高功率微波窗口击穿及馈源技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
馈源的功率容量已经成为HPM (High Power Microwave, HPM)技术发展的一个重要的限制,开展提高馈源功率容量的技术研究,对于HPM实用化具有很强的现实意义。馈源的功率容量在很大程度上取决于馈源的结构形式和介质窗口材料的击穿特性,本文重点以几种常用的窗口材料为实验材料,通过理论分析和实验验证相结合的方法,研究介质窗击穿特性,考察介质窗表面特性及其对介质击穿过程的影响,探讨HPM模式转换器、旋转关节及馈源的设计技术。主要工作包括:
     采用X射线光电子能谱(X-ray Photoelectron Spectroscopy, XPS)、光学显微镜观察、红外光谱等几种技术手段对介质材料表面组分进行了分析,发现介质表面态中元素组分和材料肌体内部的元素组分比例以及原子构造均有着较大的差异:表面态中除了材料本身的组分以外,还存在O、N、K等元素,认为这些元素的存在,是介质表面击穿阀值明显下降的原因之一。
     对微波场下介质窗口的击穿现象进行了理论探索和实验研究,阐述了微波作用下介质发生击穿的一般物理过程,讨论了一次电子产生、二次电子倍增过程及其影响因素;研究了介质窗加工处理工艺对窗口表面态、介电特性的影响,认为长时间(24小时)的烘烤对介质损耗和体电阻均有较大影响,测量了击穿过程中介质表面的带电现象,分析了介质表面电子陷阱密度分布对介质表面电荷沉积的影响;通过观察击穿前后试件的表面,发现在击穿的初期,杂质参与了击穿的早期过程,是击穿的薄弱点,介质表面光洁度越高其抗击穿电压值越大,平行于电场的划痕明显地降低了击穿阈值并加剧了介质表面的击穿。
     研制了用于观察微波场下介质表面电致发光现象的日盲型紫外探测仪和X射线探测设备,建立了利用光电诊断手段实验研究介质窗口击穿的方法,开展了百千瓦级波导口介质击穿实验,获得了介质窗的击穿判据,对击穿点移动现象进行了光学诊断并进行了理论解释,认为击穿产生的等离子体是引起窗口透射波过早截止的原因;用功函数的概念解释了波导口介质窗“三相点”的起电现象。
     建立了用于研究高功率(GW级)、窄脉冲(纳秒级)微波作用下介质击穿现象的实验装置,开展了介质击穿实验,获得了几种介质窗材料的击穿阈值;得到了介质内部的树枝状击穿通道图像并对其成因进行了分析。测量了HPM源及介质窗放电过程中的紫外线和X射线,并基于能带理论提出了HPM作用下介质窗口击穿时一次电子的产生机制;认为HPM作用下介质窗的起电现象主要是源于HPM源产生的X射线对介质窗的轰击以及发生在介质窗表面的局部微放电;HPM源产生的X射线和紫外线是介质窗表面吸附气体解吸和离化的主要原因之一。通过对介质窗击穿后的表面形态微观分析,提出了HPM介质窗损坏的两种形式:一种是由于微放电形成的火花闪烁(Sparking)引起的介质窗表面“烤焦”,另一种是由于击穿引起的介质窗损坏。
     设计制作了用于某武器实验样机的E面/H面辐射方向图等化的馈源,并对该馈源的介质窗口寿命进行了高功率考核,结果表明在注入功率大于1GW、脉冲宽度20ns时,馈源窗口的寿命大于6×104个脉冲。提出并研制了三镜波束波导馈电的双反射面天线、TMol圆波导弯头和组合式旋转关节,实验结果表明功率容量大于1GW,较好地解决了高功率微波传输线的功率容量问题。
The power capacity of feed has been an important limitation for the development of high-power microwave (HPM) technology, and it is very meaningful to enhance the power capacity of feed for the practicality of HPM. The power capacity of feed is greatly dependent on the structure form and breakdown characteristics of dielectric window materials. In this dissertation, with several commonly used window materials, the breakdown characteristics of dielectric window and the surface characteristics of dielectric window and theirs effects on the dielectric breakdown process are studied through comprehensive theoretical analysis and experimental verification. Moreover, the HPM mode convertor, rotary joint, and the design technology of the feed are discussed. The work in this paper includes:
     X-ray photoelectron spectroscopy (XPS), optical microscopy, and infrared spectrum were employed to analyze surface composition. It was found that there is significant difference in chemical composition and atomic structure between material surface and body. At surface, besides the certain composition of dielectric material, such elements as O, N, and K were also found, which are believed to be a major reason for the dramatic decline in surface breakdown threshold.
