核盘菌菌核形成相关蛋白Ss-Sl2功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核盘菌[Sclerotinia sclerotiorum (Lib.) de Bary]是一种世界性分布的植物病原真菌,能够侵染许多重要的农作物,引起多种作物如油菜、向日葵和大豆等的菌核病,给农业生产造成严重的损失。菌核是核盘菌越冬、越夏和繁殖的结构,也是菌核病的重要初侵染来源,抑制菌核的形成将切断菌核病的病害循环,因此研究核盘菌菌核形成的分子机理将为菌核病的防治提供新的思路和线索。
     缺乏简便稳定的转化体系是核盘菌基因功能研究的重大障碍。本研究建立了以核盘菌菌丝为受体的农杆菌介导的遗传转化体系,即直接将含有载体pTFSS的农杆菌与新鲜的核盘菌菌丝块在乙酰丁香酮存在的条件下进行共培养,2d后将菌丝块丢弃并将共培养物置于含30μg/ml潮霉素的PDA培养基中进行选择性培养,3d后获得转化子。该方法操作简便,且转化效率较稳定,平均每个培养皿能获得1-3个转化子,为深入研究核盘菌菌核形成相关基因的功能建立了良好的平台。本研究还发现潮霉素磷酸转移酶基因在核盘菌转化子的无性阶段能稳定遗传,但在有性后代发生丢失。
     为深入探索核盘菌菌核形成分子机理,本实验室前期利用Illumina-Solexa技术建立了核盘菌菌丝生长和菌核形成阶段的基因表达谱。分析该表达谱发现,Ss-Sl2(SS1G_05917, XM_001592945)的表达量在菌核形成阶段升高了400倍,推测其可能与核盘菌菌核形成密切相关。本研究表明Ss-S12蛋白全长352aa,具有一个信号肽结构和两个PAN模块,其同源蛋白仅仅出现在部分子囊菌中且均为功能未知蛋白。在核盘菌菌丝生长阶段,少量Ss-S12蛋白分布于细胞壁和隔膜上;在菌核形成阶段,Ss-Sl2表达量迅速升高,Ss-S12蛋白大量分布于细胞外加厚的细胞壁上。Ss-S12的表达水平受cAMP水平的抑制,而与环境pH无关。Ss-S12基因沉默转化子维持细胞完整性的能力下降,但是菌丝生长和致病力与野生型菌株没有差异。在菌核形成初期,Ss-Sl2沉默转化子可以形成白色绒毛状菌丝团,但是菌丝团不能固化和黑化并发育成熟的菌核,在菌丝团内部菌丝排列疏松且细胞壁加厚不明显,表明Ss-S12在核盘菌菌核形成过程中起着重要作用。
     对Ss-S12互作蛋白进行鉴定和功能研究将有助于理解其控制菌核形成和维持细胞完整性的作用机理。本研究表明3-磷酸甘油醛脱氢酶(GAPDH, SS1G_07798)和沃鲁宁体主要组成蛋白(Hex1, SS1G_03527)可以与Ss-S12发生较强的直接相互作用,而转录延伸因子(EF-1α)则与Ss-S12存在着较弱的直接相互作用。GAPDH基因沉默转化子只能形成白色绒毛状菌丝团,而不能形成黑色的菌核,与Ss-Sl2沉默转化子菌核形成表型相似;Hex1基因沉默转化子保持细胞完整性能力下降,与Ss-Sl2沉默转化子菌丝表型相似,表明Ss-S12可能通过与GAPDH和Hexl的互作来控制核盘菌菌核的形成和维持细胞的完整性。
     本研究深入解析了核盘菌Ss-S12蛋白的作用及其机理,为揭示菌核形成的分子机制提供了理论依据,也为菌核病的防治提供了重要线索;此外,本研究也为探索其它真菌中Ss-S12同源蛋白的功能提供了重要参考。
Sclerotinia sclerotiorum (Lib.) de Bary is a notorious fungal pathogen with worldwide distribution. This fungus may infect many important crops, such as oilseed rape, sunflower, soybean, and cause Sclerotinia diseases. Sclerotia are not only the important tissue for breeding and over summer and winter to S. sclerotiorum, but also the important source of primarily infection for Sclerotinia diseases. Repress the formation of sclerotia may interrupt the disease cycle induced by S. sclerotiorum and research on the molecular mechanism involved sclerotial development may provide some clues to control the Sclerotinia diseases.
     Lack of efficient and easy transformation system is a great obstacle for studying the gene function in S. sclerotiorum. In this study, an Agrobacterium-medated transformation system was established for S. sclerotiorum by using the hyphae as receptor. A. tumefaciens cells containing pTFSS and fresh S. sclerotiorum mycelial plugs were co-cultured with acetovanillone for2days. Then the mycelial plugs were removed and the A. tumefaciens cells and S. sclerotiorum hypha were transferred into PDA medium containing30μg/ml of hygromycin B. The transformants emerged on the selective plates after3days. This method was simple and had a stable efficiency of transform. On average,1-3transformants can be obtained in each plate. This system provided an effective platform for gene functional study of involved in S. sclerotiorum. This research also showed that the HPH gene in transformants inherited steadily in the asexual stage of S. sclerotiorum, but it lost in the sexual progenies.
