传动装置动密封失效分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重载车辆传动系统使用涨圈型密封环作为动态密封装置,主要解决旋转件与固定件之间的密封问题。从实际运行情况看,密封环的使用寿命一般都达不到设计要求,出现提前失效的现象。其失效形式是密封环的密封面的严重磨损,导致密封实际接触面积减小,影响传动装置的正常运行。因此在密封环的设计和试验阶段,分析密封环失效原因,延长密封环使用寿命是传动装置设计开发过程中的重要研究课题。
     结合密封环的应用条件和工作环境,研究密封环的润滑特性,通过建立油膜模型求解雷诺方程,得到油膜压力、承载力和摩擦力矩的表达式,并获得它们随密封参数和工况状态的变化规律,从流体油膜的角度来研究密封环的润滑状况。通过密封环的受力分析,比较密封开启力与闭合力的平衡关系,确定影响密封环摩擦状态的规律。同时,建立密封环泄漏模型,研究其泄漏情况。
     密封环的磨损分为正常磨损与非正常磨损,根据它们的不同特点,提出采用试验分析法与理论建模法来分别研究。建立了密封环的磨损分析模型,讨论了密封环随轴转动与扰动对磨损的影响。通过磨损试验,分析密封环在不同速度、压力和油温条件下的摩擦磨损规律。利用扫描电子显微镜观察了磨损程度不同的密封环端面的表面形貌,并探讨了其磨损机理。
     根据密封环、油膜和密封介质组成的传热系统,以摩擦热为热源,研究了密封环的传热特性,得到密封环导热计算的热边界条件,提出了密封端面摩擦热的计算方法,推导了密封环温度分布的计算公式,得到了密封环的温度场以及影响摩擦热和密封环传热性能的因素。模拟实际运行工况,采用热-结构耦合分析方法获得密封环在压力和摩擦热作用下的变形特征。
     自主开发研制了一台高转速、高油压,适用于旋转运动用的密封性能试验台。通过试验系统可以完成静态与动态的泄漏检测,密封环的温升试验和磨损试验,具备良好的通用性和实用性。对密封环进行试验,获取其性能参数及其影响规律曲线,与理论计算进行对比论证,探讨了各环境参数对密封性能的影响。试验台的研制为失效分析、结构设计与改进及其理论验证提供了基础保证。
     研究失效的评价技术指标,从压力、转速、润滑状态、摩擦热、温度分布、热变形等几个方面讨论了失效评价参数。提出以磨损为主导的失效模式,而油膜承载力与闭合力的不平衡以及摩擦热是引起摩擦机制变化,导致密封环失效的主要原因。从密封环结构参数、结构型式和工况环境参数三个方面进行优化设计,提出优化方案。基于虚拟设计思想,对优化后的密封环进行仿真计算,结果表明,经过优化设计后的密封环在抵抗磨损、降低端面温升、限制泄漏方面有很大改善。
The piston ring type seals,as the rotary sealing devices,are one of the most important components in the wet clutch unit of a heavy load vehicle,whereas the failure of the rings occurred only after a service of about a month,the expected service life was more than 3 months.The failure ring was subjected to serious wear on the sealing surfaces,but the mating metal surfaces had slight abrasion.So it is necessary to investigate the wear mechanism and failure cause of sealing rings in order to provide the essential evidence and critical feedback into the design process,and thus contributing to the prevention of the sealing failures and more successful application of this rings in the future.
     According to the environmental and service conditions of seals in the transmission,the characteristics of the fluid film were studied,and pressure,friction torque and their regular pattern with working conditions were obtained.The lubrication of seals was researched by fluid film.Based on the force analysis of sealing ring,the balance between closing force and bearing force was confirmed to discuss the patterns of sealing friction and wear behavior.A model to simulate leak was constructed and then leakage rate was calculated.
     The wear of these rings can be divided into two categories:normal wear and abnormal wear.In accordance with the different characteristics,experimental analysis and modeling method were applied respectively.In order to obtain the influence of abnormal wear,a model was established for the small perturbation and rotation of ring.To assess the friction and wear behavior of seals made from PTFE composites under heavy-pressure and high-speed conditions,effects of normal load,sliding speed and oil temperature on tribological properties were investigated using a test rig.Scanning electron microscopy(SEM) was utilized to examine composite microstructures and study the wear mechanism.
