微波管高频电路快速有限元理论与CAD技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波管作为核心电子器件被广泛应用于多功能雷达、有源相阵控系统、电子对抗装备、空间卫星通信、等离子诊断和核反应堆加热等领域。高频电路是微波管最重要的部件,它是电子注与高频场相互作用进行能量交换以实现微波振荡或放大的场所。微波管高频电路的特性直接影响微波管的工作频率、频带宽度、换能效率和输出功率,以及其他一系列整管性能。随着对微波管性能越来越高的要求,微波管高频电路的效率和性能要求也随之提高。而设计出高效率和高性能的微波管高频电路则迫切需要更精确、更高效、更稳定的高频电路三维数值分析理论与CAD软件。
     本论文围绕着微波管高频电路快速有限元理论与CAD技术开展研究工作,工作的主要内容和创新点可以概括为下述五个方面。
     1、提出了一种适用于任意结构的微波管高频电路三维快速有限元分析方法,该方法主要包含了下述四种新技术:(1)在高频电路有限元分析中,提出了一种同时利用高频电路纵向和角向周期性的旋转周期边界条件的“强”强加技术用于大幅提高高频电路的有限元分析效率。(2)结合位移求逆预处理隐式重启Arnoldi法和多波前LU分解法,提出了一种改进的隐式重启Arnoldi本征求解器用于快速求解高频电路有限元分析所得的大型广义本征问题。(3)在高频电路有限元分析中,不仅采用了一阶边棱元基函数而且采用了一种二阶插值型矢量基函数。(4)推导了在采用二阶插值型矢量基函数和旋转周期边界条件下高频电路的色散特性、耦合阻抗以及衰减常数等高频参数的精确有限元后处理公式。
     2、采用一种新型的二阶叠层型矢量基函数对微波管高频电路三维有限元分析中的若干关键技术进行了研究。(1)提出了一种方便高效的去除高频电路有限元分析中的伪直流模式的新方法。(2)利用二阶叠层型基函数的叠层性,提出了一种p型多重网格本征求解器用于高效率地求解高频电路有限元分析所得的大型广义本征问题。
     3、对考虑损耗下的微波管高频电路三维快速有限元理论进行了研究。(1)提出了一种新的微波管高频电路指定频率本征分析方法。(2)在p型多重网格本征求解器的基础上,提出了一种改进的不精确隐式重启Arnoldi本征求解器用于高效率地求解有损耗高频电路有限元分析所得的大型复不对称线性广义本征问题。
     4、对采用非匹配周期网格的微波管高频电路快速有限元理论进行了研究。这部分研究工作主要有下述三个创新点:(1)提出一种完全不需要周期匹配网格的三维有限元分析技术用于精确快速地求解任意结构的有损耗微波管高频电路的各种高频参数。(2)这种新的技术不仅能够处理一般周期边界条件而且能够处理旋转周期边界条件。(3)在该技术中提出了一种新的二阶transverse electric(TE)周期边界条件。比起以往文献中采用的一阶Robin周期边界条件,新的二阶TE周期边界条件能够大幅地提高采用非匹配周期网格的高频电路的有限元分析效率。
     5、在上述微波管高频电路快速有限元理论的基础上,开发了我国第一套具有完全自主知识产权的全三维微波管高频电路电磁仿真设计软件-高频电路模拟器(HFCS)。HFCS有着非常友好的用户操作界面、快捷的微波管高频电路建模功能、高质量的网格生成器、精确快速的有限元分析和本征求解模块、精确丰富的后处理计算和显示模块。HFCS的计算性能在本征值求解问题上明显优于国际上本领域最好的两个商业软件:CST MWS和HFSS。HFCS已经在中电集团12所、中科院电子所、国营七七二厂等微波管研究和制管单位发布了多个版本并被用于微波管高频电路的研究和设计中。HFCS对我国高效率高性能微波管的设计起到了积极作用。
Microwave tubes are widely applied as the core electron devices in many militaryfields such as the multifunction radar, the electronic countermeasures equipment, thespace communication and so on. The high-frequency circuit (HFC) is one of the mostimportant parts in the microwave tubes, where the electron beam and theelectromagnetic wave interacts each other. The performance of the HFC in themicrowave tube directly affect the bandwidth, gain, output power, efficiency and anyother performance parameter of the microwave tubes. As the requirement of theperformance of the microwave tubes improves, the efficiency and performance of theHFC are also required to be improved. However, the design of high-efficient andhigh-performance HFC eagerly demands more accurate, more efficient and more robustthree dimensional numerical algorithm and CAD software for HFC.
