同轴膜片加载慢波系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代军事技术的发展,“高功率微波技术”形成一个新兴的技术领域并迅速地发展起来。高功率微波的重要研究领域之一是高功率微波源,而高功率微波源的核心部件是电子注与波进行互作用的场所,对行波管而言即为慢波系统,它的优劣直接影响高功率微波源的性能。文中讨论了应用于相对论行波管的同轴膜片加载圆波导慢波系统。
     本文分析了同轴膜片加载圆波导和脊加载同轴膜片圆波导两种慢波系统,它们均采用全金属结构,具备尺寸大、散热性能好,易加工的特点。其有别于普通膜片加载波导的同轴结构,使得带宽得以拓展,因此很可能成为一类同时满足高功率容量和宽带要求的慢波结构。本文的主要研究工作和创新点如下:
     一、首先完善了同轴膜片加载圆波导慢波系统的理论分析,得到该系统色散方程和耦合阻抗表达式,并通过数值模拟计算,详细讨论了慢波系统几何尺寸对色散特性和耦合阻抗的影响。
     二、首次对同轴膜片加载圆波导注波互作用线性理论进行了研究。利用自洽场理论以及场的匹配方法,推导出此结构在小信号条件下的热色散方程,讨论了电子注参量和慢波系统几何参量与小信号增益和色散的关系。
     三、创造性地提出脊加载同轴膜片圆波导慢波结构,并对其采用严格的场匹配法,详细推导了色散方程和耦合阻抗表达式,并得到一系列有关系统结构参量与色散和耦合阻抗之关系的数值模拟结果。结果表明,脊加载结构在某种程度上能提高耦合阻抗。
     四、引入薄环形电子注,首次建立了脊加载同轴膜片圆波导的注波互作用线性理论,得到小信号条件下的色散方程。数值模拟了电子注参数和色散与增益的关系。
     五、加工了同轴膜片加载圆波导慢波系统实验模型,用谐振法测得的色散特性与理论数据良好吻合,从而验证了同轴膜片加载圆波导慢波系统色散特性理论分析的正确性。
With the progress of the modern military science and technology, 'High Power Microwave Technology' as a new field is developed rapidly. The key component of a high-power microwave device is the RF structure in which the beam and wave interact. To Traveling Wave Tube (TWT) .it is the slow-wave structure(SWS) which basically determine the performance of the TWT. In the dissertation, the coaxial disk-loaded cylindrical waveguide used in SWS of Relativistic Traveling Wave Tube(RTWT) is discussed .
    The types of the coaxial disk-loaded cylindrical waveguide and the coaxial ridge-disk-loaded cylindrical waveguide are all-metal slow-wave structures and have advantages of large size, good thermal conductivity ?high precision of manufacturing and assembling. Because the coaxial structure can broaden the bandwidth, they might be one type SWS of the high power capacity and the middle bandwidth .Several major and valuable achievements are listed as the followings:
    1. First, the theory of the coaxial disk-loaded cylindrical waveguide SWS is analysed, and the dispersion equation and the coupling impedance of this structure are obtained. Through the numerical caculation , it is discussed that the influence of various circuit dimensions on the dispersion and the coupling impedance.
    2. The linear theory of the coaxial disk-loaded cylindrical waveguide TWT is built and the dispersion equation with an annular electron beam of this TWT is obtained according to self-consistent field theory and the field matching method. The computation results of the hot dispersion equation indicate the relations between the electron beam parameters and the small signal gain.
    3. For the first time, the coaxial ridge-disk-loaded cylindrical waveguide as SWS is presented. Its dispersion equation and the expression of coupling impedance are given by application of the field matching method. A series of numerical results show that the influence of structure dimensions on the dispersion characteristics and interaction impendance. It suggested that the ridge-loaded structure can improve the
    
    
    
    coupling impedance in a way .
    4. The 'hot' dispersion equation of the coaxial ridge-disk-loaded cylindrical waveguide TWT with an annular electron beam can be firstly obtained according to self-consistent field theory. The influence of various electron beam parameters on the small signal gain is investigated and discussed by the numerical results.
    5. The model of the coaxial disk-loaded cylindrical waveguide is manufactured to testify the dispersion properties of this structure. The experimental results are in good agreement with the theoretical results.
引文
1.James Benford,John Swegle,高功率微波,中译本,电子科技大学出版社,1996
    2.廖复疆,真空电子技术:信息装备的心脏,国防工业出版社,1999.10
    3.D. Shffler, J. A. Nation, and G. S. Kerslick, A High-Power Traveling Wave Tube Amplifier, IEEE Trans. Plasma Sci, Vol. 18. No. 3,1990,546
    4. John A. Swegle, James W. Poukey, and Gordon T. Leifeste, Backward wave oscillators with rippled wall resonators:Analytic theory and numerical simulation, Phys. Fluids 28(9),September 1985,2882-2894.
    5. M. Shoucri, The Excitation of Microwaves by a relativistic Electron Beam in a Dielectric-lined Waveguide, Phys. Fluids, Vol. 26,1983,2271
    6. S. P. BUGAEV, V. A. Cherepenin, etal, Relativistic Multiwave Cerenkov Generators IEEE Trans. On Plasma Sci.,Vol. 18, No. 3, June 1990.525-536.
    7. J. A. Nation, D. Shifller, J. D. Ivers, and G. Kerslick, High Power travelina wave amplifier experiments, SPIE. Vol. 1061,Microwave and particle Beam Source and Directed Eneray Concepts(1989)
    8. A. E. Ackey, Interest in mm Waves Spurs Tube Growth, Microwaves, July, 1982, 21, P55-74
    9. D. Deml, Microwellenrohren: Derzeitigen stand and Trend, NTZ-Fachberichte' 85:Elektrinentonhren, Berlin, VDE-VERLAG GmbH, 1983, P61-67
    10. H. Hashimoto, T. Ide, T. Konishi,etc.,A 30Ghz 40 watt helix TWT, IEDM 83,1983, P133-136
    11. A. Jacquez, 44Ghz helix TWTs for Satellite Communication Systems, IEDM 84, 1984, P506-508
    12. E. Glass, Microwllen Magazin, March, 1981, P273
    13. C. W. Linn, Microwave Journal, 25, July, 1982, P16
    14. Bill G. James, Coupled cavity TWT designed for future MM-wave Systems, MSN&CT, Sep. 1986, P105-116
    15.王文祥,余国芬,宫玉彬,行波管慢波系统的新进展——全金属慢波结构,真空电子技术,1995年第5期,p30-37
    
