基于模型的AMT自动离合器接合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离合器的接合控制是AMT研究的重点和难点。离合器接合过程有两个评价指标:即冲击度和滑磨功,这两个指标是相互矛盾的。为了协调这两个控制指标,实现车辆平稳起步,本文应用基于模型的控制方法,对AMT自动离合器的接合过程进行了研究,主要内容包括:
     按照车辆传动系统的结构,建立了系统动力学方程。为了便于分析离合器的接合控制,对系统动力学方程进行了等效简化。然后针对本文所用的AMT实验台建立了离合器接合过程中滑磨阶段和同步阶段的动力学方程,并计算了其等效摩擦半径和允许的最大接合速度。通过仿真分析,证明系统动力学模型是正确的。
     基于模型的控制策略需要确定传动系统的转动惯量、刚度和阻尼等参数。从AMT实验台架上采集发动机的输出扭矩、离合器输出轴上的扭矩、发动机飞轮的转速、离合器的转速和等效负载的转速等信号,经过数据处理后做为模型的输入和输出。AMT在二档时分别应用最小二乘法和遗传算法做参数辨识分析,并与AMT在一档的情况下进行对比验证,证明了参数辨识结果是准确可靠的。
     根据参数辨识的结果设计了离合器接合的控制策略。按照冲击度与滑磨功的设计要求分析了阶段模糊控制、基于离合器转速控制、基于发动机恒转速控制和扭矩匹配控制的原理及优缺点,并在MATLAB/Simulink环境下建立了控制模型。最后确定了基于发动机恒转速模型和扭矩匹配模型相接合的控制方法。
     在上述理论分析的基础上,设计了基于Freescale MC9S12DT128单片机和dSPACE的离合器接合电子控制系统。其中MC9S12DT128单片机用于采集AMT测试台架的各传感器信号、给离合器的电动执行器输出控制信号,同时也将采集得到的相关信号经CAN总线发送给dSPACE;dSPACE根据各传感器的输出信号对离合器及换档进行快速原型控制计算,并将计算的结果经CAN总线发送给MC9S12DT128单片机,以实现对离合器接合的实时控制。在此基础之上,采用发动机恒转速和扭矩匹配的控制策略,在AMT实验台架上进行了基于模型的离合器接合综控制实验。实验结果表明:在不同控制目标下,基于模型的控制方法均能满足实验控制要求。
The engagement control of clutch is the key problem in the research of AMT. There are two evaluation indicators,namely jerk and friction work,and they are conflicting. In order to harmonize the two evaluation indicators each other, this paper is focused on the model-based control in the engagement process of AMT automatic clutch, mainly include:
     According to the structure of AMT transmission, the dynamic equations of the vehicle were established and simplified. Moreover, the dynamic equations of the experiment bench were established in slipping and synchronous stages. The friction radius and the maximum engagement speed of clutch were calculated. The friction torque was tested on the bench. It was testified the correction and feasibility of dynamic model by the simulation model.
     The simulation model was constructed to identify the parameters, such as inertia, stiffness and damping coefficient. The signals were tested from AMT experiment bench, including the output torque of engine, the friction torque, the engine speed, the clutch speed and the equivalent load speed. The signals were preprocessed as input and output of the simulation model. Then, the least square method and genetic algorithm were used to identify the parameters for AMT in second gear and verify in first gear.
     The control strategy was designed after parameter identification. According to the jerk and friction work in different stages, Four methods were designed, namely, fuzzy control, clutch speed model control, engine constant speed control and torque matching control. The control models were designed based on MATLAB/Simulink. According to jerk and friction work, both engine constant speed model and torque matching model were determined to take experiment.