     According to the working conditions of sealing rings,the transfer regularity in the sealing system was investigated.This heat transfer system consists of the ring,the fluid film and the sealed medium.Then the method to calculate the frictional heating of the end face and the partition ratios of the frictional heat were presented.The temperature distribution in the sealing rings was given,and the heat transfer analysis results indicate that the temperature distribution is related to the geometric parameters,the material parameters of the sealing rings,the frictional heat of the fluid film and the coefficient of heat transfer from the sealing rings to the sealed medium.A coupled method based on heat transfer theory and experimental analysis was put forward to estimate thermal loads on sealing rings.Selecting reasonably boundary conditions exerted on seals and simulating the actual operations of the transmission,thermal responses such as temperature field and distribution,thermal deformation,and their variabilities with pressure and rotating speed were obtained by computation of heat transfer.
     A test rig for dynamic sealing performance under high pressure and high speed was developed and built that can be used for rotary seal.This testing system is developed to simulate the real conditions of sealing rings and its functions include measuring statistical and dynamic fluid leakage rate,evaluating sealing performance during running in process and detecting the temperature of seals,which is of high quality of practicability and universality from the results.Conducted experiments with several seals by this testing system,the performance parameters and relation curves had been obtained,and the effect of each performance parameter on sealing performance was discussed primarily.The development and exploitation of this test rig for rotary seal provides potent guarantee for design and testing verification of seals with low friction coefficient,high reliability and high values of pressure-velocity.
     There are some indexs that cause sealing failure including working pressure,rotation, lubrication of seals,frictional heat,temperature distribution,deformation of the end face and so on.Those key technical indexes of failure mode were discussed,which indicated that failure mechanism was mainly wear-out-failure by heat and unbalance between closing force and bearing force.The optimum design methods based on working condition parameters,geometric parameters and seals-Types were put forward.The virtual design was applied in the optimized sealing ring and the results show that the leakage rate could be reduced and the effect of the frictional heat and thermal deformation of the end faces on the characteristics of the seals were within a appropriate range.
引文
[1]王玉明,杨惠霞,姜南.流体密封技术[J].液压气动与密封,2004,(3):1-5.
    [2]机械工程手册电机工程手册编辑委员会.机械工程手册(第二版)[M].北京:机械工业出版社,1996.
    [3]夏廷栋.实用密封技术手册[M].哈尔滨:黑龙江科学技术出版社,1985.
    [4]Itzhak G.Real-time monitoring and control mechanical of face-seal dynamic behaviour[J].Sealing Technology,2001,11(96):6-11.
    [5]顾永泉.流体动密封[M].山东东营:石油大学出版社,1990.
    [6]海因茨·K.米勒,伯纳德·S.纳乌,程传庆.流体密封技术:原理与应用[M].北京:机械工业出版社,2002.
    [7]Etsion I.Ideas and tendencies in future mechanical seal development[J].Lubrication Engineering,1990,46(2):122-125.
    [8]刘艳梅,孙扬,宋鸿达.某涡喷发动机密封环研制[J].推进技术,1999,20(6):45-47.
    [9]李闪,张宏壮,施江天,等.重载车辆用填充PTFE材料密封环[J].机械工程材料,2003,27(2):50-51.
    [10]崔丕瑛.履带式钻车涨圈连接的改进[J].工程机械,1989,(5):47-51.
    [11]韩鹏,郭二军,王丽萍,等.涨圈材料弹性模量及横向断裂韧性的研究[J].黑龙江冶金,2007,(7):1-3.
    [12]Leefe S E,Hobson R M,Nau B S.An experimental study of high speed mechanical seal stability[J].Lubrication Engineering,1994,50(2):32-37.
    [13]赵园懿.液压密封技术的应用与发展概述[J].润滑和密封,2004,(7):193-195.
    [14]陈匡民.流体动密封[M].成都:成都科技大学出版社,1997.