     The phenomena of dielectric window breakdown under microwave field are investigated theoretically and experimentally. The general physical process of dielectric breakdown under microwave field is described, and the generation of primary electron, the multipactor process of secondary electron and their effect factors are discussed. The effect of maching and treatment technics of dielectric window on window surface state and dielectric characteristics are also studied. It was found that a long time (24 hours) roasting affects the dielectric loss and body resistance largely. The electrification on the dielectric surface during breakdown process was measured, and the effect of electron trap density distribution on dielectric surface charge accumulation was analyzed. By observing specimen surface before and after breakdown, it was found that at the initial stage, impurities participates breakdown and becomes the weakest point in the breakdown process, the breakdown threshold of dielectric material increases with the improvement of dielectric material surface finish, and surface scratches parallel to the electric field direction reduces the breakdown threshold obviously and deteriorates the breakdown of dielectric surface.
     A solar blind ultraviolet detector and an X-ray detector were developed for observing surface electroluminescent phenomenon under microwave field. The experimental method of investigating dielectric window breakdown with photoelectric diagnostic tools was established, and the breakdown experiments of 100 kW-class waveguide end dielectric were carried out. Breakdown criterion of dielectric window was obtained, the phenomenon of breakdown point shift was diagnosed with optics and explained theoretically, and it was believed that plasma is the reason for the premature cutoff of transmission wave through the window. The electricity phenomenon at the "triple-point" of waveguide end dielectric window can be explained by adopting the concept of work function,
     The experimental device investigating the dielectric breakdown caused by high power (GW-class) and narrow pulse (ns-class) microwave was set up, and the experiments were conducted. The breakdown thretholds for several dielectric window materials were achieved, the images of tree-like breakdown channel within the dielectric were obtained, and the reason for this was analyzed. Ultraviolet and X-ray emitted by HPM sources and dielectric window discharging were detected, and the mechanism of primary electron generation during dielectric window breakdown under HPM was brought forward based on band theory. The electricity phenomenon of dielectric window under HPM mainly results from the HPM-sourced X-ray bombardment on dielectric window as Well as local micro-discharge happened at dielectric window surface. It has been proved that HPM-sourced X-ray and ultraviolet are the major reason for desorption and ionization of the gas absorbed at the dielectric window surface. Based on the surface micromorphology analysis after breakdown of dielectric window, the damage of HPM dielectric window can be categorized into two different types. One is caused by micro-discharge sparkling'scorching'the dielectric window surface. The other is caused by the breakdown of dielectric window itself.
     The feed with equal E and H patterns that was used for an experiment prototype was designed and manufactured, and a high power test of the dielectric window life was carried out. The results showed that the feed window life is more than 6×104 pulses under incident microwave with power larger than 1 GW and pulsewidth of 20 ns. A dual-reflector antenna fed by the three-reflector beam waveguide, a TM01 circular waveguide elbow, and a knockdown rotary joint were proposed and developed, which meet the power capacity requirement of HPM transmission line successfully.
引文
[1]Robert J.Barker, Edl Schamiloglu. High-power microwave sources and technologies [M]. the Institute of Electrical and Electronics Engineers, Inc.2001.
    [2]周传明,刘国治等;高功率微波源[M].北京:原子能出版社,2007.
    [3]肖霞.HPM源的原理与性能[J].电子战技术文选,1995,3(1):38-41.
    [4]谭显裕.HPM新概念武器的技术现状和发展[J].航空兵器,2004,5(1):8-11.
    [5]刘乃泉,林郁正,刘国治等.加速器原理[M].北京:清华大学出版社,2004.
    [6]陈昌华,刘国治,宋志敏等.相对论返波管慢波结构的起始端设计[J].强激光与粒子束,2005,17(8):1121-1125.
    [7]姜东兴,张建华.虚阴极振荡器的研究进展[J].舰船电子工程,2005,25(4):30-34.
    [8]黄裕年,任国光.HPM源及其军事应用[J].微波学报,1996,12(4):320-325.
    [9]黄裕年.虚阴极微波器件的进展[J].真空电子技术,1995,2(1):18-23.
    [10]杨占峰,邵浩,刘国治等.向内发射同轴虚阴极振荡器实验研究[J].强激光与粒子束,2003,15(12):1217-1219.