     According to the above analysis, the electronic control system for clutch engagement was designed based on Freescale MC9S12DT128 MCU and dSPACE. The MC9S12DT128 MCU was to collect the signals from each sensor on the AMT test bench as well as outputing the control signals to the actuator of the clutch. And at the same time, it also sent the signals that collect to the dSPACE by CAN bus. Then, according to the output signals of each sensor, the dSPACE made the rapid prototyping calculate about the clutch engagement and the gear shift. The results sent to the MC9S12DT128 MCU by CAN bus. The engine constant speed model and torque matching model were used to control clutch engagement on the bench. The test results showed that: the model-based control strategy could ensure smooth and fast start of vehicle under various conditions.
引文
1陈家瑞.汽车构造(下册).北京:机械工业出版社. 2000: 10~70
    2 F. Garofalo, L. Glielmo, L.Lannelli, F. Vasca. Optimal Tranking for Automotive Dry Clutch, Proceedings of the 40th IEEE Conference on Decision and Control, Florida USA, December 2001: 529~533
    3 F. Garofalo, F. Vasca. Engagement Control for Automotive Dry Clutch. Proceedings of the American Control Conferrence, Chicago, Illinois, June 2000: 1016~1017
    4 F. Vasca, L. Lannelli, A. Senatore, G. Reale. Torque Trasmissibility Assessment for Auotomotive Dty-Clutch Engagement. IEEE/ASME Trasactions on Mechatronics, Digital Object Identifier 10.1109/TMECH. 2010.2047509
    5 L. Glielmo, L. Iannelli, V. Vacca, F. Vasca. Speed Control for Automated Manual Transmission with Dry Clutch, Proceedings of the 43th IEEE Conference on Decision and Control,Atlantis, Paradise Island, Bahamas, December 2004: 1709~1714.
    6 L. Glielmo, L. Iannelli, V. Vacca, F. Vasca. Gearshift control for automated manual transmissions, IEEE/ASME Transactions on Mechatronics. 2006, 11(1): 17~26
    7 P. Dolcini, H. Béchart, C. C. de Wi. Observer-based optimal control of dry clutch engagement, Proceedings of the 44th IEEE Conference on Decision and Control, and the EuropeanControl Conference 2005 Seville, Spain, December 12-15, 2005: 440~445
    8 P. Dolcini, C. C. de Wit, H. Béchart. Lurch avoidance strategy and its implementation in AMT vehicles, Mechatronics, 2008, 18: 289~300
    9 J. Kim, S. B. Choi. Control of Dry Clutch Engagement for Vehicle Launches via a ShaftTorque Observer. 2010 American Control Conference, Marriott Waterfront, Baltimore, MD, USA, June 30-July 02, 2010: 676~681
    10 F. Vasca, L. Iannelli, A. Senatore, M. T. Scafati. Modelling torque transmissibility forautomotive dry clutch engagement, Proceedings of American Control Conference, Seattle, WA, 2008: 306~311
    11雷雨龙,李永军,葛安林,牛铭奎.机械式自动变速器起步过程控制.机械工程学报, 2000, 36(5): 69~71
    12李永军,陈树星,崔勇,葛安林.机械式自动变速器起车过程综合控制.汽车工程, 2003, 25(2): 178~181
    13雷雨龙,葛安林,李永军.离合器起步过程的控制策略.汽车工程, 2000, 22(4): 266~269, 281
    14孙冬野,秦大同.汽车离合器局部恒转速起步自动控制研究.机械工程学报, 2003, 39(11): 10~14
    15孙冬野,陈然,秦大同,刘振军. AMT汽车起步过程节气门目标控制量的确定.汽车工程, 2009, 31(11): 1020~1024
    16孙冬野,庄建兵.回流式无级变速传动系统起步控制特性分析.重庆大学学报, 2009, 32(11): 1241~1245
    17孙冬野,顾永明,秦大同,庄建兵,余荣辉.非线性控制方法在AMT起步控制中的应用.重庆大学学报(工学版), 2007, 30(10):10~14
    18何忠波,李国章,张培林,饶劲松,席军强.起步过程中离合器半接合点的试验研究.军械工程学院学报. 2002, 2(14): 43~47
    19何忠波,陈慧岩,席军强,汪旻梁. AMT车辆爬行工况离合器控制策略与试验.汽车工程. 2003, 6(25): 574~577
    20齐占宁,陈全世,葛安林.基于遗传算法的AMT车辆起步模糊控制.机械工程学报, 2001, 37(4),108~112
    21王旭东,谢先平,吴晓刚,余腾伟.自动离合器起步模糊控制.农业机械学报, 2008, 39(12): 18~22
    22王玉海,宋健,李兴坤.离合器动态过程建模与仿真.公路交通科技, 2004, 21(10): 121~125
    23胡建军,李光辉,伍国强,秦大同.汽车起步过程离合器传递转矩精确计算分析.汽车工程, 2008, 30(12): 1083~1086
    24孔慧芳,罗文俊,鲍伟.发动机恒速运转下离合器接合过程的多模态控制.汽车工程, 2010, 32(10): 888~891
    25谢先平,王旭东,余腾伟,吴晓刚.自动离合器精确位置跟踪控制与起步控制研究.中国公路学报, 2008, 21(4): 117-121.