     The research works of this dissertation are focused on the fast finite-element theoryand CAD technique for the HFC in the microwave tubes. Several important andvaluable results are listed as below:
     1. We propose a fast finite-element method (FEM) for the arbitrary HFC in themicrowave tube. This advanced method mainly contains four new techniques:(1) Anovel rotated periodic boundary condition which utilize the longitudinal and azimuthalperiodicity of the HFC is proposed to significantly improve the efficiency of simulatingthe HFC using the FEM.(2) By using the implicit restarted Arnoldi method based onshift-invert preconditioner and the fast multi-front LU factorization, an improvedmodified implicit restarted Arnoldi method is proposed to efficiently solve the finallarge generalized eigenvalue problem.(3) Both the lower and higher order tetrahedralbasis functions are applied in the finite-element analysis.(4) The post-processingparameters of the HFC can precisely be computed with the tangential-vector FEM.
     2. We investigate many key techniques in the fast finite-element analysis of theHFC using a new second-order hierarchical basis.(1) A convenient and efficientapproach for removing the spurious dc modes in finite-element solutions for modelingmicrowave tubes is proposed.(2) By utilize the hierarchical property of the basis, an advanced p-type multigrid eigensolver is proposed and applied to quite efficiently solvethe finial large eigenvalue problem.
     3. We make deeply investigation on the fast finite-element analysis of the lossyHFC in the microwave tubes.(1) A novel a new frequency-specified eigenmodeanalysis for SWSs is proposed and utilized.(2) To further significantly improve theefficiency of modeling lossy HFC, an improved inexact implicit restarted Arnoldimethod is proposed.
     4. A novel three-dimensional finite-element modeling technique for arbitrary lossyHFCs of microwave tubes without matching meshes is presented. By employing thistechnique, the cold parameters of HFCs can be accurately and quickly obtained from theeigenmode analysis for SWSs with completely nonmatching meshes. Moreover, a newsecond order TE periodic boundary condition is proposed to improve the modelingefficiency of lossy HFCs with nonmatching meshes and this technique is very suitablefor application of the rotated periodic boundary condition.
     5. Based on the fast finite-element theory, we developed an advancedthree-dimensional finite-element electromagnetic-simulation tool for the HFCs in themicrowave tubes-High Frequency Circuit Simulator (HFCS). The HFCS have auser-friendly interface module, a fast model constructor for the HFC, a high qualitymesh generator, accurate and fast finite-element analysis and eiegensolver modules, andaccurate and rich post-processing functions. The HFCS is more efficient than the twocommercial software CST MWS and HFSS in the eigenmode analysis of the HFCs inthe microwave tubes. The HFCS has been released in many institutes and factory forresearching and designing the microwave tubes. The HFCS has been benefitted theresearch and manufacture of microwave tubes in China.
引文
[1] R. K. Parker, R. H. Abrams, B. Danly, et al. Vacuum electronics. IEEE Trans. on MicrowaveTheory Tech.,2002,50(3):835-845
    [2] R. H. Abram, A. A. Mondeli, R. K. Parker. Vacuum electronics for the21st century. IEEEMicrowave Magazine,2001,2(3):61-72
    [3] R. K. Parker, C. M. Armstrong. Vacuum electronics at the dawn of the twenty-first century.Proceedings of the IEEE,1999,87(5):702-716
    [4]廖复疆.大功率微波电子注器件及其发展.真空电子技术,1999, No.4:1-14
    [5]廖复疆.大功率微波管—21世纪军事电子装备的关键器件.中国电子学会真空电子学分会第十届年会论文集(上册),1995,1-7