    [11]宋志敏,刘国治,陈昌华等.带谐振腔反射器的低磁场返波管实验研究[J].强激光与粒子束,2006,18(9):1531-1534.
    [12]刘国治,陈昌华,宋志敏等.同轴引出相对论返波管[J].强激光与粒子束,2001,13(4):467-470.
    [13]肖仁珍,刘国治,林郁正等.同轴慢波结构相对论HPM产生器理论分析[J].强激光与粒子束,2006,18(2):241-244.
    [14]Benford J, Benford G. Pulse shortening in high power microwave sources [A], Boston, MA, USA,1996.
    [15]S. Michizono, Y. Saito, S. Yamaguchi, S. Anami. Dielectric materials for use as output window in high-power klystrons[J]. IEEE Trans. Electr. Insul.1993,28(4):692-699.
    [16]宫玉彬,张章,魏彦玉等.相对论返波管中的脉冲缩短现象[J].强激光与粒子束,2004,16(12):1567-1570.
    [17]段耀勇,陈雨生.HPM脉冲大气击穿及其对能量传输的影响[J].微波学报,2000,16(3):260-264.
    [18]宫玉彬,张章,魏彦玉等.HPM器件中脉冲缩短现象的粒子模拟[J].物理学报,2004,53(11):3990-3995.
    [19]A. Neuber, D. Hemmert, H. Krompholz, et al. Initiation of high power microwave dielectric interface breakdown[J]. J. Appl. Phys.1999,86(3):1724-1728.
    [20]D. Hemmert, A. Neuber, J. Dickens, et al. Microwave magnetic field effects on high-power microwave window breakdown[J]. IEEE Trans. Plasma Sci.2000,28(3):472-477.
    [21]J. P. Verboncoeur, H. C. Kim, Y. Chen, et al. Modeling rf window breakdown:from vacuum multipactor to volumetric ionization discharge[C]. Twenty-Seventh International Power Modulator Symposium,2006.
    [22]H. C. Kim and J. P. Verboncoeur. Modeling RF Window Breakdown:from Vacuum Multipactor to RF Plasma[J]. IEEE Trans. Dielectr. Electr. Insul.2007,14(4):766-772.
    [23]A. A. Neuber, G. F. Edmiston, J. T. Krile, et al. Interface breakdown during high-power microwave transmission[J]. IEEE Trans. Magnetics.2007,43(1):496-500.
    [24]R. A. Kishek and Y. Y. Lau. Interaction of multipactor discharge and R. F. circuits[J]. Phys. Rev. Lett,1995,75(5):1218-1222.
    [25]J. R. M. Vaughan, Some high-power window failures[J]. IEEE Trans. Electron Devices, 1961,8(4):302-308,.
    [26]S. Yamaguchi, Y. Saito, S. Anami, et al. Trajectory Simulation of Multipactoring Electrons in an S-Band Pillbox RF Window[J]. IEEE Trans.Nuclear Science.1992,39(2):278-282.
    [27]D. H. Preist and R. C. Talcott. On the heating of output windows of microwave tubes by electron bombardment[J]. IEEE Trans. Electron Devices,1961,14(7).243-251.
    [28]A. Neuber, L. Laurent, Y. Y. Lau, et al. Windows and RF breakdown, in High-Power Microwave Sources and Technologies[J]. IEEE Press,2001,10(3):325-375.
    [29]R. A. Kishek, Y. Y. Lau, L. K. Ang, et al. Gilgenbach, Multipactor discharge on metals and dielectrics:historical review and recent theories[J]. Phys. Plasmas,1998,5(5)2120-2126.
    [30]张冠军,赵文彬,郑楠等.真空中固体绝缘沿面闪络现象的研究进展[J].高电压技术,2007,33(7):30-35.
    [31]杨汉武,王勇,张建德等Spark-05加速器真空界面设计[J].国防科技大学学报,2005,27(5):117-120.
    [321]Zhang G J, Yan Z, Liu Y S等Preflashover and flashover phenomena of silicon-vacuum system under pulsed excitation [J]. Applied Physics Letters,2002,80(10):3742-3744.
    [33]Neuber a A, Butcher M, Krompholz H, et al. The role of outgassing in surface flashover under vacuum [J]. IEEE Transactions on Plasma Science,2000,28(5):1593-1598.