     To study the molecular mechanism involved in sclerotial development, a gene expression pattern during the stage of hyphal growth and sclerotial development was contrasted with Illumina-Solexa in our laboratory. According to the gene expression pattern, a gene named Ss-Sl2(SSIG_05917, XM_001592945) had higher expression level during sclerotial development, with the relative expression during sclerotial development400-fold greater than that at the hyphal growth stage. Thus, Ss-Sl2is supposedly to have a close relation with sclerotial development. Our results showed that Ss-Sl2protein has352aa residues and contains a signal peptide and two PAN modules. Its homologies appeared only in the some ascomycotina fungi and all of those are of unknown function. At the stage of vegetative hyphal growth, only a few gold particles could be observed dispersed in the cell walls and septa of hyphae. During the stage of sclerotial development, the transcript level of Ss-Sl2rised rapidly and a large number of Ss-S12protein were secreted and located in the thicken cell wall of sclerotia. The expression level of Ss-Sl2is down-regulated by cAMP level but has no relation with the medium pH. The ability to maintain the cellular integrity of RNAi-mediated Ss-Sl2silenced strains was reduced, but the hyphal growth and virulence of Ss-Sl2silenced strains were not significantly different from the wild type strain. Ss-Sl2silenced strains could form interwoven hyphal masses at the initial stage of sclerotial development, but the interwoven hyphae could not consolidate and melanized to become mature sclerotia. Hyphae in these interwoven bodies were thin-walled, arranged loosely. These evidence showed that Ss-S12play an important role in sclerotial development of S. sclerotiorum.
     Identification and functional study on proteins which interacted with Ss-S12may provide clues to understand its mechanism involved in controlling sclerotial development and cell integrity. Our results showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Woronin body major protein (Hexl) and elongation factor1alpha (EF-la) could interact with the Ss-S12directly, and EF-1a was found to have only a weak interaction with Ss-S12. GAPDH-knockdown strains did not produce typical sclerotia, but only forming interwoven hyphal masses. The phenotype was similar to that of Ss-Sl2silenced transformants. Hexl-knockdown strains showed similar impairment in maintenance of hyphal integrity as Ss-Sl2silenced strains. These evidences indicated that the Ss-S12may play the role in sclerotial development and the mantainence of cell integrity through its interaction with GAPDH and Hexl.
     The research profoundly analysed the function and mechanism of Ss-S12protein in S. sclerotiorum, which not only provides the theory basis for revealing the molecular mechanism of sclerotial development, but also offers important clues to control Sclerotnia disease. Besides, this research also provides important references for studying the function of the homologies of Ss-S12in some other fungi.
引文
1.傅廷栋.杂交油菜的育种与应用.武汉:湖北科技出版社,1995.
    2.宫晓艳.盾壳霉T-DNA插入体库的构建及两个分生孢子形成相关基因的克隆.[博士学位论文].武汉:华中农业大学图书馆,2007.
    3.江明.农杆菌介导核盘菌菌丝转化体系的建立及SsDRV下调基因Ss-CYP1的功能初步研究.[硕士学位论文].武汉:华中农业大学图书馆,2007.
    4.康振生.植物病原真菌的超微结构.北京:中国科学技术出版社,1995,8.
    5.王道本译.核盘菌论丛.北京:农业大学出版,1986,1-20.
    6.杨新美.油菜菌核病在我国的寄主范围及生态特性的调查研究.植物病理学,1959,15:111-121.
    7.张成省,李多川,孔凡玉.真菌菌丝细胞壁可溶性蛋白提取方法研究.山东科学,2004,17:12-16.
    8. Adams PB, Ayers W A. Ecology of Sclerotinia species. Phytopathology,1979,69: 896-898.
    9. Akamatsu H, Itoh Y, Kodama M, Otani H, Kohmoto K. AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration. Phytopathology,1997,87:967-972.
    10. Almeida C, Queiros O, Wheals A, Teixeira J, Moradas-Ferreira P. Acquisition of flocculation phenotype by Kluyveromyces marxianus when overexpressing GAP1 gene encoding an isoform of glyceraldehyde-3-phosphate dehydrogenase. J Microbiol Meth,2003,55:433-440.
    11.Alvarz RA, Blaylock MW, Baseman JB. Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol Microbiol,2003,48:1417-1425.
    12. Arahana VS, Graef GL, Specht JE, Steadman JR, Eskridge KM. Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean. Crop Sci,2001,41: 180-188.
    13. Aronhem A, Zandi E, Hennemann H, Elledge SJ, Karin M. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol, 1997,17:3094-3102.
    14. Auerbach D, Fetchko M, Stagljar L. Proteomic approaches for generating comprehensive protein interaction maps. Drug Discov Today,2003,2:85-92.