    26 Pietro J. Dolcini. Carlos Canudas Wit Hubert Béchart. Dry Clutch Control forAutomotive Applications. British Library Cataloguing in Publication Data: 2010:7~46
    27 Martin Grotjahn, Lars Quemheim, Steffen Zemke. Modelling and Identification of Car Driveline Dynamics for Anti-jerk Controller Design. International Conference on Mechatronics. 2006, (3): 131~136
    28 Gianluca Lucente, Marcello Montanari, Carlo Rossi. Modelling of an Automated Manual Transmission System. Mechatronics. 2007, (17): 73~91
    29 DoebelinED. SystemDynamies. Marcel Dekker, lnc. 1998: 35~54
    30胡宏伟.湿式自动离合器接合过程特性的研究.浙江大学博士学位论文. 2008: 15~33
    31颜克志. AMT离合器接合规律研究及其稳定性分析.西北工业大学硕士学位论文. 2007: 19~30
    32徐石安,江发潮.汽车离合器.清华大学出版社. 2005: 12~13
    33路纯红,白红柏,何忠波.干摩擦非线性滞迟隔振系统的近似求解.机械科学与技术. 2007, 26(10): 1358~1361
    34颜克志,方宗德,张国胜.汽车离合器接合过程中的稳定性分析研究.机械科学与技术. 2007, (5): 615~618
    35 D. Centea, H. Rahnejat, M. T. Menday. Non-linear Multi-body Dynamic Analysis for the Study of Clutch Torsional vibrations(judder). Mathematical Modelling. 2001, (25), 177~192
    36刘秋铮. AMT离合器自适应控制测略及执行器系统开发.吉林大学硕士学位论文. 2006: 13~30
    37王正林,王胜开,陈国顺. MATLAB/Simulink与控制系统仿真.电子工业出版社. 2008: 117~132
    38刘党辉.系统辨识方法及应用.国防工业出版社. 2010: 24~76
    39王新洲.非线性模型参数估计理论与应用.武汉大学出版社. 2002: 15~37
    40韩瑞峰.遗传算法原理与应用实例.兵器工业出版社. 2010: 81~156
    41李敏强.遗传算法的基本理论与应用.科学出版社. 2002: 19~94
    42薛定宇.基于MATLAB/Simulink的系统仿真技术与应用.清华大学出版社. 2002: 113~174
    43蔡天净,唐瀚.Savitzky-Golay平滑滤波器的最小二乘拟合原理综述.数字通信. 2011: 63~68
    44王鸿山.风力发电机控制中的参数辨识技术.合肥工业大学硕士学位论文. 2009: 16~39
    45陈显枝,陈冲.基于最小二乘改进算法的时变系统参数辨识.福州大学学报. 2005, (4): 163~166
    46王国青.汽车纵向动力学特性的识别方法研究.吉林大学硕士学位论文. 2007: 25~46
    47刘国平.机械系统中的摩擦模型及仿真.西安理工大学硕士学位论文. 2007: 37~47
    48史莹晶.遗传算法理论及其在时滞系统参数估计中的应用.哈尔滨工程大学硕士学位论文. 2004: 25~51
    49李永军,陈树星,崔勇,葛安林.机械式自动变速器汽车过程综合控制.汽车工程. 2003, 25(2): 178~181
    50聂幸福,席军强,陈慧岩.城市客车起步规律的试验与研究.汽车科技. 2005, 3(2): 42~45