    [34]Liu Y S, Mizuno T, Yasuoka K, et al. Light emission before and during prebreakdown on polytetrafluoroethylene surface with metallized electrodes under AC voltage application in vacuum [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1998,37(1):146-150.
    [35]Edmiston G, Krile J, Neuber A, et al. High-power microwave surface flashover of a gas-dielectric interface at 90-760 torr [J]. IEEE Transactions on Plasma Science,2006, 34(5):1782-1788.
    [36]Neuber A, Hemmert D, Krompholz H, et al. Imaging of high-power microwave-induced surface flashover [J]. IEEE Transactions on Plasma Science,1999,27(1):138-139.
    [37]S. Michizono and Y. Saito. Surface charging by uv irradiation at the alumina RF window. IEEE International Symposium on Discharges and Electrical Insulation in Vacuum,2002.
    [38]Zhou G, Zhu H. Some properties of high-power microwave-pulse propagation in the atmosphere [J]. High Power Laser and Particle Beams,1996,8(4):485-490.
    [39]Yang G, Tan J-C, Sheng D-Y, et al. Gas selection and calculation of its breakdown field for plasma waveguide limiter [J]. High Power Laser and Particle Beams,2008,20(3):439-442.
    [40]Yamaguchi S, Saito Y, Anami S, et al. Trajectory Simulation of Multipactoring Electrons in an S-Band Pillbox Rf Window [J]. IEEE Transactions on Nuclear Science,1992,39(2): 278-282.
    [41]Wilson P H. A novel RF vertical MOSFET for pulsed applications [A], Foz do Iguacu, Brazil,2003
    [42]Song B M, Hammer D A, Golkowski C, et al. Initiation of microwave-induced electrical breakdown of high-pressure gases [J]. IEEE Transactions on Plasma Science,2003,31(1): 146-156.
    [43]Scheitrum G, Caryotakis G, Phillips R, et al. High power microwave research at SLAC [A], Boston, MA, USA,1996,232-239.
    [44]Onoi M, Azuma K, Fujiwara E, et al. Gas discharges induced by a high-power and short-pulse microwave [J]. IEEE International Conference on Plasma Science,2000.
    [45]Neuber a A, Krile J T, Edmiston G F, et al. Dielectric surface flashover at atmospheric conditions under high-power microwave excitation [J]. Physics of Plasmas,2007,14(5): 767-776.
    [46]Liu G Z, Liu J Y, Huang W H, et al. A study of high power microwave air breakdown [J]. Chinese Physics,2000,9(10):57-763.
    [47]Kuo S P, Zhang Y S. Propagation of high power microwave pulses in the air [A], Buffalo, NY, USA,1989.
    [48]Hemmert D, Neuber a A, Dickens J C, et al. High power microwave window breakdown under vacuum and atmospheric conditions [A], Orlando, FL, USA,2000.
    [49]方进勇,刘静月.利用气体击穿获取窄脉冲微波[J].强激光与粒子束,1999,11(4):477-481.
    [50]Neuber A, Dickens J, Hemmert D, et al. Window breakdown caused by high-power microwaves [J]. IEEE Transactions on Plasma Science,1998,26(3):296-303.
    [51]Liu Y-S, Mizuno T, Yasuoka K, et al. Light emission before and during prebreakdown on polytetrafluoroethylene surface with metallized electrodes under AC voltage application in vacuum [J]. Japanese Journal of Applied Physics,1998,37(1):146-150.
    [52]Liu W, Jing C, Gai W. Study of RF coupling to dielectric loaded accelerating structures [A], East Lansing, MI, United States,2005.
    [53]Zhang Y S, Kuo S P. Simulation of intense microwave pulse propagation in air breakdown environment [A], Oakland, CA, USA,1990.
    [54]Yokoyama T, Takano K, Amano T, et al. Powder as a initial matter for pulsed high current discharges [A], Dallas, TX, United States,2003.
    [55]Yokoyama T, Hamada S, Ibuka S, et al. Atmospheric dc discharges with miniature gas flow as microplasma generation method [J]. Journal of Physics D-Applied Physics,2005,38(11): 1684-1689.
    [56]Ruden T E, Lee D J. Status of microwave driven atmospheric plasma for oxidation of hydrocarbons [A], Raleigh, NC, USA,1998.
    [57]Liu J, Huang W, Fang J, et al. Optical diagnosis of high power microwave air breakdown [J]. High Power Laser and Particle Beams,2000,12(3):327-330.