    15. Bailey KL, Johnston AM, Kutcher HR, Gossen BD, Morrall RAA. Managing crop losses from foliar diseases with fungicides, rotation, and tillage in the Saskatchewan Parkland spring sown oilseed rape. Crop Prot,2000,17:405-411.
    16. Barbosa MS, Bao SN, Andreotti PF, de Faria FP, Felipe MSF, dos Santo Feitoas L, Mendas-Giannini MJ, Soares CM. Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun,2006,74: 382-389.
    17. Bardin SD, Huang HC. Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol,2001,23:88-98.
    18. Bateman DF, Beer SV. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotinia rolfsii. Phytopathology, 1965,55:204-211.
    19. Bendtsen JD, Nielsen H, von Heijne G, Brunk S. Improved prediction of signal peptides:SignalP 3.0. J Mol Biol,2004,340:783-795.
    20. Bert PF, Dechamp-Guillaume G, Serre F, Jouan I, Tourvieille de Labrouhe D, Nicolas P, Vear F. Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.):3. Characterisation of QTL involved in resistance to Sclerotinia sclerotiorum and Phoma macdonaldi. Theor Appl Genet,2004,109:865-874.
    21. Boland GJ, Hall R. Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol,1994,16:93-100.
    22. Bolker M, Bohnert HU, Braun KH, Gorl J, Kahmann R. Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol Gen Genet,1995,248:547-552.
    23. Bolton MD, Thomma BPHJ, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol,2006,7: 1-16.
    24. Bony M, Thines-sempoux D, Barre P, Blondin B. Localization and cell surface anchoring of the Saccharomyces cerevisiea flocculation protein Flolp. J Bacteriol, 1997:4929-4936.
    25. Brecht S, Carruthers VB, Ferguson DJ, Giddings OK, Wang G, Jakle U, Harper JM, Sibley LD, Soldati D. The toxoplasma micronemal protein MIC4 is an adhesin composed of six conserved apple domains. J Biol Chem,2001,276:4119-4127.
    26. Brown JS, Aufauvre-Brown A, Holden DW. Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet,1998,259:327-335.
    27. Brown PJ, Denise M, Potts JR, Tomley FM, Campbell ID. Solution structure of a PAN module from the apicomplexan parasite Eimeria tenella. J Struct Funct Genomics, 2003,4:227-234.
    28. Brown PJ, Gill AC, Nugent PG, McVey JH, Tomley FM. Domains of invasion organelle proteins from apicomplexan parasites are homologous with the Apple domains of blood coagulation factor XI and plasma pre-kallikrein and are members of the PAN module superfamily. FEBS Lett,2001,18:31-38.
    29. Brummelkamp TR, Bernards R, and Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science,2002,296:550-553.
    30. Budge SP, Whipps JM. Potential for integrated control of Sclerotinia sclerotiorum glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology,2001,91:221-227.
    31. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J, 1995,14:3206-3214.
    32. Butler MJ, Gardiner RB, Day AW. Melanin synthesis by Sclerotinia sclerotiorum. Mycologia,2009,101:296-304.
    33. Chen C, Dickman MB. cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKA-independent manner in Sclerotinia sclerotiorum. Mol Microbiol, 2005,55:299-311.
    34. Chen C, Harel A, Gorovoits R, Yarden O, Dickman MB. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing. Mol Plant-Microbe Interact,2004,17:404-413.
    35. Cheng YQ, Liu ZM, Xu J, Zhou T, Wang M, Chen Y, Li H, Fan Z. HC-Pro protein of Sugarcane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. J Gen Virol,2008,89:2046-2054.
    36. Chet I, Henis Y. Sclerotial morphogenesis in fungi. Annu Rev Phytopathol,1975,13: 169-192.
    37. Crockett DK, Lin Z, Elentoba-Johnson KS, Lim MS. Identification of NPM-ALK interacting proteins by tandem mass spectrometry. Oncogene,2004,23:2617-2629.
    38. Cunha WG, Tinco MLP, Pancoti HL, Ribeiro RE, Aragao FJL. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathol,2010,59:654-660.
    39. Dallo SF, Kannan TR, Blaylock MW, Baseman JB. Elongation factor Tu and E1β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol,2002,46:1041-1051.
    40. Dang CV, Barrett J, Villla-Garica M. Intarcellular leucine zipper interactions suggest c-Myc hetero-oligomerization. Mol Cell Biol,1991,11:954-962.
    41.de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen A. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol,1998,16: 839-842.
    42. de Silva AP, Bolton MD, Nelson BD. Transformantion of Sclerotinia sclerotiorum with the green fluorescent protein gene and fluorescence of hyphae in four inoculated hosts. Plant Pathol,2009,58:487-496.
    43. de Vrije, Antoine N, Buitelaar RM, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones EE, Luth P, Oostra J, Ravensberg WJ, Renaud R, Rinzema A, Weber FJ, Whipps JM. The fungal biocontrol agent Coniothyrium minitans:production by solid-state fermentation, application and marketing, Appl Microbiol Biotechnol,2001,56:58-68.
    44. del Rio LE, Martinson CA, Yang XB. Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum. Plant Dis,2002,86:999-1004.
