.
引文
[1]Rabinovith M,Haworth SG,Castaneda AR,et al.Lung biopsy in congenital heart disease:A morphometric approach to pulmonary vascular disease[J]. Circulation, 1978,58:1107-1122.
    [2]李小鹰主编.心血管疾病分子生物学[M].北京:人民军医出版社,2000:220-225.
    [3]Ghosh S, May MJ, Kopp EB.NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses[J].Annu Rev Immunol 1998, 16:225-260.
    [4]Lan Q,Kwesi O,Mercurius K,et al.Stimulation of transcription factors NF-κB and API in endothelial cells subjected to shear stress[J]. Biochem Biophys Res Commun,1994,201:950-6.
    [5]Nagel T,Resnick N,Dewey Jr CF,et al. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors[J],Arterioscler Thromb Vasc Biol,1999,19:1825-34.
    [6]Tzima E,Irani-Tehrani M,Kiosses WB,et al.A mechanosensory complex that mediates the endothelial cell response to fluid shear stress[J]. Nature,2005,437:426-31.
    [7]宋光民,宋惠民,李德才等.套管连接法建立大鼠颈部心脏移植模型[J].中国器官移植杂志,2000,21(4):218-219.
    [8]徐荣良.酶消化法分离大鼠主动脉内皮细胞的改进方法[J].中国病理生理杂志,1999,15(3):284.
    [9]赵翠芬,王丽娟,王志宇等.肾上腺髓质素前体不同活性肽段在肺动脉高压大鼠肺内的变化[J].中国病理生理杂志,2008,24(4):655-660.
    [10]李福海,夏伟,孙若鹏.RhoA/Rho激酶在高肺血流肺血管结构重构中的表达及其活性研究[J].中华儿科杂志,2007,45(5):387-392.
    [11]李晓惠,杜军保,唐朝枢.硫化氢供体对高肺血流性肺动脉高压大鼠肺血管结构血管活性多肽的影响[J].中国医学科学院学报,2006,28(2):159-163.
    [12]杨杰,王一彪.小儿心脏病学理论与实践[M].北京:人民军医出版社,2009:
    242-254.
    [13]Humbert M.Cellular and molecular pathobiology of pulmonary arterial hypertension[J].J. Am. Coll Cardiol,2004,43:13S-24S.
    [14]Partovian C, Adnot S, Eddahibi S, et a 1.Heart and lung VEGF mRNA expression in rats with monocrotaline or hypoxia-induced pulmonary hypertension[J].Am J Physiol,1998,275(6Pt2):H1948-1956.
    [15]Rabinovith M,Haworth SG,Castaneda AR,et al.Lung biopsy in congenital heart disease:A morphometric approach to pulmonary vascular disease[J]. Circulation, 1978;58:1107-1122.
    [16]Li JJ.Inflammation in hypertension:Primary evidence[J].Chin Med J,2006, 119(14):1215-1221.
    [17]Gong LM, Du JB, Shi Y, et al. Effect of endogenous carbon monoxide on collagen synthesis in pulmonary artery in rats under hypoxia[J].Life Sci,2004, 74(10):1225-1241.
    [18]Chen F, Castranova V, Shi XL, et al. New insights into the role nuclear factor-kB, a ubiquitous transcription factor in the initiation of diseases[J].Clin Chem,1999,45:7-17.
    [19]Adib Conquy M, Adrie C, Moine P, et al. NF-kB expression in mononuclear cells of patients with sepsis resembles that observed in lipopolysaccharide tolerance[J].Am J Respir Crit Care Med,2000,162: 1877-1883.
    [20]Lan Q, Kwesi O, Mercurius K, et al. Stimulation of transcription factors NF-κB and API in endothelial cells subjected to shear stress[J].Biochem Biophys Res Commun1994;201:950-6.
    [21]Nagel T, Resnick N, Dewey Jr CF, et al. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors[J].Arterioscler Thromb Vasc Biol 1999,19:1825-34.
    [22]Tzima E,Irani-Tehrani M,Kiosses WB,et al.A mechanosensory complex that mediates the endothelial cell response to fluid shear stress[J]. Nature
    2005,437:426-31.
    [23]Bartman T,Hove J.Mechanics and function in heart morphogenesis[J]. Dev Dyn 2005,233:373-81.
    [24]Mironov V,Visconti RP,Markwald RR.On the role of shear stress in cardiogenesis[J].Endothelium 2005,12:259-61.
    [25]Yamamoto H,Teramoto H,Vetani K,et al.Cyclic stretch upregulates interleukin-8 and transforming growth factor-betal production through a protein kinase C-depent pathway in alveolar epithelial cells[J].Respirology,2002,7:103-109.