    [58]Jordan U. Microwave breakdown physics and applications [C]. Doktorsavhandlingar vid Chalmers Tekniska Hogskola,2005.
    [59]黄华,孟凡宝,常安碧等.强流短脉冲相对论速调管放大器实验研究[J].强激光与粒子束,2004,16(10):1291-1294.
    [60]S. Michizono, A. Kinbara, Y. Saito, et al. TiN Film Coatings on Alumina Radio Frequency Windows[J]. J. Vac. Sci. Technol.1992,10(4):1180-1184.
    [61]谢文楷,蒙林.长脉冲高效率HPM源的新技术研究[J].真空电子技术,1997,6(1):1-5.
    [62]Benford J, Benford G. Pulse shortening in high power microwave sources [A], Baltimore, MD, USA,1997.
    [63]Benford J, Benford G Survey of pulse shortening in high-power microwave sources [J]. IEEE Transactions on Plasma Science,1997,25(2):311-317.
    [64]Zaitsev N I, Ginzburg N S, Ilyakov E V, et al. X-Band high-efficiency relativistic gyrotron [J]. IEEE Transactions on Plasma Science,2002,30(3):840-845.
    [65]Lopez M R, Gilgenbach M, Jones M C, et al. Relativistic magnetron driven by a microsecond e-beam accelerator with a ceramic insulator[J]. IEEE Transactions on Plasma Science,2004,32(3):1171-1180.
    [66]A. Neuber, J. Dickens, D. Hemmert, et al. Window breakdown caused by high-power microwaves[J]. IEEE Trans. Plasma Sci.1998; 26(3) 296-303.
    [67]Mesyats G A, Mesyats V G. Vacuum discharge in high-power pulsed microwave resonators [A], Los Angeles, CA, USA,1993.
    [68]Mesyats G A, Korovin S D, Rostov V V, et al. The RADAN series of compact pulsed power generators and their applications [J]. Proceedings of the IEEE,2004,92(7):1166-1178.
    [69]Mesyats G A. Nanosecond and subnanosecond repetitive pulsed power systems [A], Las Vegas, NV,2001.
    [70]Michizono S, Saito Y, Yamaguchi S, et al. Dielectric Materials for Use as Output Window in High-Power Klystrons [J]. IEEE Transactions on Electrical Insulation,1993,28(4): 692-699.
    [71]Michizono S, Kinbara A, Saito Y, et al. Tin Film Coatings on Alumina Radio-Frequency Windows [J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1992, 10(4):1180-1184.
    [72]Kim H C, Verboncoeur J P, Lau Y Y. Modeling RF window breakdown:From vacuum multipactor to RF plasma [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007,14(4):766-773.
    [73]Valfells A, Ang L K, Lau Y Y, et al. Theory of RF window failure [J]. IEEE International Conference on Plasma Science,1999.
    [74]Zhong Z F. Method for high power microwave beam scan by spin and swing [J]. High Power Laser and Particle Beams,2001. 13(3):341-344.
    [75]Yang J-H, Niu Z-X, Zhou D-F, et al. Effect of air breakdown on high power microwave antenna [J]. High Power Laser and Particle Beams,2005,17(8):1223-1227.
    [76]Zhang G J, Yan Z, Liu Y S, et al. Electroluminescence from alumina ceramics surface under low AC electric field in vacuum [A], Xi'an, China,"2000.
    [77]Fan Y-W, Yuan C-W, Zhong H-H, et al. Experimental investigation of an improved MILO [J]. IEEE Transactions on Plasma Science,2007,35(4):1075-1080.
    [78]邵涛,孙广生,严萍等.纳秒脉冲气体放电机理研究现状[J].高电压技术,2004,30(7):40-42.
    [79]Yamamoto M, Hamada M, Teraji T, et al. Electrical properties of high-quality CVD diamond p-i-p structures at high electric fields [J]. Shinku/Jaurnal of the Vacuum Society of Japan,2005,48(3):154-156.
    [80]Edmiston G, Neuber A, Mcquage L, et al. Contributing factors to window flashover under pulsed high power microwave excitation at high altitude [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(4):783-789.
    [81]Dickens J C, Elliott J, Hatfield L L, et al. Breakdown at window interfaces caused by high power microwave fields [A], Boston, MA, USA,1996.
    [82]黄文力,孙广生,严萍等.ns脉冲液体介质击穿实验研究综评[J].高电压技术,2006,32(4):73-77.