    [6]邬显平.世纪之交的微波电真空器件.真空电子技术,2003,(1):1-7
    [7]廖复疆.真空电子技术—信息装备的心脏.北京:国防工业出版社,1999
    [8]王文祥.微波工程技术.北京:国防工业出版社,2009
    [9]刘盛纲,李宏福,王文祥,等.微波电子学导论.北京:国防工业出版社,1995
    [10]张克潜,李德杰.微波与光电子学中的电磁理论(第二版).北京:电子工业出版社,2001
    [11] T. M. Antonson, A. A. Mondelli, B. Levush, et al. Advances in modeling and simulation ofvacuum electronic devices. Proceedings of the IEEE,1999,87(5):804-839
    [12] C. L. Kory, J. A. Dayton. Accurate cold-test model of helical TWT slow-wave circuits. IEEETrans. on Electron Devices,1998,45(4):966-971
    [13] C. L. Kory, J. A. Dayton. Effect of helical slow-wave circuit variations on TWT cold-testcharacteristics. IEEE Trans. on Electron Devices,1998,45(4):972-976
    [14] C. L. Kory, J. D. Wilson. Three-dimensional simulation of traveling-wave tube cold-testcharacteristics using MAFIA. NASA TP-3513,1995
    [15] M. Aloisio, P. Waller. Analysis of helical slow-wave structures for space traveling wave tubessuing3-D electromagnetic simulators. IEEE Trans. on Electron Devices,2005,52(5):749-754
    [16] M. Aloisio, G. Sorbello. One-third-of-pitch reduction technique for the analysis of ternaryazimuthally periodic helical slow-wave structures. IEEE Trans. on Electron Devices,2006,53(6):1467-1473
    [17] R. T. Benton, C. K. Chong, W. L. Menninger, et al. First Pass TWT Design Success. IEEETrans. on Electron Devices,2001,48(1):176-178
    [18] J. H. Booske, M. C. Converse, C. L. Kory, et al. Accurate parametric modeling of foldedwaveguide circuits for millimeter-wave traveling wave tubes. IEEE Trans. on Electron Devices,2005,52(5):685-694
    [19] J. A. Dayton, G. T. Mearini, H. Chen, et al. Diamond-studded helical traveling wave tube. IEEETrans. on Electron Devices,2005,52(5):695-701
    [20] J. R. Pierce. Traveling Wave Tubes. New York: Van Nostrand,1950
    [21] S. Sensiper. Electromagnetic wave propagation on helical structure. Proc. IRE,1955,43(2):149-161
    [22] D. Chernin, T. M. Antonsen Jr., B. Levush. Exact treatment of the dispersion and beaminteraction impedance of a thin tape surrounded by a radially stratified dielectric. IEEE Trans.on Electron Devices,1999,46(7):1472-1480
    [23]段兆云.螺旋线行波管中物理现象的研究:[博士生论文].成都:电子科技大学,2004
    [24]段兆云,宫玉彬,王文祥,等.考虑螺旋带径向厚度的螺旋线慢波系统的研究.强激光与粒子束,2002,14(6):905-910
    [25] D. T. Swift Hook. Dispersion Curves for a Helix in a Glass Tube. Proc. IEE,1958, Vol.105b,Supp.,747-755
    [26] P. K. Jain, K.V. R. Murty, S. N. Joshi, et al. Effect of the Finite Thickness of the Helix Wire onthe Characteristics of the Helical Slow-Wave Strucuture of a Traveling-Wave Tube. IEEE Trans.on Electron Devices,1987,34(5):1209-1213
    [27] Jain P K, Basu B N. The inhomogeneous loading effects of practical dielectric supports for thehelical slow-wave structure of a TWT. IEEE Trans. on Electron Devices,1987,34(12):2643-2648
    [28] Kapoor, Sunil, Raju R S, et al. Analysis of an inhomogeneously loaded helical slow-wavestructure for broad-band TWTs. IEEE Trans. on Electron Devices,1989,36(9):2000-2004
    [29] S. Ghosh, P. K. Jain, B. N. Basu. Rigorous Tape Analysis of Inhomogeneously-Loaded HelicalSlow-Wave Structures. IEEE Trans. on Electron Devices,1997,44(7):1158-1168
    [30] N. P. Kravchenko, L. N. Loshakov, Y. N. Pchel’nikov. Computation of DispersionCharacteristics of a Spiral Placed in a Screen with Axial Ribs’. Radio Eng. Electron. Physics,1976,21(1):33-39
    [31] Y. Zhang., Y. L. Mo, J. Q Li, et al. Modeling of finite size vane-loaded helical slow-wavestructures.2004IEE Proc.-Micro.Antennas Propag.,151(2):135-141
    [32]张勇,莫元龙,李建清,等.一种有限厚度翼片加载螺旋线色散特性与耦合阻抗研究.电子学报,2003,31(6):924-926
    [33] C. Y. Chen. Characteristics of vane-loaded helix slow-wave structure. NTG Fachberichte,1983,No.85:27-31