    [26]Vlahakis NE, Schroeder MA, Limper AH, et al. Stretch induces cytokine realease by alveolar epithelial cells in vitro[J]. Am J Physiol,1999,277:L167-L173.
    [27]Kim JA, Montagnani M, Koh KK, et al. Reciprocal relationships between insulin resistan ce and endothelial dysfunction:Molecular and pathophysiological mechanisms[J]. Circulation,2006,113(15):1888-1904
    [28]Nong ZX, Stassen JM, Moons L,et al.Inhibition of tissue angiotensin converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling[J]. Circulation,1996,94:1941.
    [29]Mata-Greenwood E, Meyrick B, Soifer SJ, et al. Expression of VEGF and its receptors Flt-1 an d Flk-1/KDR is altered in lambs with increased pulmonary blood flow and pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2003,285(1):L222-231.
    [30]王新卫,伍伟锋,俸勇强.先天性心脏病患儿介入封堵术前后血浆血管紧张素Ⅱ和血清一氧化氮水平的变化[J].实用儿科临床杂志,2008,23(10):794-796.
    [31]Tuder RM, Cool CD, Geraci MW, et al.Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension[J].Am J Respir Crit Care Med,1999,159:1925.
    [32]王小军,王文英,李亚蕊.内皮素、心钠素在左向右分流型先天性心脏病肺动脉高压的相关性研究[J].山西医药杂志,2006,35(11):959-962.
    [33]Matsui H, Shimosawa T,Itakura K, et al. Admnomedullin can protect against
    pulmonary vascular remodeling induced by hypoxia[J]. Circulation,2004, 109(18):2246-2251.
    [34]Umansky V,Hehner SP,Dumont A.Co-stimulatory effect of nitric oxide on endothelial NF-kappaB implies a physiological self-amplifying mechanism[J]. Eur J Immunol,1998,28:2276-2282.
    [35]Zhang QY, Du JB, Zhao WJ,et al.Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathyway in the pathogenesis of hypoxic pulmonary hypertension[J].Biochem and Biophys Res Commun,2004,137:30.
    [36]Squadrito F, Deodato B, Bova A,et al. Crucial role of nuclear factor-κB in neointimal hyperplasia of the mouse carotid artery after interruption of blood flow[J].Atherosclerosis 2003,166:233-42.
    [37]Winther MP,Kanters E,Kraal G,et al.Nuclear factor kB signaling in atherogenesis[J].Arterioscler Thromb Vasc Biol 2005,25:904-14.
    [1]Rabinovith M,Haworth SG,Castaneda AR,et al.Lung biopsy in congenital heart disease:A morphometric approach to pulmonary vascular disease[J]. Circulation, 1978,58:1107-1122.
    [2]Rabinovitch M.Review:Pulmonary hypertension:Updating a mysterious disease[J].CardiovascularResearch,1997,34:268-272.
    [3]Li JJ.Inflammation in hypertension:Primary evidence[J].Chin Med J,2006, 119(14):1215-1221.
    [4]Humbert M,Morrell NW,Archer SL,et al.Cellular and molecular pathobiology of pulmonary arterial hypertension[J].J Am Coll Cardiol,2004,43:13S-24S.
    [5]Korshunov VA,Schwartz SM,Berck BC.Vascular remodeling:Hemodynamic and biochemical mechanism underlying Glagov's phenomenon[J]. Arterioscler Thromb Vasc Biol 2007,27:1722-8.
    [6]Wentzel JJ,Gijsen FJ,Stergiopulos N,et al. Shear stress,vascular remodeling and neointimal formation[J].J Biomech 2003,36:681-8.
    [7]Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis[J].JAMA 1999,282:2035-42.
    [8]Arciniegas E, Neves CY,Carrillo LM,et al.Endothelial-mesenchymal transition occurs during embryonic pulmonary artery development[J]. Endothelium 2005,12:193-200.
    [9]Tanaka Y,Schuster DP,Davis EC,et al.Role of vascular injury and hemodynamics in rat pulmonary artery remodeling[J].J Clin Invest 1996,98(2):434-42.
    [10]Mitani Y, Ueda M, Komatsu R,et al.Vascular smooth muscle cell phenotypes in primary pulmonary hypertension[J]. Eur Respir J 2001,17(2):316-20.
    [11]Chce KO, Cho BK, Choi BW, et al. Histologic changes of pulmonary arteries in congenital heart disease with left-to-right shunt (part 1):Correlated with preoperative pulmonary hemodynamies. Emphasizing the significance of pulmonary arterial concentration[J].Yonsei Med J,2002,43:73-81.
    [12]Shimoda LA, Sham JS, Sylvester JT. Altered pulmonary vasoreactivity in the
    chronically hypoxic lung[J]. Physiol Res,2000,49:549-560.
