基于Al-Si-Cu-Mg-Zn合金的高温储热材料优化设计与储热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热能储存是太阳能热发电技术的关键,也是解决能源问题的核心技术,目前正受到广泛的研究关注。储热材料的选择关系到热能储存的效率与效果,金属相变储热材料储热量高,稳定性好,广泛应用于高温储热,因此成为本文研究的出发点。本文基于Al-Si-Cu-Mg-Zn合金优良的储热性能,对材料进行成分的优化设计,使其在储热量、相变温度范围方面更加适应太阳能热发电系统的实际工作需要。
     本文共设计制备了Al-Cu类、Al-Si-Cu类、Al-Cu-Mg类、Al-Cu-Zn类四类合金共12个试样,通过相图分析、等离子光谱分析、金相显微分析、X射线衍射分析、差示扫描量热分析、基于阿基米德原理的排液法等分析测试方法,对试样的元素含量、金相组织、物相结构、潜热、密度进行分析与测量,并依据奈曼-柯普定律完成显热计算。结合潜热与显热以全面评价材料的储热能力,且通过密度将单位质量储热量换算为单位体积储热量,以便在有限的储热室空间里更直观地评价材料储热能力。根据测试与计算结果,本文所制备的12种铝基合金相变储热材料的储热量均大于900J/cm~3,相变温度范围为450~650℃,可用作太阳能热发电系统的储热材料。
     储热材料单位质量相变潜热受元素热焓值和物相组织热焓值的影响。受元素热焓值影响,Al-Cu类合金储热材料单位质量相变潜热比其余三类高,Al-Cu-Mg类合金其次;受物相组织热焓值影响,Al-Cu类中的B2合金具有最高的单位质量相变潜热值。
     材料的显热主要跟各组成元素的比热容及其含量有关,Al-Cu类合金的单位质量显热比其它三类要高,且B1合金显热最高。计算发现各合金显热值较可观且差值较小。
     结合潜热及显热来分析合金的单位质量总储热量,Al-Cu类合金的显热和潜热均高于其它三类,综合储热能力最佳;尽管Al-Cu-Mg类合金具有较高潜热值,但其显热最差,故总储热量不佳。
     通过添加Cu、Zn元素可增大材料密度,从而极大地提高材料单位体积总储热量。因此,Al-Cu类、Al-Cu-Zn类合金具有较大的单位体积储热量。
     综合所制备的材料来看,Al-Cu类中的B2合金在单位体积储热能力上表现最佳,且相变温度范围为549.2~559℃,适用于太阳能热发电系统。
Thermal storage is the key of solar thermal power generation technologies, and also is the core technology to solve energy problems, currently is under extensive research attention. The choice of thermal storage material is greatly related to the efficiency and effectiveness of thermal energy storage. The metal phase change thermal energy storage materials has high Heat reservoir, good stability, is widely used in high temperature heat storage, has therefore become the starting point of this study. Based on the excellent heat storage properties of Al-Si-Cu-Mg-Zn alloys, the material compositions were optimally designed to make them more responsive to the actual work requirements of solar thermal power generation system in the aspects of heat storage and phase change temperature range.
     In this article, 12 kinds of alloys belonged to four series , such as Al-Cu alloys, Al-Si-Cu alloys, Al-Cu-Mg alloys, Al-Cu-Zn alloys, were designed and prepared. Through test methods, such as phase diagram analysis, plasma spectral analysis, metallographic microscopy analysis, X-ray diffraction analysis, differential thermal analysis,and fluid-discharge therapy based on Archimedes principle, the element content, microstructure, phase structure,latent heat, density of samples can be tested,and the sensible heat can be caculated according to Neumann - Kopp Rule. Latent heat and sensible heat should be combined to comprehensively evaluate the heat storage capacities of materials, and heat storage quantity per unit mass can be converted into per unit volume through density, so that we can get a more intuitive evaluation of thermal storage capacity in a limited space of thermal storage room. According to the test and calculation results, the 12 kinds of materials prepared in this paper, whose heat reservoirs are bigger than 900J/cm~3 and phase change temperature ranges are between 400 - 650℃, can be used as thermal storage material in solar thermal power generation system.