    45. del Rio LE, Venette JR, Lamey HA. Impact of white mold incidence on dry bean yield under non-irrigated conditions. Plant Dis,2004,88:1352-1356.
    46. Dhavale T, Jedd D. The fungal Woronin body. In:Howord RJ, Gow NAR, editors. Biology of the fungal cell Ⅷ. New York:Springer Berlin Heidelberg.2007,87-96.
    47. Donaldson PA, Anderson T, Lane BG, Davidson AL, Simmonds DH. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol Mol Plant P,2001,59:297-307.
    48. Dong X, Ji R, Guo X, Foster S, Chen H, Dong C, Liu Y, Hu Q, Liu S. Expression a gene encoding wheat oxalate enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta,2008,228:331-340.
    49. Dumas B, Centis S, Sarrazin N, Esquerre-Tugaye MT. Use of green fluorescent protein to detect expression of an endopolygalacturonase gene of Colletotrichum lindemuthianum during bean infection. Appl Environ Microbiol.1999,65:1769-1771.
    50. Dutton MV, Evans CS. Oxalate production by fungi:its role in pathogenicity and ecology in the soil environment. Can J Microbial,1996,42:881-895.
    51. Egea L, Aguilera L, Gimenez R, Sorolla MA, Aguilar J, Badia J, Baldoma L. Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli:interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int J Biochem Cell Biol,2007,39:1190-1203.
    52. Epstein L, Lusnak K, Kaur S. Transformation-mediated developmental mutants of Glomerella gramicola(Colletotrichum gramicola). Fung Genet Biol,1998,23: 189-203.
    53. Erental A, Dickman MB, Yarden O. Sclerotial development in Sclerotinia sclerotiorum:awakening molecular analysis of a "Dormant" structure. Fung Biol Rev, 2008,22:6-16.
    54. Erental A, Harel A, Yarden O. Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Mol Plant-Microbe Interact,2007,20:944-954.
    55. Fang G, Hanau RM, Vaillancourt LJ. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola. Fung Genet Biol,2002,36:155-165.
    56. Fernandez-Abalos JM, Fox H, Pitt C, Wells B, Doonan JH. Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol Microbiol.1998,27: 121-130.
    57. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature,1989,340:245-246.
    58. Fire A, Xu S, Mello CC. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature,1998,391:806-811.
    59. Fraissinet-Tachet L, Fevre M. Regulation by galacturonic acid of pectinolytic enzyme production by Sclerotinia sclerotiorum. Curr Microbiol,1996,33:49-53.
    60. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessman H, Ryals J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science,1993,261:754-756.
    61. Garcia-Maceira FI, Di Pietro A, Huertas-Gonzalez MD, Ruiz-Roldan MC, Roncero MIG. Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Environ Microbiol,2001, 67:2191-2196.
    62. Gaulin E, Jauneau A, Villalba F, Rickauer M, Esquerre-Tugaye MT, Bottin A. The CBEL glycoprotein of Phytophthora parasitica var. nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci,2002,115:4565-4575.
    63. Georgiou DC, Patsoukis N, Papapostolou L, Zervoudakis G. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol,2006,46: 691-712.
    64. Georgiou DC, Tairis N, Sotiropoulou A. Hydroxyl radical scavengers inhibit sclerotial differentiation and growth in Sclerotinia sclerotiorum and Rhizoctonia solani. Mycol Res,2000,104:1191-1196.
    65. Georgiou DC. Lipid peroxidation in Sclerotium rolfsii:A new look into the mechanism of sclerotial biogenesis in fungi. Mycol Res,1997,101:460-464.
    66. Ghabrial S, Suzuki N. Viruses of plant pathogenic fungi. Annu Rev Phytopathol,2009, 47:353-384.
    67. Godoy G, Steadman JR, Dickman MB, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant P,1990,37:179-191.
    68. Gossen BD, Rimmer SR, Holley JD. First report of resistance to benomyl fungicide in Sclerotinia sclerotiorum. Plant Dis,2001,85:1206.
    69. Gozalbo D, Gil-Navarro I, Azorin I, Renau-Piqueras J, Martinez JP, Gil ML. The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun,1998,66:2052-2059.
    70. Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthesy-Theulaz, IE. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (Lal) to human intestinal cells and mucins. Infect Immun,2004,72:2160-2169.
    71. Guimaraes RL, Stotz HU. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol,2004,136:3703-3711.
    72. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative ser/thr kinase that is asymmetrically distributed. Cell, 1995,81:611-620.
    73. Gupta R, Jung E, Brunak S. Prediction of N-glycosylation sites in human proteins. In preparation,2004.
    74. Hancock JG. Degradation of pectic substances associated with pathogenesis by Sclerotinia sclerotiorum in sunflower and tomato stems. Phytopathology,1966,56: 975-979.
    75. Harel A, Bercovich S, Yarden O. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. Mol Plant-Microbe Interact,2006,19:682-693.
    76. Harel A, Gorovits R, Yarden O. Changes in protein kinase A activity accompany sclerotial development in Sclerotinia sclerotiorum. Phytopathology,2005,95: 397-404.