    [13]Celermajer DS, Cullen S, Deanfield JE. Impairment of endothelium-dependent pulmonary artery relaxation in children with congenital heart disease and abnormal pulmonary hemodynamics[J].Circulation,1993,87:440-446.
    [14]Champion HC, Bivalacqua TJ, Greenberg SS, et al.Proc Natl Acad Sci USA, 2002,99:13248-13253.
    [15]Rubin LJ.Pathology and pathophysiology of primary pulmonary hypertension[J]. Am J Cardiol,1995,75(3):51-54.
    [16]Giaid A. Nitric oxide and endothelin-1 in pulmonary hypertension[J]. Chest, 1998,114(3 Suppl):208S-212S.
    [17]Yamashita J, Itoh H, Hirashima M, et al.Flkl-positive cells derived from embryonic stem cells serve as vascular progenitors[J].Nature,2000, 408(6808):92-6.
    [18]Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation-In vitro analysis[J].Circ Res,2002,90(11):1189-96.
    [19]Gong LM, Du JB, Shi Y, et al. Effect of endogenous carbon monoxide on collagen synthesis in pulmonary artery in rats under hypoxia[J].Life Sci, 2004,74(10):1225-1241.
    [20]Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension[J]. N EnglJ Med,1995, 333(4):214-21.
    [21]Tuder RM, Cool CD, Geraci MW, et al. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension[J].Am J Respir Crit Care Med,1999,159(6):1925-32.
    [22]Achcar RO, Demura Y, Rai PR, et al.Loss of caveolin and heme oxygenase expression in severe pulmonary hypertension[J]. Chest,2006,129(3):696-705.
    [23]Kim JA, Montagnani M, Koh KK, el al. Reciprocal relationships between insulin resistan ce and endothelial dysfunction:Molecular and pathophysiological mechanisms[J].Circulation,2006,113(15):1888-1904
    [24]Ozerol IH,Pac FA,Ozerol E, et al.Plasma endothelin-1, homocysteine and serum nitric oxide values in patients with left-to-right shunt[J]. Indian Heart J, 2004,56(6):653-657.
    [25]Miyauchi T,Yorikane R,Sakai S,et al.Contribution of endogenous endothelin-1 to the progression of crdipulmonary alteration in rats with monocrotaline-induced pulmonary hypertension[J].Circ Res,1993,73:887-897.
    [26]Griffiths M, Evans T.Inhaled nitric oxide therapy in adults[J].N Engl J Med,2005,353:2683-2695.
    [27]Spiecker M, Peng HB, Liao JK.Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of IkappaBalpha[J].J Biol Chem,1997,272:30969-30974.
    [28]Spiecker M, Darius H, Kaboth K,et al.Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants[J].J Leukoc Biol,1998,63:732-739.
    [29]Mata-Greenwood E, Meyrick B, Soifer SJ,et al.Expression of VEGF and its receptors Flt-1 an d Flk-1/KDR is altered in lambs with increased pulmonary blood flow and pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2003,285(1):L222-231.
    [30]Tuder RM, Chacon M, Alger LA,et al.Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension:evidence for a process of disordered angiogenesis[J].J Pathol 2001,195(3):367-74.
    [31]Gilmore TD.Introduction to NF-κB:Players, pathways, perspectives[J].Oncogene 2006,25:6680-4.
    [32]Perkins ND.Integrating cell-signalling pathways with NF-κB and IKK function[J].Nat Rev Mol Cell Biol,2007,8:49-62.
    [33]Tak PP,Firestein GS.NF-KB:a key role in inflammatory disease[J].J Clin Invest,2001,107(1):7-11.
    [34]Pahl HL.Activators and target genes of Rel/NF-κB transcription factors[J].Oncogene,1999,18(49):6853-6866.
    [35]Makarov SS.NF-κB as a therapeutic target in chronic inflammation:recent advances[J].Mol Med Today,2000,6(11):441-448.
    [36]Thomas AH,Longlong Y,John RW,et al.A functional map of NFκB signaling identifies novel modulators and multiple system controls[J]. Genome Biology 2007,8:R104.
    [37]Oda K,Kitano H:A comprehensive map of the Toll-like receptor signaling network[J].Mol Syst Biol 2006,2:2006.0015. Epub 2006 Apr 18.
    [38]Li Q,Verma IM:NF-kappaB regulation in the immune system[J].Nat Rev Immunol 2002,2:725-734.
    [39]Gilmore TD:The Rel/NF-kB signal transduction pathway:Introduction[J]. Oncogene 1999,18:6842-6844.
    [40]Kitano H:Biological robustness[J].Nat Rev Genet 2004,5:826-837.