     Latent heat of Thermal storage material per unit mass was greatly effected by the enthalpy values of elements and phase structures. Affected by the former effect, Al-Cu series alloys got the highest latent heat per unit mass than the other three series alloys, and Al-Cu-Mg series alloys was followed by them; affected by the latter, as a kind of Al-Cu series alloys, B2 sample had the highest latent heat per unit mass.
     The sensible heat of samples mainly related with the specific heat capacity and content of constituent elements. The sensible heat of Al-Cu series alloys per unit mass is higher than the other three series alloys, and sample B1 has the highest value. According to calculation, sensible heat of each sample was impressive and only has small difference.
     Combined latent heat and sensible heat to analyze the overall thermal storages of samples per unit mass. Al-Cu series samples got the best performance of sensible heat and latent heat, so the integrated heat storage were the best. Despite that Al-Cu-Mg samples had the highest latent heat value, its sensible heat were the worst, so the total storage heat were poor.
     By adding Cu, Zn element to increase materials' density, the total heat storage per unit volume of materials were greatly increased. Al-Cu series and Al-Cu-Zn series samples got the largest heat reservoir per unit volume.
     Sum up materials prepared in this paper, as a kind of Al-Cu alloys, B2 sample had the best thermal storage capacity performance per unit volume, and its phase change temperature range were 549.2-559℃, which can apply to solar thermal power generation systems.
引文
[1]吴宇平.绿色电源材料[M].北京:化学工业出版社,2008:9
    [2]李金柱.加速优化中国特色能源产业结构的思考[J].煤炭经济研究,2000(5):30-35
    [3]TANG Li-zi.Vast utilization of solar power is not a dream.China Territory Today.2006
    [4]马立强.太阳能:地球能源之源[J].科学大众,2006,Z1(7):46-48
    [5]Shamsundar N,Sparrow E M.Analysis of multidimensional conduction phase change via the enthalpy model.Heat Transfer Trans ASME,1985,(8):333
    [6]秦培煜,周世权.能源材料的研究现状及发展前景[J].节能,2002(5):5-7
    [7]尚燕,张雄.相变储能材料的应用及研究现状[J].材料导报.2005,19(专辑V):265
    [8]钟开红.相变储能材料在建筑节能中的应用综述[J].广州建筑,2006,(2):37
    [9]姜勇,丁恩勇,黎国康.相变储能材料的研究进展[J].广州化学,1999,(3):48
    [10]田胜力,张东,肖德炎,等.脂肪酸相变储能材料热循环行为的试验研究[J].材料开发与应用,2006,21(1):9
    [11]余金丽,孙之南.储能物系功能材料的开发研究[J].海湖盐与化工,2001,30(4):9
    [12]张寅平,胡汉平,孔祥东等.相变贮能-理论和应用[M].北京:中国科学技术大学出版社,1996
    [13]Costa M,Oliva A,Segarra C D.Nurnerical simulation of solid-liquid phase change phenomena.Comput Meth Appl Mech Eng,1991,91:1123
    [14]戴彧,唐黎明.相变储热材料研究进展[J].化学世界,12,2001:662-665
    [15]李玉红,焦庆影,夏定国,等.常低温相变储能材料的研究和应用[J].化学教育,2004,(10):9
    [16]Mohammed M F,Amar M K,Siddique Ali K R.A review on phase change energy storage:materials and applications.Energy Conversion and Management,2004,45:1597-1615
    [17]杨培莹,章学来,吕磊磊,等.太阳能蓄热墙相变蓄热材料的研究进展[J].能源技术,2008,29(1):38-40