    [34] L. Kumar, R. S. Raju, S. N. Joshi, et al. Modeling of a vane-loaded helical slow-wave structurefor broad-band traveling wave tubes. IEEE Trans. on Electron Devices,1989,36(9):1991-1998
    [35] A. S. Gilmour, Jr., M. R. Gillette, J. T. Chen. Theoretical and experimental TWT helix lossdetermination. IEEE Trans. on Electron Devices,1979,26(10):1581-1588
    [36] P. K. Jain, B. N. Basu. The effect of conductivity losses on propagation through the helixslow-wave structure of a traveling-wave tube. IEEE Trans. on Electron Devices,1988,35(4):549-558
    [37] P. R. R. Rao, S. K. Datta, V. A. Deshmukh, et al. Tape-helix analysis of conductivity losses in ametal segment loaded helical SWS.2010Int. Vacuum Electronics Conf.(IVEC2010),2010,225-226
    [38] S. K. Datta, L. Kumar, B. N. Basu. A simple and accurate analysis of conductivity loss inmillimeter-wave helical slow-wave structures. J. Infrared Millim. Terahz Waves,2009,30(4):381-392
    [39] X. Zhu, Z. Yang, B. Li. Modeling of T-shaped vane loaded helical slow-wave structures. IEEETrans. on Plasma Science,2006,34(3):563-571
    [40] X. Zhu, Z. Yang, B. Li. Tape analysis of an inhomogeneously-loaded helical slow-wavestructure for broad-band traveling-wave tubes. International Journal of Infrared and MillimeterWaves,2005,26(12):1713-1725
    [41]朱小芳.螺旋线慢波系统高频特性理论分析与数值模拟:[博士生论文].成都:电子科技大学,2007
    [42] H. J. Curnow. A general equivalent circuit for coupled-cavity structures. IEEE Trans. ElectronDevices,1965,13(12):696-699
    [43] R. G. Carter, L. Kang. Method for calculating the properites of coupled-cavity slow-wavestructures from their diemensions. IEE Proceedings-H,1986,133(5):330-334
    [44] R. G. Carter. Representation of coupled-cavity slow-wave structures by equivalent circuits. IEEProceedings-I,1983,130(2):67-72
    [45] S. K. Datta, V. B. Naidu, P. R. R. Rao, et al. Equivalent circuit analysis of a ring-bar slow-wavestructure for high-power traveling-wave tubes. IEEE Trans. on Electron Devices,2009,56(12),3184-3190
    [46] http://www.mrcwdc.com
    [47] J. J. Petillo, D. P. Chernin, A. A. Mondelli.3-D ARGUS-ESP computations of vacuumeigenmodes for standing-wave and traveling-wave structures.1996Int. Plasma Sciences Conf.,1996,100
    [48] T. Weiland. A discretization method for the solution of Maxwell’s equations for six-componentfields. Electronics and Communication (AEU),1977,31:116-120
    [49] T. Weiland. On the numerical solution of Maxwell’s equations and applications in the field ofaccelerator physics. Particle Accelerators,1984, l5:245-292
    [50] T. Weiland. On the unique numerical solution of Maxwellian eigenvalue problems in threedimensions. Particle Accelerators,1985,17:227-242
    [51] U. V. Rienen and T. Weiland. Triangular discretization method for the evaluation of RF-fields incylindrically symmetric cavities. IEEE Trans. on Mgnetics,1985,21(6):2317-2320
    [52] M. Bartsch, M. Dehler, M. Dohlus, et al. Solution of Maxwell’s equations. Computer PhysicsCommunications,1992,72:22-39
    [53] R. Schuhmann and T. Weiland. The Nonorthogonal finite integration technique applied to2D-and3D-eigenvalue problems. IEEE Trans. on Magnetics,2000,36(4):897-901
    [54] http://www.cst.com
    [55] S. J. Cooke, A. A. Mondelli, B. Levush, et al. CTLSS-An advanced electromagnetic simulationtool for designing high-power microwave sources. IEEE Trans. on Plasma Science,2000,28(3):841-865
    [56] S. J. Cooke, B. Levush. Eigenmode solution of2-D and3-D electromagnetic cavities containingabsorbing materials using the Jacobi-Davidson algorithm. Journal of Computation Physics,2000,157:350-370