    [15]李涛.涨圈型旋转密封装置性能研究[D].杭州:浙江大学,2007.
    [16]Nau B S,Leefe S E.A review of some aspects of the prediction of mechanical seal coning[J].Trilbology Trans,1991,(4):611-617.
    [17]Yeoh O H.Characterization of elastic properties of carbon black-filled rubber vulcanized[J].Rubber Chem.and Technology,1990,63(5):771-798.
    [18]Gong D L,Zhang B,Xue Q J,et al.Investigation of adhesion wear of filled polytetra-fluoroethylene by ESCA,AES and XRD[J].Wear,1990,137:25-39.
    [19]Zhang Z Z,Xue Q J,Liu W M,et al.Friction and wear behaviors of severval polymers under oil lubricated conditions[J].Journal of Applied Polymer Science,1998,68:2175-2182.
    [20]Gong D L,Xue Q J,Wang H L.Physical models of adhesive wear of polytetra-fluoroethylene and its composites[J].Wear,1991,147:9-24.
    [21]Biswas S K,Vijayan K.Friction and wear of PTFE-a review[J].Wear,1992,158:193-211.
    [22]谢友柏.摩擦学的三个公理[J].摩擦学学报,1991,12(3):222-232.
    [23]E.迈尔.机械密封[M].北京:化学工业出版社,1981.
    [24]Nau B S.Observations and analysis of mechanical Seal film characteristics[J].Journal of Lubrication Tech,1980,102(3):341-349.
    [25]戈卢别夫.端面密封及动力密封[M].北京:化学工业出版社,1968.
    [26]Ruddy A V,Smith D S.The mechanism of film generation in mechanical face seals[J].Tribology,1982,(8):227-281.
    [27]Nau B S.Rotary mechanical seals in process duties:an assessment of the state of the art[J].Proc Instn Mech Engrs,1985,(1):17-81.
    [28]Lebeck A O.Hydrodynamic lubrication in wavy contacting face seals-a two dimensional model[J].Journal of Lubrication Tech,1981,103(4):578-586.
    [29]雒建斌,黄平,温诗铸.薄膜润滑机理研究[J].清华大学学报,1994,34(3):9-14.
    [30]Yu X Q,He S,Cai R L.Frictional characteristics of mechanical seals with a laser-textured seal face[J].Journal of Materials processing Technology,2002,129:463-466.
    [31]Hirabayashi H,Matsushima A.A study of friction in high-speed face seals[J].Lubrication Engineering,1984,40(9):533-538.
    [32]Patir N,Cheng H S.Application of average flow model to lubrication between rough sliding surfaces[J].Journal of Lubrication Tech,1979,101(4):220-280.
    [33]Lebeck A O.A Mixed Friction hydrostatic mechanical face Seal model with thermal rotation and Wear[J].Trans ASLE,1980,23(4),857-887.
    [34]赵源,高万振,李健.磨损研究及其方向[J].材料保护,2004,37(7):18-34.
    [35]Boucly V,Nelias,Liu S B,et al.Contact analyses for bodies with frictional heating and plastic behavior[J].Journal of Tribology,2005,127(4):355-365.
    [36]刘维民,薛群基.摩擦学研究及发展趋势[J].中国机械工程,2000,11(2):77-80.
    [37]Li F,Yan F Y,Yu L G,et al.The tribological behaviors of copper-coated graphite filled PTFE composites[J].Wear,2000,237:33-40.
    [38]Akihiro O,Akira U,Shigeru T.Fabrication of PTFE/carbon fiber composites using radiation crosslinking[J].Radiation Physicsand Chemistry,2001,62:77-86.
    [39]Thierry A B,Peng Y L.Wear resistant irradiated FEP unirradiated PTFE composites[J].Wear,1998,214:186-193.
    [40]王承鹤.塑料摩擦学-塑料的摩擦、磨损、润滑理论与实践[M].北京:机械工业出版社,1994.
    [41]李同生,孙守镁,胡廷永,等.聚四氟乙烯磨损机理的探讨[J].摩擦学学报,1991,12(3):222-232.