    77. Heiniger U, Rigling D. Biological control of chestnut blight in Europe. Ann Rev Phytopathol,1994,32:581-599.
    78. Holley RC, Nelson B. Effect of plant population and inoculum density on incidence of Sclerotinia wilt of sunflower. Phytopathology,1986,76:71-74.
    79. Hu C, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family protein in living cells using bimolecular fluorescence complementation. Mol Cell,2002,9:789-798.
    80. Hu C, Kerppola TK. Simultaneous visualization of multiple protein interactions in living cells using multicolor flurescence complementation analysis. Nat Biotrchnol, 2003,21:539-545.
    81. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol.2003,133:170-181.
    82. Inglis GD, Boland GJ. The microflora of bean and rapeseed petals and the influence of microflora of bean petals on white mold. Can J Plant Pathol,1990,12:129-134.
    83. Itoh Y, Scott B. Effect of de-phosphorylation of linearized pAN7-1 and of addition of restriction enzyme on plasmid integration in Penicillium paxilli. Curr Genet,1997,32: 147-151.
    84. Jedd G, Chua NH. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol,2000,2:226-231.
    85. Jimenez I, Lopez L, Alamillo JM, Valli A, Garcia JA. Identification of a Plum pox virus CI-interacting protein from chloroplast that has a nagativeeffect in virus infection. Mol Plant-Microbe Interact,2006,19:350-358.
    86. Jurick WM, Dickman MB, Rollins JA. Characterization and functional analysis of a cAMP-dependent protein kinase A catalytic subunit gene (pka1) in Sclerotinia sclerotiorum. Physiol Mol Plant P,2004,64:155-163.
    87. Jurick WM, Rollins JA. Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fung Genet Biol,2007,44:521-530.
    88. Kadotani N, Nakayashiki H, Tosa Y, Mayama S. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant-Microbe Interact,2003,16: 769-776.
    89. Kamoun S. A catalogue of the effector secretome of plant pathogenic Oomycetes. Annu Rev Phytopathol,2004,44:41-60.
    90. Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JAE, Kan JAL. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J,2005,43:213-225.
    91. Kasza Z, Vagvolgyi C, Fevre M, Cotton P. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Curr Microbiol, 2004,48:208-213.
    92. Kershaw MJ, Wakley G, Talbot NJ. Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J,1998,17:3838-3849.
    93. Kim HS, Diers BW. Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Sci,2000,40:55-61.
    94. Kim KS, Min JY, Dickman MB. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant-Microbe Interact,2008,21:605-612.
    95. Kim K, Kim H, Lee K, Roe J. Multi-domain CGFS-typr glutaredoxin Grx4 regulates iron homeostasis via direct interaction with a repressor Fepl in fission yeast. Biochem Bioph Res Co,2011,408:609-614.
    96. Kohn LM, Grenville DJ. Anatomy and histochemistry of stromatal anamorphs in the Sclerotiniaceae. Can J Bot,1989,67:371-393.
    97. Kohn LM, Grenville DJ. Ultrastructure of stromatal anamorphs in the Sclerotiniaceae. Can J Bot,1989,67:394-406.
    98. Kolkman JM, Kelly JD. QTL conferring resistance and avoidance to white mold in common bean. Crop Sci,2003,43:539-548.
    99. Kuspa A, Loomis W. Tagging developmental genes in Dictyostelium by restriction enzyme-metiated integration of plasmid DNA. Proc Natl Acad Sci USA,1992,89: 8803-8807.
    100. Kwon JM, Arentshorst M, Roos ED, van den Hondel C, Meyer V, Ram AFJ. Functional characterization of Rho GTOase in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi. Mol Microbiol,2011, 79:1151-1167.
    101. Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC. Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem,1993,268: 12239-12242.
    102. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fung Genet Biol,2003, 38:143-158.
    103. Lara-Ortiz T, Riveros-Rosas H, Aguirre J. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol,2003,50:1241-1255.
    104. Latijnhouwers M, Ligterink W, Vivianne GA. A G-a subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol,2004,51:925-936
    105. Lazarovits G, Starrat AN, Haung HC. The effect of tricyclazole and culture medium on production of the melanin precursor 1,8-dihydroxynaphthalene by Sclerotinia sclerotiorum isolate SS7. Pestic Biochem Physiol,2000,67:54-62.
    106. Leon J, Lawton MA, Raskin I. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol,1995,108:1673-1678.
    107. Letunic I, Doerks T, Bork P. SMART 6:recent updates and new developments. Nucleic Acids Res,2009,37:229-232.
    108. Levy M, Erental A, Yarden O. Efficient gene replacement and direct hyphal transformation in Sclerotinia sclerotiorum. Mol Plant Pathol,2008,9:719-725.
    109. Li GQ, Huang HC, Miao HJ, Erickson RS, Jiang DH, Xiao YN. Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. European J Plant Pathol,2006,114:345-355.