    [83]Suharyanto, Michizono S, Saito Y, et al. Secondary electron emission of TiN-coated alumina ceramics [J]. Vacuum,2007,81(6):799-802.
    [84]Michizono S, Saito Y, Suharyanto, et al. Surface characteristics and electrical breakdown of alumina materials [J]. Vacuum,2007,81(6):762-765.
    [85]Hemmert D, Neuber a A, Dickens J, et al. Microwave magnetic field effects on high-power microwave window breakdown [J]. IEEE Transactions on Plasma Science,2000,28(3): 472-477.
    [86]Hemmert D, Neuber A, Dickens J, et al. Influence of the microwave magnetic field on high power microwave window breakdown [J]. IEEE International Conference on Plasma Science,1999.
    [87]Krile J T, Neuber a A, Krompholz H G. Effects of UV illumination on surface flashover under pulsed excitation [J]. IEEE Transactions on Plasma Science,2008,36(2):332-340.
    [88]Boehle A, Ivanon O, Kolisko A, et al. Pulsed discharges produced by high-power surface waves [J]. Journal of Physics D:Applied Physics,1996,29(2):369-377.
    [89]郑飞虎,张冶文,肖春.聚合物电介质的击穿与空间电荷的关系[J].材料科学与工程学报,2006,24(2):316-320.
    [90]翟佩玉.空间电荷与介质击穿[J].静电,1994,9(4):60-64.
    [91]孙广生.有机玻璃中的电荷注入和传播[J].电工电能新技术,1989,4(1):49-53.
    [92]彭宗仁,谢恒坤.电极表面涂敷对电荷注入的影响[J].西安交通大学学报,1996,30(11):69-73.
    [93]Zhang G J, Wang X R, Yan Z, et al. Optical studies of surface discharge under dc voltage in vacuum [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2002,9(2): 187-193.
    [94]Zhang G J, Wang X R, Yan Z, et al. Optical studies of surface discharge under DC voltage in vacuum [A], Xian, China,2000
    [95]Valfells A, Kishek R A, Lau Y Y. Frequency response of multipactor discharge [J]. Physics of Plasmas,1998,5(1):300-304.
    [96]Valfells A. Multipactor discharge:Frequency response, suppression, and relation to window breakdown [D]. University of Michigan,1997.
    [97]Shibkov V M, Dvinin S A, Ershov a P, et al. Mechanisms of microwave surface discharge propagation [J]. Technical Physics,2005,50(4):462-467.
    [98]Rousseau A, Dantier A, Gatilova L, et al. On NOX production and volatile organic compound removal in a pulsed microwave discharge in air [J]. Plasma Sources Science and Technology,2005,14(1):70-75.
    [99]Michizono S, Saito Y. Surface discharge and surface potential on alumina rf windows [J]. Vacuum,2001,60(1-2):235-239.
    [100]Lau Y Y, Kishek R A, Ang L K, et al. Multipactor discharge on a dielectric [A], Raleigh, NC, USA,1998.
    [101]Kishek R A, Lau Y Y, Ang L K, et al. Multipactor discharge on metals and dielectrics: Historical review and recent theories [J]. Physics of Plasmas,1998,5(5):2120-2126.
    [102]Kishek R A, Lau Y Y. Multipactor discharge on a dielectric [J]. Physical Review Letters, 1998,80(1):193-196.
    [103]Kishek R, Lau Y Y, Gilgenbach R M. Temporal evolution of multipactor discharge [A], Dallas, TX, USA,1995.
    [104]Kishek R, Lau Y Y. Interaction of Multipactor Discharge and Rf Circuit [J]. Physical Review Letters,1995,75(6):1218-1221.
    [105]Kim H C, Verboncoeur J P, Edmiston G F, et al. Transition of window breakdown from the vacuum multipactor discharge to the collisional RF plasm [A], Monterey. CA, United States, 2006.
    [106]Kim H C, Verboncoeur J P. Transition of window breakdown from vacuum multipactor discharge to rf plasma [J]. Physics of Plasmas,2006,13(12):1566-1571.
    [107]Kim H C, Verboncoeur J P. Time-dependent physics of a single-surface multipactor discharge [J]. Physics of Plasmas.2005,12(12):876-8,82.
    [108]Kim H C, Chen Y, Verboncoeur J P, et al. Electromagnetic and 3D effects in the multipactor discharge on a dielectric [A]. Monterey, CA, United States,2006.