    [57] S. J. Cooke, R. Shtokhamer, A. A. Mondelli, et al. A finite integration method for conformal,structured-grid, electromagnetic simulation. Journal of Computation Physics,2006,215:321-347
    [58] X. Zhu, Z. Yang, B. Li, et al. High Frequency Circuit Simulator: An advanced electromagneticsimulation tool for microwave sources. International Journal of Infrared Millimeter andTerahertz Waves,2009,30(8):899-907
    [59] X. Zhu, Z. Yang, B. Li, et al. Validation of HFCS-I on calculation of high-frequency parametersof helical slow-wave structures. International Journal of Infrared Millimeter and TerahertzWaves,2010,31(2):237-248
    [60] http://www.ansoft.com
    [61] S. Coco, A. Laudani. G. Pollicino, et al. An FE tool for the electromagnetic analysis ofslow-wave helicoidal structures in traveling wave tubes. IEEE Trans. on Magnetics,2000,43(4):1793-1796
    [62] S. Coco, A. Laudani. G. Pollicino, et al. Finite element electromagnetic analysis of TWTslow-wave structures in grid environment. IEEE Trans. on Magnetics,2009,45(3):1843-1846
    [63] T. Jurgens, A. Taflove, and K. Moore. Finite-difference time-domain modeling of curvedsurfaces. IEEE Trans. on Antennas Propagat.,1992,40(4):357-366
    [64] S. Dey and R. Mittra. A locally conformal finite-difference time-domain (FDTD) algorithm formodeling three-dimensional perfectly conductiong objects. IEEE Microw. Guided Wave Lett.,1997,7(9):273-275
    [65] J. P. Swartz, D. B. Davidson. Curvilinear vector finite elements using a set of hierarchical basisfunctions. IEEE Trans. on Antennas Propagat.,2007,55(2):440-446
    [66] http://www.simmetrix.com
    [67] P. P. Silvester. Finite element solution of homogeneous waveguide problems. Alta Freq.,1969,38(5):313-317
    [68] K. Ise, K. Inoue, M. Koshiba. Three-dimensional finite-element solution of dielectric scatteringobastacles in a rectangular waveguide. IEEE Trans. on Microwave Theory Tech.,1990,38(9):1352-1359
    [69] K. D. Paulsen, D. R. Lynch. Elimination of vector parasites in finite element Maxwell solutions.IEEE Trans. on Microwave Theory Tech.,1991,39(3):395-404
    [70] J. C. Nedelec. Mixed finite elements in R3. Numer. Math.,1980,35:315-341
    [71] R. D. Graglia, D. R. Wilton, A. F. Peterson. Higher order interpolatory vector bases forcomputational electromagnetics. IEEE Trans. on Antennas Propagat.,1997,45(3):329-342
    [72] J. S. Savage, A. F. Peterson, Higher-order vector finite elements for tetrahedral cells. IEEETrans. on Microwave Theory Tech.,1996,44(6):874-879
    [73] D. K. Sun, J. F. Lee, Z. J. Cendes. Construction of nearly orthogonal Nedelec bases for rapidconvergence with multilevel preconditioned solvers. SIAM J. Sci. Comput.,2001,23:1053-1076
    [74] J. P. Webb. Hierarchical vector basis functions of arbitrary order for triangular and tetrahedralfinite elements. IEEE Trans. on Antennas Propagat.,1999,47(8):1244-1253
    [75] M. M. IIic, A. Z. IIic, B. M. Notaros. Efficient large-domain2-D FEM solution of arbitrarywaveguides using p-refinement on generalized quadrilaterals. IEEE Trans. on MicrowaveTheory Tech.,2005,53(4):1377-1383
    [76] J. F. Lee, D. K. Sun, Z. J. Cendes. p-type multiplicative Schwarz (pMUS) method with vectorfinite elements for modeling three-dimensional waveguide discontinuities,” IEEE Trans. onMicrowave Theory Tech.,2004,52(3):864-870
    [77] Y. Zhu, A. C. Cangellaris. Multigrid Finite Element Methods for Electromagnetic FieldModeling. New York: Wiley,2006
    [78] J. F. Lee, R. Dyczij-Edlinger. Automatic mesh generation using a modified Delaunaytessellation. IEEE Antennas Propag. Magazine.1997,39(2):34-45