    110. Li J, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science,1993,262:1870-1874.
    111. Li M, Rollins JA. The development-specific protein (Sspl) from Sclerotinia sclerotiorum is encoded by a novel gene expressed exclusively in sclerotium tissues. Mycologia,2009,101:34-43.
    112. Li M, Rollins JA. The development-specific sspl and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fung Genet Biol,2010,47:531-538.
    113. Li R, Rimmer R, Buchwaldt L, Sharpe AG, Senguin-Swartz G, Hegedus DD. Interaction of Sclerotinia sclerotiorum with Brassica napus:cloning and characterization of endo- and exopolygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet,2004,41:754-765.
    114. Lietha D, Chigadze DY, Mulloy B, Blundell TL, Gherardi E. Crystal structures of NK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. EMBO J,2001,20:5543-5555.
    115. Linnemannstons P, Voss T, Hedden P, Gaskin P, Tudzynski B. Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. Appl Environ Microbiol,1999,65:2558-2564.
    116. Liu H, Cottrell TR, Pierini LM, Goldman WE, Doering TL. RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics,2002,160:463-470.
    117. Liu H, Guo X, Naeem MS, Liu D, Xu L, Zhang W, Tang G, Zhou W. Transgenic Brassica napus L.lines carrying a two gene contruct demonstrate enhanced resistance against Plutella xylostella and Sclerotinia sclerotiorum. Plant Cell Tiss Org,2011,106:143-151.
    118. Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC, Turgeon BG. Tagged mutations at the Toxl locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci USA,1994,91:12649-12653.
    119. Lumsden RD, Dow RL. Histopathology of Sclerotinia sclerotiorum infection of bean. Phytopathology,1973,63:708-715.
    120. Lumsden RD. Sclerotinia sclerotiorum infection of bean and the production of cellulose. Phytopathology,1969,59:653-657.
    121.Magro P, Marciano P, Di Lenna P. Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Lett,1984,24:9-12.
    122. Manivasakam P, Aubrecht J, Sidhom S, Schiestl RH. Restriction enzymes increase efficiencies of illegitimate DNA integration but decrease homologous integration in mammalian cells. Nucleic Acids Res,2001,29:4826-4833.
    123. Maor R, Puyesky M, Horwitz BA, Sharon A. Use of green fluorescent protein (GFP) for studying development and fungal-plant interaction in Cochliobolus heterostrophus. Mycol Res,1998,102:491-496.
    124. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH. CDD:a conserved domain database for the functional annotation of proteins. Nucleic Acids Res,2011,39:225-229.
    125. Marciano P, Di Lenna P, Magro P. Oxalic acid, cell wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotorum isolates on sunflower. Physiol Plant Pathol,1983,22:339-345.
    126. Markham P, Collinge AJ. Woronin bodies in filamentous fungi. FEMS Microbiol Rev,1987,46:1-11.
    127. Matta SK, Agarwal S, Bhatnagar R. Surface localized and extracellular Glyceraldehyde-3-phosphate dehydrogenase of Bacillus anthracis is a plasminogen binding protein. Biochem Biophys Acta,2010,1804:2111-2120.
    128. McDonald T, Brown D, Keller NP. RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant-Microbe Interact,2005,18:539-545.
    129. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet,2005,48: 1-17.
    130. Miklas PN, Delorme R, Riley R. Identification of QTL conditioning resistance to white mold in snap bean. J Am Soc Hort Sci,2003,128:564-570.
    131. Miller RM, Liberta AE. The effects of light and tyrosinase during sclerotium development in Sclerotium rolfii Sacc. Can J Microbiol,1977,23:278-287.
    132. Mishran NC. Characterization of the new osmotic mutants which originated during genetic transformation in Neurospora crassa. Genet Res,1977,29:9-19.
    133. Mishran NC. DNA-mediated genetic changes in Neurospora crassa. J Gen Microbiol,1979,113:255-259.
    134. Momany M, Richardson E, Van Sickle C, Jedd G. Mapping Woronin body function in Aspergillus nidulans. Mycologia,2002,94:260-266.
    135. Moreira RF, Ferreira-Da-Silva F, Fernandes PA, Moradas-Ferreira P. Flocculation of Saccharomyces cerevisiae is induced by transformation with the GAP1 gene from Kluyveromyces marxianus. Yeast,2000,16:231-240.
    136. Mouyna I, Henry C, Doering TL. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol Lett,2004,237: 317-324.
    137. Mueller DS, Dorrance AE, Derksen RC, Ozkan E, Kurle JE, Grau CR, Gaska JM, Hartman GL, Bradley CA, Pedersen WL. Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of sclerotinia stem rot on soybean. Plant Dis,2002,86:26-31.
    138. Nakayashiki H, Hanada S, Quoc NB. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fung Genet Biol,2005,42:275-283.
    139. Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol,2008,68:1348-1365.
    140. Nuss DL. Hypo virulence:Mycoviruses at the fungal-plant interface. Nature Rev Microbiol,2005,3:632-642.
    141. Oliveira MB, Nascimento LB, Junior ML, Petrofeza S. Characterization of the dry bean polygalactucturonase-inhibiting protein (PGIP) gene family during Sclerotinia sclerotiorum (Sclerotiniaceae) infection. Genet Mol Res,9:994-1004.