    [41]Kitano H,Oda K:Robustness trade-offs and host-microbial symbiosis in the immune system[J].Mol Syst Biol 2006,2:2006 0022.
    [42]Hoffmann A,Levchenko A,Scott ML,Baltimore D:The IkappaB-NF-kappaB signaling module:temporal control and selective gene activation[J]. Science 2002,298:1241-1245.
    [43]Mercurio F,and AM Manning.Multiple signals converging on NF-kappaB [J].Curr. Opin. Cell Biol.1999,11:226-232.
    [44]Gediminas C, Jurate S, Carmen VI,et al.PMN transendothelial migration decreases nuclear NFκB in IL-1β-activated endothelial cells:role of PECAM-1 [J].The Journal of Cell Biology.2003,161 (3),167-181.
    [45]Baumann B,Weber CK,Troppmair J,et al.Raf induces NF-kappaB by membrane shuttle kinase MEKK1,a signaling pathway critical for transformation[J].Proc Natl Acad Sci USA 2000,97:4615-4620.
    [46]Santoro MG.Heat shock factors and the control of the stress response[J].Biochem Pharmacol 2000,59:55-63.
    [47]Siegmund D,Wicovsky A,Schmitz I,et al.Death receptor-induced signaling pathways are differentially regulated by gamma interferon upstream of caspase 8 processing[J].Mol Cell Biol 2005,25:6363-6379.
    [48]Oda K,Kitano H.A comprehensive map of the Toll-like receptor signaling network[J].Mol Syst Biol 2006,2:2006.0015. Epub 2006 Apr 18
    [49]Ghosh S,May MJ,Kopp EB.NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses[J].Annu Rev Immunol 1998, 16:225-260.
    [50]Lan Q,Kwesi O,Mercurius K,et al.Stimulation of transcription factors NF-κB and API in endothelial cells subjected to shear stress[J]. Biochem Biophys Res Commun,1994,201:950-6.
    [51]Nagel T,Resnick N,Dewey Jr CF,et al.Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors[J].Arterioscler Thromb Vasc Biol,1999,19:1825-34.
    [52]Tzima E,Irani-Tehrani M,Kiosses WB,et al.A mechanosensory complex that mediates the endothelial cell response to fluid shear stress[J]. Nature,2005,437:426-31.
    [53]Akaogi J,Yamada H,Kuroda Y,et al.Prostaglandin E2 receptors EP2 and EP4 are up-regulated in peritoneal macrophages and joints of pristane-treated mice and modulate TNF-alpha and IL-6 production[J]. J Leukoc Biol 2004,76:227-236.
    [54]Vlahakis NE, Schroeder MA, Limper AH, et al.Stretch induces cytokine realease by alveolar epithelial cells in vitro[J].Am J Physiol,1999,277:L167-L173.
    [55]Yamamoto H,Teramoto H,Vetani K,et al.Cyclic stretch upregulates interleukin-8 and transforming growth factor-betal production through a protein kinase C-depent pathway in alveolar epithelial cells[J].Respirology,2002,7:103-109.
    [56]Squadrito F, Deodato B, Bova A, et al. Crucial role of nuclear factor-κB in neointimal hyperplasia of the mouse carotid artery after interruption of blood flow[J].Atherosclerosis,2003,166:233-42.
    [57]Winther MP,Kanters E,Kraal G,et al.Nuclear factor κB signaling in atherogenesis[J].Arterioscler Thromb Vase Biol,2005,25:904-14.
    [58]Wilson SH,Best PJ,Edwards WD,et al.Nuclear factor κB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris[J]. Atherosclerosis,2002,160:147-53.
    [59]Arciniegas E,Ponce L,Hartt Y,et al.Intimal thickening involves transdifferentiation of embryonic endothelial cells[J].Anat Record,2000, 258:47-57.
    [60]Bartman T,Hove J.Mechanics and function in heart morphogenesis[J].Dev Dyn 2005,233:373-81.
    [61]Mironov V,Visconti RP,Markwald RR.On the role of shear stress in cardiogenesis[J].Endothelium,2005,12:259-61.
    [62]Enrique A,Luz MC,Juan B.DS,et al.Possible role of NFkB in the embryonic vascular remodeling and the endothelial mesenchymal transition process[J].Cell Adhesion & Migration,2008,2(1):17-29.
    [63]Wang M,Zhang J,Jiang LQ,et al.Proinflammatory profile within the grossly normal aged human aortic wall[J].Hypertension,2007,50:219-27.
    [64]Sun HW,Li CJ,Chen HQ,et al.Involvement of integrins,MAPK,and NF-κB in regulation of the shear stress-induced MMP-9 expression in endothelial cells[J].Biochem Biophys Res Commun,2007,353:152-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700