    [79] Z. S. Sacks, D. M. Kingsland, R. Lee, et al. A perfectly matched anisotropic absorber for use asan absorbing boundary condition. IEEE Trans. on Antennas Propagat.,1995,43(12):1460-1463
    [80] M. N. Vouvakis, S. C. Lee, K. Zhao, et al. A symmetric FEM-IE formulation with a single-levelIE-QR algorithm for solving electromagnetic radiation and scattering problems. IEEE Trans. onAntennas and Propagat.,2004,52(11):3060-3070
    [81] F. Gundes. Higher order absorbing boundary conditions for vector finite element methods:
    [Master Thesis]. Columbus, Ohio, U.S., The Ohio State Univ.,2006
    [82] V. Rawat. Finite element domain decomposition with second order transmission condition fortime harmonic electromagnetic problem:[Ph.D. disertation]. Columbus, Ohio, U.S., The OhioState Univ.,2009
    [83] K. Zhao, V. Rawat, S. C. Lee, et al. A domain decomposition method with nonconformalmeshes for finite periodic and semi-periodic structures. IEEE Trans. on Antennas Propagat.,2007,55(9):2559-2570
    [84] S. C. Lee, M. N. Vouvakis, J. F. Lee. A non-overlapping domain decomposition method withnon-matching grids for modeling large finite antenna arrays. J. Comput. Phys.,2005,203:1-21
    [85] R. D. Slone, R. Lee, J. F. Lee. Multipoint Galerkin asymptotic waveform evaluation for modelorder reduction of frequency domain FEM electromagnetic radiation problems. IEEE Trans. onAntennas and Propagat.,2001,49(10):1504-1513
    [86] R. D. Slone, R. Lee, and J. F. Lee. Well-conditioned asymptotic wave evaluation for finiteelement, IEEE Trans. on Antennas and Propagat.,2003,51(9):2442-2447
    [87] G. H. Golub, H. A. Van Der Vorst. Numerical progress in eigenvalue computation in the20thcentury. J. Comput. Appl. Math.,2000,123:35-65
    [88] J. Tuckmantel. An improved version of the eigenvalue solver SAP applied in URMEL.CERN/RF,1985,85(4)
    [89] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J.Matrix Analysis and Applications,1992,13(1):357-385
    [90] G. L. G. Sleijpen, H. A. van der Vorst. A Jacobi-Davidson iteration method for lineareigenvalue problems. SIAM J. Matrix Analysis and Applications,1996,17(2):401-425
    [91] B. Li, Z. Yang, J. Li, et al. Theory and design of microwave-tube simulator suite. IEEE Trans.on Electron Devices,2009,56(5):919-927
    [92] M. N. Vouvakis, K. Zhao, J. F. Lee. Finite-element analysis of infinite periodic structures withnonmatching triangulations. IEEE Trans. on Magnetics,2006,42(4):691-694
    [93] V. de la Rubia, J. Zapata, M. A. Gonzalez. Finite element analysis of periodic structureswithout constrained meshes. IEEE Trans. on Antennas Propagat.,2008,56(9):3020-3028
    [94] S. C. Lee, V. Rawat, J. F. Lee. A hybrid finite/boundary element method for periodic structureson non-periodic meshes using an interior penalty formulation for Maxwell's equations. Journalof Computational Physics,2010,229(13):4934-4951
    [95] P. Monk. Finite Element Methods for Maxwell’s Equations. New York, U.S.: OxfordUniversity Press,2003
    [96]陆德坚,王自成,刘濮鲲.准周期边界条件法在耦合腔结构高频特性研究中的应用.电子与信息学报,2008,30(11):2780-2783
    [97] J. M. Jin. The Finite Element Method in Electromagnetics. New York: John Wiley&Sons,2002
    [98] S. Dosopoulos, J. F. Lee. Interior penalty discontinuous Galerkin finite element method for thetime-dependent first order Maxwell’s equations. IEEE Trans. on Antennas Propagat.,2010,58(12):4085-4090
    [99] I. S. Duff, J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations.ACM Trans. Math. Softw.,1983,9(3):302-325
    [100] J. D. Jackson. Classical Electrodynamics. New York: Wiley,1962
    [101] S. Perepelitsa, R. Dyczij-Edlinger, J. F. Lee. Finite-element analysis of arbitrarily shapedcavity resonator using H1(curl) elements. IEEE Trans. on Magnetics,2004,33(3):1776-1779