    142. Panepinto J, Komperda K, Frases S, Park Y, Djordjevic JT, Casadevall A, Williamson PR. Sec6-dependent scorting of fungal extracellular exosome and laccse of Cryptococcus neoformans. Mol Microbiol,2009,71:1165-1176.
    143. Partridge DE, Sutton TB, Jordan DL, Curtis VL, Bailey JE. Management of Sclerotinia blight of peanut with the biological control agent Coniothyrium minitans. Plant Dis,2006,90:957-963.
    144. Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I. Direct gene transfer to plants. EMBO J,1984,3:2717-2722.
    145. Patsoukis N, Georgiou CD. The role of thiols on sclerotial differentiation of filamentous phytopathogenic fungi. Open Mycol J,2008,2:1-8.
    146. Patterson CL, Grogan RG. Differences in epidemiology and control of lettuce drop caused by Sclerotinia minor and S. sclerotiorum. Plant Dis,1985,69:766-770.
    147. Peng M, Kuc J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology,1992,82:696-699.
    148. Petersen GR, Russo GM, Van Etten JL. Identification of major proteins in sclerotia of Sclerotinia minor and Sclerotinia trifoliorum. Exper Mycol,1982,6:268-273.
    149. Pitarch A, Sanchez M, Nombela C, Gil C. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall protome. Mol Cell Proteomics,2002,1:967-982.
    150. Purdy LH. Sclerotinia sclerotiorum:history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology,1979,69:875-880.
    151. Rai RA, Agnihotri JP. Influence of nutrition and pH on growth and sclerotia formation of Sclerotinia sclerotiorum (Lib.) De Bary from Gaillardia pulchella Foug. Mycopathol Mycol Appl,1971,43:89-95.
    152. Rappleye CA, Engle JT, Goldman WE. RNA interference in Histoplasma capsulatum demonstrates a role for-(1,3)-glucan in virulence. Mol Microbiol,2004, 53:153-165.
    153. Redman RS, Rodriguez RJ. Factors affecting the efficient transformation of Colletotrichum species. Exp Mycol,1994,18:89-94.
    154. Riou C, Freyssinet G, Fevre M. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microbiol,1991,57: 1478-1484.
    155. Rodriguez MA, Cabrera G, Godeas A. Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. J Appl Microbiol,2006, 100:575-586.
    156. Rollins JA, Dickman MB. Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotia development in Sclerotinia sclerotiorum. Appl Environ Microbiol, 1998,64:2539-2544.
    157. Rollins JA, Dickman MB. pH signaling in Sclerotinia sclerotiorum:identification of a pacC/RIM1 homolog. Appl Environ Microbiol,2001,67:75-81.
    158. Rollins JA. The Sclerotinia sclerotiorum pacl gene is required for sclerotial development and virulence. Mol Plant-Microbe Interact,2003,16:785-795.
    159. Romano N, Macino G. Quelling:transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol, 1992,6:3342-3353.
    160. Russo GM, Dahlberg KR, Van Etten JL. Identification of a development-specific protein in sclerotia of Sclerotinia sclerotiorum. Exp Mycol,1982,6:259-267.
    161. Russo GM, van Etten JL. Synthesis and localization of a development-specific protein in sclerotia of Sclerotinia sclerotiorum. J Bacteriol,1985,163:696-703.
    162. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning:A laboratory manual, second ed. Cold Spring Harbor Laboratory, Clod Spring Harbor, NY,1989.
    163. Schiestl RH, Petes TD. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA,1991,88:7585-7589.
    164. Sengupta DJ. Zhang B, Karemer B, Pochart P, Fields S, Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci USA,1996, 93:8496-8501.
    165. Shieh MT, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA. Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol,1997,63:3548-3552.
    166. Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol,1962,59:223-239.
    167. Soundararajan S, Jedd G, Li X, Ramos-Pamplona M, Chua NH, Naqvi NI. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell,2004,16:1564-1574.
    168. Spelling T, Bottin A, Kahmann R. Green fluorescent protein(GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Gennet.1996,252: 503-509.
    169. Spencer TM, Gordon-Kamm WJ, Danies RJ, Start WG, Lemaux PG. Bialaphos selection of stable transformants from maize cell culture. Theor Appl Genet,1990, 79:625-631.
    170. Srivastava V, Vasil V, Vasil IK. Molecular characterication of the fate of transformed wheat(Triticum aestivum L.). Theor Appl Genet,1996,92:1031-1037.
    171. Starratt AN, Ross LM, Lazarovits G 1,8-dihydroxynaphthalene monoglucoside, a new metabolite of Sclerotinia sclerotiorum, and the effect of tricyclazole on its production. Can J Microbiol,2002,48:320-325.
    172. Steadman JR. Control of plant diseases caused by Sclerotinia species. Phytopathogy, 1979,69:904-907.
    173. Sweigard JA, Carroll AM, Farrall L, Chumley FG, and Valent B. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant-Microbe Interact,1998,11:404-412.