    [42]宫德利,薛群基.聚合物磨损的几种形式[J].润滑与密封,1989,2:55-61.
    [43]佟金,任露泉,陈永潭,等.聚四氟乙烯和超高分子量聚乙烯的磨粒磨损性能与机理研究[J].摩擦学学报,1994,14(1):65-72.
    [44]Tanaka K,Kawakami S.Effects of various fillers on the friction and wear of PTFE-based composites[J].Wear,1982,78:241-249.
    [45]Bahadur S,Gong D.The action of fillers in the modification of the tribologicai behavior of polymers[J].Wear,1992,158:41-59.
    [46]王家序,陈战,秦大同.聚四氟乙烯复合材料的摩擦磨损性能研究[J].农业机械学报,2002,33(4):99-101.
    [47]顾永泉.机械密封实用技术[M].北京:机械工业出版社,2001.
    [48]Flitney R K,Nau B S.A Study of factors affecting mechanical seal performance[J].Proc.Instn.Mech.Eners,1986,(2):1-12.
    [49]单晓亮,胡欲立.机械密封温度问题研究方法综述[J].流体机械,2006,34(8):37-40.
    [50]Golubiev A I.On the existence of a hydrodynamic film in mechanical seals[C].Proc.of 4th Inter.Conf.on Fluid Sealing,1987,215-227.
    [51]Li C H.Thermal deformation in mechanical face seal[J].ASLE Trans,1976,19(2):146-152.
    [52]Dumbrava M A,Morariu Z.Thermo-hydrodynamic aspects of the double mechanical seals[C].Proc.of 4th Inter.Conf.on Fluid Sealing,BHRA.1987,394-406.
    [53]Dount T G,Parmar A.Transient thermoelastic effects in a mechanical face seal[C].Proc.of 4th Inter.Conf.on Fluid Sealing.1987,407-422.
    [54]Zeus D.Viscous friction in small gaps calculations for non-contacting liquid or gas lubricated end face seals[J].Tribology Transactions.1990,33(3):454-462.
    [55]Larsson B.Heat separation in frictional rotor-seal contact[J].Journal of Tribology.2003,102(3):600-607.
    [56]Brunetiere N,Tournerie B,Frene J.A simple and easy-to-use TEND model for non-contacting liquid face[J].Tribology Transactions,2003,46(2):187-192.
    [57]彭旭东,谢友柏.机械密封端面温度的确定[J].化工机械,1996,23(6):333-336.
    [58]周剑锋,顾伯勤.机械密封端面摩擦热与热变形的耦合分析[J].核动力工程,2006,34(8):37-40.
    [59]朱学明,刘正林,朱汉华,等.机械密封环热-结构耦合分析研究[J].武汉理工大学学报,2005,29(2):198-201.
    [60]程建辉,葛培琪,刘鸣.机械密封温度场的有限元分析与试验研究[J].山东大学学报(工学版),2002,32(2):385-388.
    [61]王胜光,张炳闻,陈长征.涡轮增压器密封环的温度场及热变形研究[J].润滑与密封,2005,30(1):44-46.
    [62]王隽,王娟,周旭辉,等.船舶艉轴密封装置端面密封摩擦副温度场稳态分析[J].润滑与密封,2007,32(7):122-124.
    [63]朱孝平,汪久根,周桂如.机械密封粗糙端面温度分布研究[J].机械设计与研究,1996,(1):37-39.
    [64]熊佳,雷玉勇,杨志峰,等.基于ANSYS的高压机械密封温度场理论研究[J].润滑与密封,2007,32(4):123-126.
    [65]Toumerie B,Reungoat D,Frene J.Temperature measurements by infrared ther-mography in the interface of a ridial face seal[J].Journal of Tribology,1991,113(3):571-576.
    [66]Will T P.Effect of seal face width on mechanical seal performance hydro-carbon test[J].Lubrication Engineering,1984,40(7):522-527.
    [67]Doust T G,Parmar A.An experimental and theoretical study of pressure and thermal distortion in a mechanical Seal[J].ASLE Transaction,1986,29(1):151-159.