    
    16.宫玉彬,周咏东,莫元龙,孙嘉鸿,毫米波双交错梯形耦合腔链的研究,电子学报,Vol.24,No.3,1996,P19-22
    17. Wenxiang Wang, Guofen Yu and Yanyu Wei, Study of the Ridge-Loded Helical-Groove Slow-Wave Structure, IEEE Trans. on MTT, Vol. MTT-45, No. 10, Oct. 1997, p1689-1695
    18. G. Dohler, D. Gagne, et. al.,Serpentine waveguide TWT, IEDM, 1987, P485-488
    19. S. Ahn, A. K. Gangu]y, Analysis of helical waveguide, IEEE Trans on Electron Device, Vol. ED-33, No. 9,1986, P1348-1355.
    20. V. Lagange, F. Payen, π-line high power TWTs, IEDM, I985, P350-353
    21. V. A. Vanke, A. V. Konnov, et. al., On sectioned traveling wave tubes with a circularly polarized field, Radioteknika ⅠE1ektronica, No. 7,1990, P1549-1551
    22. C. E. Enderby , Ring-plane traveling-wave amplifier:40KW at 9mm, IEEE Trans on Electron Devices, Vol. ED-11, No. 6,1964, P262-266
    23. Yubin Gong, Wenxiang Wang, Yanyu Wei and Shenggang Liu, Theoritical analysis of ridge-loaded ring-plane slow-wave structure by variational methods, IEE Proc. Microwave. Antennas Propagation, Voi. 145, No. 5, Oct. 1998, P397-406
    24. H. Takemura et. al., A novel vertical current limiter fabricated with a deep trench forming technology for highly reliable field emitter arrays, IEDM, 1997, P709-712
    25. A. Karp, Design for a high-impedance narrow band 42GHz power TWT using a 'fundamental/forward' Ladder-Based Circuit, NASA report, CR165282,1980
    26.刘盛纲等,微波电子学导论,国防工业出版社,1985
    27. B. T. Henoch, Investigations of the disk-loaded and helical waveguide, Trans. Royal Inst. of Technology, Stockholm, Sweden, No. 129, 1958, p1-83
    28. R. J. Barker and E. Schamiloglu, High-Power-Microwave Sources and Technologies, IEEE Press Series on RF and Microwave Technology, IEEE Press, New York, 2001.
    29. L. Schchter and J. A. Nation. An analytical method for studying quasiperiodic disk loaded waveguide, Appl. Phys. Lett., No. 63, 1993, p2441.
    30. Kejhong Y., Hanli W. and Rirong Z., Propagation and radiation behavior of corrugated circular waveguide having dual-depth combination, Scientia Sinica(A), ⅩⅩⅥ, 1983, p990~1003.
    31. M. I. Oksanen, Space-harmonic analysis of multidepth corrugated waveguides, IEE
    
    
    31. M. I. Oksanen, Space-harmonic analysis of multidepth corrugated waveguides, IEE proc., Vol. 136, Pt.H, No. 2, April 1989, p151~158
    32. Y. Takeichi, T. Hashimoto and F. Takeda, The ring-loaded corrugated waveguid IEEE Trans. On MTT, VoI. MTT-19, 1971, p947~950.
    33. Yang Kezhong, Zhang Rirong and Wang Hanli, Corrugated circular waveguide with dual-depth corrugations, Scientia Sinica(series A), vol. ⅩⅩⅧ, No. 10, Oct. 1985, p1098~1112.
    34.章日荣,王汉礼,双槽深波纹波导和多频段馈源的理论分析,电子学报, vol.10,No.3,May 1982,p1~8
    35. Hongfu Li and M. Thumm, Mode coupling in corrugated waveguides with varying wall impedance and diameter change, Int. J. Electronics, Vol. 71, No. 5, 1991, p827~844
    36. J. A. Swegle, J. W. Poukey and G. W. Leifeste, Backward wave oscillators with rippled wall resonators: analytic theory and numerical simulation, Phy. Fluids, Vol. 28, 1985, p2882
    37. A. Bromborsky and B. ruth, Calulation of TM_(On)dispersion relations in a corrugated cylindrical waveguide, IEEE Trans. on MTT, Vol. MTT-32, 1984, p600.
    38.王文祥,宫玉彬,魏彦玉等,大功率行波管新型慢波线技术的进展,真空电子技术,2002年第6期
    39.张兆镗,微波管高频系统的测量,国防工业出版社,北京:1982
    40.斯彼科托尔,慢波系统参量的测量方法,周工展等译,国外电子器件译丛之四,1963
    41. H. Bach, On the Downhill Method, Communication of the ACM, Vol. 12, No. 121969, P675-677
    42. S. Ramo, J. Whinnery, and T. Van Duzer, Field and Waves in Communication Electronics. New York: Wiley, 1965, P. 598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700