    174. Taylor RB, Duffus WPH, Raff MC, de Petris S. Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody. Nat New Biol,1971,233:225-229.
    175. ten Have A, Mulder W, Visser J, van Kan JAL. The endopolygalacturonase gene Bcpgl is required for full virulence of Botrytis cinerea. Mol Plant-Microbe Interact, 1998,11:1009-1016.
    176. Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ. Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fung Genet Biol,2000,31:205-217.
    177. Thedieck K, Polak P, Kim MY, Molle KD, Colhen A, Jeno P, Arrieumerlou C, Hall MN. PRAS40 and PRR5-like aprotein are new mTOR interactors that regulate apotosis. PLoS ONE,2007:e1217. doi:10.1371/journal.pone.0001217.
    178. Townsend BB, Willettes HJ. The development of sclerotia of certain fungi. Trans Br Mycol Soc,1994,37:213-221.
    179. Trinci AP, Collinge AJ. Occlusion of the septal pores of damaged hyphae of Neurospora crassa by hexagonal crystals. Protoplasma,1974,80:57-67.
    180. Turkington TK, Morrall RAA. Use of petal infestation to forecast Sclerotinia stem rot of canola:the influence of inoculum variation over the flowering period and canopy density. Phytopathology,1993,83:682-689.
    181.Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev,1999,13:3191-3197.
    182. Utermark J, Karlovsky P. Genetic transformation of filamentous fungi by Agrobacterium tumefaciens. Protocol Exchange,2008, doi 10.1038/nprot.2008.83.
    183. Veluchamy S, Rollins JA. A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fung Genet Biol,2008,45:1265-1276.
    184. Vidal M, Brachmann RK, Fattaey A, Harlow E, Boeke JD. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci USA,1996,93:10315-10320.
    185. Vithalani KK, Shoffner JD, De Lozanne A. Isolation and characterization of a novel cytokinesis-deficient mutant in Dictyostelium discoideum. J Cell Biochem,1996,62: 290-301.
    186. Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S. Overexpression of Brassica napus MPK4 Enhances Resistance to Sclerotinia sclerotiorum in Oilseed Rape. Mol Plant-Microbe Interact,2009,22:235-244.
    187. Weld WJ, Eady CC, Ridgway HJ. Agrobacterium-mediated transformation of Sclerotinia sclerotiorum. J Microbiol Meth,2006,65:202-207.
    188. Whipps JM, Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol Res,1992,96:897-907.
    189. Willetts HJ, Bullock S. Developmental biology of sclerotia. Mycol Res,1992,96: 801-816.
    190. Willetts HJ. The survival of fungal sclerotia under adverse environmental conditions. Biol Rev,1971,46:387-407.
    191. Williams B, Kabbage M, Kim H, Britt R and Dickman MB. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathogens,2011,7:e1002107.
    192. Xie J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, Peng Y. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol,2006,87:241-249.
    193. Xie J, Xiao X, Fu Y, Liu H, Cheng J, Ghabrial S, Li G, Jiang D. A novel mycovirus closely to hypoviruses that infects the plant pathogenis fungus Sclerotinia sclerotiorum. Virology,2011,418:49-56.
    194. Yajima W, Liang Y, Kav NV. Gena disruption of an Arabinofuranosidase/p-xylosidase precursor decreases Sclerotinia sclerotiorum virulence on canola tissue. Mol Plant-Microbe Interact,2009,22,783-789.
    195. Yakoby N, Zhou R, Dinoor A, Prusky D. Devolopment of Colletotrichum gloeosporioides enzyme-restriction mediated integration mutants as biocontrol agents against anthracnose disease in avocado fruits. Phytopathology,2001,91: 143-148.
    196. Young N, Ashford AE. Changes during development in the permeability of sclerotia of Sclerotinia minor to an apoplastic tracer. Protoplasma,1992,167:205-214.
    197. Yu X, Li B, Fu Y, Jiang D, Ghabrial S, Li G, Peng Y, Xie J, Cheng J, Huang J, Yi X. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci USA,2010,107:8387-8392.
    198. Yun SH, Turgeon BG, Yoder OC. REMI-induced mutants of Mycosphaerella zeae-maydis lacking the polyketide PM-toxin are deficient in pathogenesis to corn. Physiol Mol Plant P,1998,52:53-66.
    199. Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet,2003, 106:759-764.
    200. Zhou H, Casas-Finet JR, Heath Coats R, Kaufman JD, Stahl SJ, Wingfied PT, Rubin JS, Bottaro DP, Byrd RA. Identification and dynamics of a heparin-binding site in hepatocyte growth factor. Biochemistry,1999,38:14793-14802.
    201. Zhou T, Boland GJ. Mycelial growth and production of oxalic acid by virulent and hypovirulent isolates of Sclerotinia sclerotiorum. Can J Plant Pathol,1999,21: 93-99.
    202. Zhu J, Hasegawaai PM. A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-la. Plant Cell,1994,6:393-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700