    [68]Salant R F,Miller A L,Kay P L,et al.Development of an electrically controlled mechanical seal[C].Proc.of 4th Inter.Conf.on Fluid Sealing,BHRA.1987:576-595.
    [69]Tournerie B,Reungoat D,Frene J.Temperature measurements infrared thermo-graph in the interface of a radial face seal[J].ASME Journal of Tribology,1991,113(7):571-576.
    [70]Etsion I,Palmor Z J,Harari N.Feasibility study of a controlled mechanical seal[J].Lubrication Engineering,1991,47(8):621-625.
    [71]Slamack A,Alan O L.Fluid temperature and film coefficient prediction and measurement in mechanical face seals experimental results[J].Tribology Transactions,1998,41(4):411-422.
    [72]Anderson W B.Development of dondition monitoring system for mechanical seals[D].Georgia Institute of Technology,Atlanta,GA,2001.
    [73]戈建志,李克永.机械密封润滑状态及摩擦扭矩的研究[J].流体工程,1993,21(1):1-6.
    [74]彭旭东,谢友柏,顾永泉.机械密封端面温度的确定[J].化工机械,1996,23(6):333-338.
    [75]朱孝平,黄勇,周银生,等.机械密封端面温度的测试方法研究[J].润滑与密封,1996, 21(3):29-31.
    [76]李宝彦,李云鹏,张建中.机械密封端面流体膜压膜厚的测量[J].大庆石油学院学报,1990,14(4):50-55.
    [77]李鳃,王春扬,刘志国.机械密封环端面变形的静态测量方法研究[J].流体工程,1992,20(12):1-3.
    [78]周剑锋.机械密封中的热流体动力效应研究[D].南京:南京工业大学,2006.
    [79]池长青.流体力学润滑[M].北京:国防工业出版社,1998.
    [80]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [81]Dowson D A.Generalized reynolds equation for fluid film lubrication[J].Journal of Mechanical Science,1962,(4):159-170.
    [82]顾伯勤.流体力学[M].北京:中国科学文化出版社,2002.
    [83]Parir N,Cheng H S.Application of average flow model to lubrication between rough sliding surfaces[J].Journal of Lubrication Technology,1979,101(2):220-230.
    [84]魏龙,顾伯勤,孙见君.机械密封端面摩擦工况研究进展[J].润滑与密封,2003,(5):30-33.
    [85]Greenwood J A,Tripp J H.The contact of two nominally flat surfaces[J].Journal of Engineering Tribology,1971,185:625-633.
    [86]刘雨川,徐万孚,王之栎,等.端面气膜密封动力特性系数的计算[J].清华大学学报,2002,42(2):185-189.
    [87]陈材侃.计算流体力学[M].重庆:重庆出版社,1992.
    [88]Green J,Itzhak G.A transient dynamic analysis of mechanical seals including asperity contact and face deformation[J].Tribology Transaction,2002,(6):284-293.
    [89]黄丽,孙正滨.PTFE复合材料力学与摩擦性能的研究[J].复合材料学报,2000,17(4):54-57.
    [90]路琴,何春霞.PTFE复合材料的摩擦磨损性能研究[J].润滑与密封,2007,32(7):94-96.
    [91]Khedkar J,Negulescu I,Meletis E I.Sliding wear behavior of PTFE compo-sites[J].Wear,2002,252:361-369.
    [92]王观民,张永振,杜三明,等.不同气氛环境中钢/铜摩擦副的高速干滑动摩擦磨损特性研究[J].摩擦学学报,2007,27(4):346-351.
    [93]Sui H,Pohl H,Schomburg U,et al.Wear and friction of PTFE seals[J].Wear,1999,224:175-182.
    [94]林福严.磨损理论与抗磨技术[M].北京:科学出版社,1993.
    [95]William R,Jones J,Hady W F,et al.Effect of γ irradiation on the friction and wear of ultrahigh molecular weight polyethylene[J].Wear,1981,70:77-92.
    [96]钱壬章,俞昌铭,林文贵.传热分析与计算[M].北京:高等教育出版社,1987.