    [109]Fichtl C, Cartwright K, Mardahl P, et al. Self-consistent simulation of multipactor discharge at HPM dielectric windows [A], Baltimore, MD, United States,2004.
    [110]Bohle A, Ivanov O. Kolisko A, et al. Pulsed discharges produced by high-power surface waves [J]. Journal of Physics D-Applied Physics,1996,29(2):369-377.
    [111]Anderson R B, Iii. Multipactor experiment on a dielectric surface [D]. University of Michigan,1998.
    [112]Anderson D, Lisak M, Lewin T. Breakdown in Air-filled Microwave Waveguides During Pulsed Operation [J]. Journal of Applied Physics,1984,56(5):1414-1419.
    [113]Anderson D, Kim A, Lisak M, et al. Self-induced erosion and spectral breaking of high-power microwave pulses [J]. Journal of Plasma Physics,2000,63(1):329-341.
    [114]Anderson D, Jordan U, Lisak M, et al. Microwave breakdown in resonators and filters [J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(12):2547-2556.
    [115]Hoeppe U, Benner H. Influence of microstructure on relaxation processes and high power properties in polycrystalline YIG [J]. Physica Status Solidi (A) Applied Research,2003, 195(2):447-452.
    [116]Wang J G, Bernal S, Chin P, et al. Studies of the physics of space-charge-dominated beams for heavy ion inertial fusion [J]. Nuclear Instruments & Methods in Physics Research,1998, 15(2):422-427.
    [117]Li Y R, Liu X Z, Tao B W, et al. Improvements in crystal structure of two inch double-sided YBCO thin films by preseeded self-template layer [J]. Japanese Journal of Applied Physics, 2003,42(3):1355-1357.
    [118]Li Y, Kishek R, Reiser M, et al. Calculation of particle motions at the head and tail of a bunch for the University of Maryland Electron Ring [A], New York, NY, USA,1999.
    [119]Li Y, Chin P, Kishek R, et al. Design, simulation and test of pulsed Panofsky quadrupoles [A], New York, NY, USA,1999.
    [120]Li L, Liu L, Wen J. Microstructure changes of.cathodes after electron emission in high power diodes [J]. Journal of Physics D:Applied Physics,2007,40(17):5338-5343.
    [121]Rappaport H L, Latham P E, Striffler C D. Propagation and breakdown in gases by short burst, high-power microwaves [A], Seattle, WA, USA,1988.
    [122]Lawson W, Calame J P, Welsh D, et al. Operation of a high power, X-band gyroklystron experiment [A], Oakland, CA, USA,1990.
    [123]舒斌,张鹤鸣,胡辉勇, et al. SiGe电荷注入晶体管的直流特性模型[J].物理学报,2007,56(2):1105-1109.
    [124]Mizuno T, Liu Y S, Shionoya W, et al. Electroluminescence in insulating polymers in ac electric fields [J]. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(4): 433-438.
    [125]Mizuno T, Liu Y S, Shionoya W, et al. Investigation of charge injection in gas-impregnated polyethylene by measurement of electroluminescence under AC voltage [J]. Japanese Journal of Applied Physics,1997,36(2):754-760.
    [126]Mizuno T, Liu Y S, Shionoya W, et al. Electroluminescence from surface layer of insulating polymer under ac voltage application [J]. IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(6):903-908.
    [127]Zhukov a A, Pumell A, Miyoshi Y, et al. Microwave surface resistance of MgB2 [J]. Applied Physics Letters,2002,80(13):2347-2349.
    [128]Zhang N Q, Moran B, Denbaars S P, et al. Effects of surface traps on breakdown voltage and switching speed of GaN power switching HEMTs [A], Washington, DC,2001.
    [129]Zhang G J, Yan Z, Liu Y S, et al. Influence of electrode contact on luminescence from alumina ceramic surface under ac electric field in vacuum [J]. Applied Physics Letters,2001, 78(5):625-627.
    [130]Takeuchi N, Yasuoka K, Ishii S. Inducing mechanism of-electrohydrodynamic flow by surface barrier discharge [J]. IEEE Transactions on Plasma Science,2007,35(6): 1704-1709.
    [131]Takeuchi N, Yasuoka K, Ishii S. Surface modification of thin rods by theta-pinching metallic plasmas [J]. IEEE Transactions on Plasma Science,2006,34(4):1112-1115.