    [102] D. A. White, J. M. Kong. Computing solenoidal eigenmodes of the vector Helmholtz equation:A novel approach. IEEE Trans. on Magnetics,2002,38(5):3420-3425
    [103] N. V. Venkatarayalu, J. F. Lee. Removal of spurious dc modes in edges elements solutions formodeling three-dimensional resonators. IEEE Trans. on Microwave Theory Tech.,2006,54(7):3019-3025
    [104] R. Albanese, G. Rubinacci. Solution of three dimensional eddy current problems by integraland differential methods. IEEE Trans. on Magnetics,1998,24(1):98-101
    [105] S. C. Lee, J. F. Lee, R. Lee. Hierarchical vector finite elements for analyzing wave guidingstructures. IEEE Trans. on Microwave Theory Tech.,2003,51(8):1897-1905
    [106] R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal.,1999,36(1):204-225
    [107] B. Smith, P. Bjorstad, W. Gropp. Domain Decomposition: Parallel Multilevel Methods forElliptic Partial Differential Equations. Cambridge, U. K.: Cambridge Univ. Press,1996
    [108] J. H. Bramble, J. E. Pasciak, J.Wang, et al. Convergence estimates for product iterativemethods with applications to domain decompositions and multigrid. Math. Comput.,1991,57(1):1-21
    [109] L. Xu, Z. Yang, B. Li, et al. High-frequency circuit simulator: An advanced three-dimensionalfinite-element electromagnetic-simulation tool for microwave tubes. IEEE Trans. on ElectronDevices,2009,56(5):1141-1151
    [110] N. D. Sankey, D. F. Prelewitz, T. G. Brown. All optical switching in a nonlinear periodic-waveguide structure. Applied Physics Letters,1992,60(12):1427-1429
    [111] Y. Gong, H. Yin, Y. Wei, et al. Study of traveling wave tube with folded-waveguide circuitshielded by photonic crystals. IEEE Trans. on Electron Devices,2010,57(5):1137-1145
    [112] R. B. Lehoucq, D. C. Sorensen, C. Yang. ARPACK User’s Guide: Solution of Large ScaleEigenvalue Problems with Implicitly Restarted Arnoldi Methods. Philadelphia, PA, U.S.:SIAM,1997
    [113] M. Freitag, A. Spence. Shift–invert Arnoldi’s method with preconditioned iterative solves.SIAM J. Matrix Anal. Appl.,2009,31(3):942-969
    [114] F. Xue. Numerical solution of eigenvalue problems with spectral transformations:[Ph. D.dissertation]. College Park, MD, U.S., Univ.Maryland,2009
    [115] L. Xu, Z. Ye, Z. Yang, et al. A novel approach of removing spurious DC modes infinite-element solution for modeling microwave tubes. IEEE Trans. on Electron Devices,2010,57(11):3181-3185
    [116] L. Xu, Z. Yang, J. Li, et al. Accurate and fast finite-element modeling of attenuation inslow-wave strutures for traveling-wave tubes. IEEE Trans. on Electron Devices,2012,59(5):1534-1541
    [117]徐立,李斌,杨中海.一种基于高阶矢量叠层基函数去除复杂谐振腔三维有限元仿真中的伪直流模式的新方法.电子学报,2012,已录用
    [118] T. Huang, Q. Hu, Z. Yang, et al. Electron Optics Simulator: A three-dimensionalfinite-element electron gun and collector design tool. IEEE Trans. on Electron Devices,2009.56(1):140-148
    [119] Q. Hu, T. Huang, Z. Yang, et al. Recent developments on EOS2-D/3-D electron gun andcollector modeling code. IEEE Trans. on Electron Devices,2010.57(7):1696-1701
    [120] Y. Hu, Z. Yang, J. Li, et al. Backward-wave oscillation suppression in high-power broadbandhelix traveling-wave tubes. IEEE Trans. on Electron Devices,2011.58(5):1562-1569
    [121] http://www.spatial.com
    [122] http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
    [123] http://www.intel.com/software/products/mkl
    [124] http://www.netlib.org/lapack
    [125] http://netlib.org/blas
    [126] http://math.nist.gov/spblas
    [127] http://www.techsoft3d.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700