    [97]任瑛,张弘.传热学[M].山东:石油大学出版社,1988.
    [98]Gordon S,Buck A.Methodology for design and application of mechanical seals[J].ASLE Trans,1980,23(3):123-134.
    [99]于承训.工程传热学[M].成都:西南交通大学出版社,1990.
    [100]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1995.
    [101]Pascovici M D,Etison I.Thermo-hydrodynamic analysis of a mechanical face seal[J].Journal of Tribology,1992,114:639-645.
    [102]周剑锋,顾伯勤.机械密封环的传热特性分析[J].机械工程学报,2006,42(9):201-206.
    [103]顾永泉.机械密封的临界工况系数[J].流体机械,1997,25(7):25-31.
    [104]Gu Y Q.Critical balance ratio of mechanical Seals[J].Tribology Trans.1996,39(2):495-497.
    [105]郝点,顾永泉.相似准则在机械密封摩擦磨损研究中的应用[J].石油大学学报,1990,14(4):61-67.
    [106]Uchibori Z.Conditions of carbon blister generation on mechanical seals[J].Lubrication Engineering,1992,48(8):657-664.
    [107]顾永泉.机械密封的摩擦系数[J].流体机械,1998,26(4):19-24.
    [108]Gu Y Q.Identification of friction models and friction characteristics analysis of mechanical face seals[C].Proc.of 12th ICFS.Belgin Brugge,1992:298-310.
    [109]邓守军,孙乐民,张永振.磨损机理的变迁与现状[J].机械研究与应用,2004,17(6):10-11.
    [110]林福严.磨损理论与抗磨技术[M].北京:科学出版社,1993.
    [111]Pandey R K,Ghosh M K.Temperature rise due to sliding in rolling/sliding elastohydrodynamic lubrication line contacts.Tribology International,1998,31(12):745-752.
    [112]潘永密.化工机器(下册)[M].北京:化学工业出版社,1992.
    [113]Michail S K,Barber G C.The effects of roughness on piston ring lubrication:model development[J].Tribology Transactions,1995,38(1):19-26.
    [114]Doane J C,Myrum T A,Beard J E.An experimental-computational investiga-tion of the heat transfer in mechanical face seals[J].Journal of Heat and Mass Transfer,1991,34(11):1027-1041.
    [115]刘家浚.材料磨损原理及其耐磨性能[M].北京:清华大学出版社,1993.
    [116]顾永泉.流体动密封[M].北京:中国石化出版社,1992.
    [117]Leefe S E,Hobson R M,Nau B S.An experimental study of high-speed mechanical seal stability[J].Lubrication Engineering,1994,50(2):173-181.
    [118]陈匡民.流体动密封[M].成都:成都科技大学出版社,1990.
    [119]Fei L,Hu K,Li J L,et al.The friction and wear characteristics of nanometer ZnO filled PTFE[J].Wear,2002,249:877-885.
    [120]乐启发,叶昌明,金菊香.改性聚四氟乙烯密封材料的研究与开发[J].中国塑料,2000,14(7):40-44.
    [121]曾涛.机械密封摩擦特性影响因素分析[J].润滑与密封,2000,(3):60-61.
    [122]Yuan C Q,Li J,Yan X P,Peng Z.The use of the fractal description to characterize engineering surfaces and wear panicles[J].Wear,2003,255:315-326.
    [123]Kynichiro T,Satoshi K.Effect of various fillers on the friction and wear of PTFE based composites[J].Wear,1982,79:221-234.
    [124]刘惟信.机械最优化设计[M].北京:清华大学出版社,1994.
    [125]Richard F,Tobias J,George T.Dynamic optimization with simulated an sealing[J].Computers and Chemical Engineering,2005,29:273-290.
    [126]万耀青,陈志强.最优化计算方法常用程序汇编[M].北京:工人出版社,1983.
    [127]Person V,Toutnerie B,Frene J.A Numerical study of the stable dynamic behavior of radial face seals with grooved faces[J].Journal of Tribology,1997,119(7):507-514.
    [128]顾永泉.机械密封的相似准数[J].化工机械,1997,24(4):237-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700