    [132]Green B M, Chu K K, Chumbes E M, et al. Effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMPs [J]. IEEE Electron Device Letters,2000, 21(6):268-270.
    [133]Aleksov A, Denisenko A, Spitzberg U, et al. RF performance of surface channel diamond FETs with sub-micron gate length [J]. Diamond and Related Materials,2002,11(3): 382-386.
    [134]Wang C, Hsieh K Y, Chang L H, et al. A tunable reflecting load for multipactor processing of the RF power coupler of a superconducting cavity [J]. IEEE Transactions on Applied Superconductivity,2007,17(2):1285-1290.
    [135]Valfells A, Verboncoeur J P, Lau Y Y. Space-charge effects on multipactor on a dielectric [J]. IEEE Transactions on Plasma Science,2000,28(3):529-536.
    [136]Nagesh S K, Renunnasiddiah D, Shastry S V K. Investigation of multipactor breakdown in communication satellite microwave co-axial systems [J]. Pramana-Journal of Physics,2005, 64(1):95-110.
    [137]Michizono S, Saito Y, Yamano S Y, et al. Secondary electron emission of sapphire and anti-multipactor coatings at high temperature [J]. Applied Surface Science,2004,235(2): 227-230.
    [138]Dabiran a M, Osinsky A, Chow P P, et al. Trapping and thermal effects in III-N HEMTs [A], Honolulu, HI, United States,2004.
    [139]Leoni R E, Iii, Bao J, Bu J, et al. Mechanism for recoverable power drift in PHEMTs [J]. IEEE Transactions on Electron Devices,2000,47(3):.498-506.
    [140]Loew G A. Field emission and RF breakdown in copper Linac structures [J]. Stanford Linear Acceleratoe Center.SLAC-PUB-5059,1989.
    [141]Zhang G-J, Van Z, Liu Y S, et al. Optical observation of preflashover phenomena from polytetrafluoroethylene in a planar concentric structure [J]. Journal of Applied Physics, 2003,93(10):6405-6407.
    [142]Ling G S, Yuan C W. Design of a Vlasov antenna with reflector [J]. International Journal of Electronics,2004,91(4):253-258.
    [143]谢文楷,黎晓云,王彬等.高电流低气压等离子体阴极电子枪设计与实验[J].强激光与粒子束,2006,18(2):235-240.
    [144]Saito K, Matsusue N, Kanno H, et al. Microwave synthesis of iridium(Ⅲ) complexes: Synthesis of highly efficient orange emitters in organic light-emitting devices [J]. Japanese Journal of Applied Physics,2004,43(5):2733-2734.
    [145]Rao E V K, Gottesman Y, Piot D, et al. Probing of localized reflections in photonic devices and circuits on InP using an upgraded high precision reflectometer [A], Nara,2001.
    [146]Sato T, Michizono S, Saito Y, et al. Influences of thermal annealing and X-ray irradiation on secondary electron emission and cathodoluminescence spectra of alumina materials [J]. Journal of the Vacuum Society of Japan,1999,42(9):834-839.
    [147]Galstjan E A, Kazansky L N. Power electron beam front shortening for intense-microwave pulse generation [A], San Diego, CA, USA,1995,pp.516-522.
    [148]Giesselmann M, Zhang J, Heeren T, et al. Pulse power conditioning with a transformer for an inductive energy storage system [C]. Digest of Technical Papers-IEEE International Pulsed Power Conference,1999,2:14.76-1479.
    [149]Lehr J M, Baum C E, Bowen L, et al. Progress in the development of the ferratron:a novel, repetitively rated, triggered spark gap switch with ultra low jitter [A], Orlando, FL, USA, 2000.
    [150]Ueda T, Wakamatsu M, Tomosada N, et al. High peak power pulse laser for laser induced breakdown [C]. Proceedings of SPIE-The International Soc(?)ety for Optical Engineering, 2000.
    [151]Konoplev I V, Mcgrane P, Cross a W, et al. High power free electron maser based on a two-dimensional bragg cavity [A], Baltimore, MD, United States,2004.
    [152]Benford J N, Cooksey N J, Levine J S, et al. Techniques for high power microwave sources at high average power [J]. IEEE Transactions on Plasma Science,1993,21(4):388-392.
    [153]Y. Saito, S. Michizono, S. Anami, S.kobayashi. Surface flashover on alumina RF windows for high-power use[J]. IEEE Trans. Electr. Insul.1993,28(4):566-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700