    [18]胡其颖.太阳能热发电技术的进展及现状[J].能源技术,2005(26):200-207
    [19]姜茜.太阳能发电的发展与展望[J].东方电机,2002,(2):183-191
    [20]Li Z G,Huang H J,Chen Y.The Determination of the Binary System Hexadecanol and Stearic Acid as Phase Change Materials(PCMs) Solid Liquid Equilibrium[A].Proceedings of 6th International Symposium on Test and Measurement(Volume 5)[C],2005
    [21]陈正荣,刑登清,王守彪.金属相变高温贮存太阳能的研究[J]西藏科技,1995(4):10-12
    [22]Zhuze V B,Zubkov G E,Martynova N M.Temperature dependence of the enthalpy of mettal alloys for heat storage materials.Izv Vyssh Uchebn Zaved Energy,1989(6):77
    [23]Nelson Granados,Alok Gupta,Kauffman.Designing Online Selling Mechanisms:Transparency Levels And Prices.Decision Support Systems,2008,45(4)
    [24]Farkas D,Birchenall C E.New eutectic alloys and their heats of transformation.Metallurgical Transaction A,1985,16A:323-328
    [25]Birchenall C E,Biechman A.Heat storage in eutectic alloys[J].Metallurgical Transaction A,1980,11A:1415-1420
    [26]CE Mobley,AH Clauer,B Wilcox.Microstructures and Tensile Properties of 7075 Aluminum Compacted From Melt-Spun Ribbon.AH CLAUER,BA WILCOX J INST METALS,1972,100(5):142-145
    [27]Bulychev V V,Chelnokov V S,Slastilova S V.Al-Si alloy base heat accumulators with phase transition.Izv Vyssh Uchebn Zaved Chem Metall,1996(7):64
    [28]Cherneeva L I,Rodionova E K,Martynova N M.Use of alloys for heat storage.Izv Vyssh Uchebn Zaved Energy,1982(7):52-56
    [29]邹向.全兆丰,赵锡伟.铝硅合金用作相变储热材料的研究[J].新能源,1996,18(8):1-6
    [30]黄志光,梅邵华,吴广忠.金属相变热能贮存技术的展望[J].新能源,1990,12(8):11-16
    [31]黄志光,吴广忠,戴绪琦.聚光太阳灶用金属相变贮能装置的研究[J].太阳能学报,1992,13(3):271-276
    [32]张仁元,孙建强,柯秀芳,等.Al-Si合金的储热性能[J].材料研究学报,2006,20(2):156-161
    [33]张仁元,孙建强,卢国辉.共晶铝-镁-锌储能合金的热稳定性和液态腐蚀性[J].机械工程材料,2006,30(7):11-17
    [34]孙建强,张仁元,沈学忠,等.Al-34%Mg-6%Zn和Al-28%Mg-14%Zn合金的热分析研究[J].广东工业大学学报,2006.23(3):8-13
    [35]刘靖,王馨,曾大本,等.高温相变材料Al-Si合金选择及其与金属容器相容性实验研究[J].太阳能学报,2006,27(1):36-42
    [36]王世洪.铝及铝合金热处理[M].北京:机械工业出版社,1986:1-3
    [37]Mondolfo,L.F,Aluminum Alloys,Structure and properties,Butterworths,London,1976:313
    [38]张忠玉.铝及铝合金工艺与设备[M].长沙:中南大学出版社,2006:13-15
    [39]罗启全.铝合金熔炼与铸造[M].广东:广东科技出版社,2002:6
    [40]李椿等编.热学[M].北京:人民教育出版社,1979:341-342
    [41]Achard P,Arefi S,Lecomte D.Study of heat storage at around 450℃ in aluminum-magnesium base alloys.FRA DGRST,1981,79(7):98
    [42]宫殿清.基于Al-Si-Cu-Mg-Zn合金的高温相变储热材料制备与储热性能研究[D].武汉理工大学.2008
    [43]司乃潮.有色金属材料及制备[M].北京:化学工业出版社,2006,(1):1-33
    [44]向凌霄.原铝及其合金的熔炼与铸造[M].北京:冶金工业出版社,2005,(8):145
    [45]陈存中,有色金属熔炼与铸锭[M].北京:冶金工业出版社,1999:194
    [46]辛仁轩.等离子体发射光谱分析[M].北京:化学工业出版社,2005,(2):5-28
    [47]周上祺编著.X射线衍射分析[M].重庆:重庆大学出版社,1991:127
    [48]丘利,胡玉和编著.X射线衍射技术及设备[M].北京:冶金工业出版社,1998:28-65
    [49]武汉工业大学等合编.物相分析[M].武汉:武汉工业大学出版社,1994:194-203
    [50]龙毅,李庆奎,强文江.材料物理性能[M].长沙:中南大学出版社,2009,3-10
    [51]Dean,John A.Lange's handbook of chemistry(15th ed).New York:McGraw-Hill,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700