    51李萍.商用车机械式自动变速系统离合器控制技术研究.吉林大学硕士学位论文. 2005: 25~40
    52胡宏伟,周晓军,杨先勇,宫燃.离合器接合过程过程中的抖动及其影响因素的分析.浙江大学学报(工学版). 2009, 43(3): 535~539
    53刘东,宋健,李磊. AMT产品起步控制策略的研究.车辆与动力技术. 2008(1): 5~7, 21
    54谢先平,王旭东,吴晓刚,余腾伟.自动离合器位置跟踪神经元自适应PID控制.电机与控制学报. 2008, 12(5): 555~560
    55何忠波,席军强,陈慧岩,刘耿.电机驱动式自动离合器起步控制实验研究.农业机械学报. 2003,34(6): 25~29
    56张泰,葛安林,宋传学,王刚,唐春学,于海龙,阚玉来.越野汽车AMT起步与换档过程试验研究.汽车技术. 2006, (4): 27~30
    57牛铭奎,程秀生,葛安林,徐彩琪,何君正,章骏杰. AMT离合器接合过程中的压力控制.吉林大学学报. 2004, (4): 198~201
    58骞大闯.汽车AMT自动离合器起步模糊控制研究.北京工业大学硕士学位论文. 2010: 23~36
    59 M. Montanari, F. Ronchi, C. Rossi, A. Tilli, A. Tonielli. Control and Performance Evaluation of a Clutch Servo System with Hydraulic Actuation. Control Engineering Practice. 2004, (12): 1369~1379
    60 Joachim Horn, Joachim Bamberger, Peter Michau, Stephan Pindl. Flatness-based Cltuch Control for Automatic Manual Trasmissions. Control engineering Practice. 2003, (11): 1353~1359
    61高炳钊,葛安林,雷雨龙,牛明奎,宫赫. AMT离合器微小位移的精确调整.机械工程学报. 2002, 38(10): 26~89
    62葛敏林. AMT的坡道起步辅助控制系统的研究.吉林大学硕士学位论文. 2008: 21~49
    63 R. Amari, P. Tona, M. Almair. A Phenomenological Model for Torque Transimissibility During Dry Clutch Engagement. 18th IEEE International Conference on Systems and Control Saint Petersburg, Russia, July 8~10, 2009
    64 dSPACE Real-Time Interface(RTI and RTI-MP)Implementation Guide.Release6. 2-July 2008
    65 dSPACE ControlDesk Experiment Guide for ControlDesk 3.2. Release6.2. 2008,(7)
    66王易怀,刘晓升等.实用HCS12微控制器的设计与应用.北京航空航天大学出版社. 2008.3: 159~286
    67邵贝贝.单片机嵌入式应用的在线开发方法.清华大学出版社. 2006: 261~291
    68王威. HCS12为控制器原理及应用.北京航空航天大学出版社. 2007: 10~33
    69饶运涛.现场总线CAN原理应用技术.北京航空航天大学出版社. 2003: 56~83
    70 Freescale MC9S12DJ128 Device User Guide V01. 09. 2002
    71胡川.汽车AMT自动离合器控制算法研究及快速控制原型系统开发.华中科技大学硕士学位论文. 2007: 42~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700