一类用于微波源的慢波结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率微波器件广泛应用于毫米波雷达、制导、战略战术通信、电子对抗、遥感、辐射测量等领域,它的性能直接决定着武器装备的水平,因此对新型高功率短毫米波行波管的研究具有很重要的现实意义。本文对一类用于微波源的慢波结构进行了深入的研究,主要工作和创新点如下:
     第一点:在介质加载圆柱波导的基础上,研究了上下底板加载介质的矩形波导慢波结构。首先采用等效电路和场匹配的方法给出了上下底板加载介质的矩形波导慢波结构的色散方程和场分布,并通过计算R/Q值求得了电子束传输通过慢波结构激励的电磁波功率;然后分析了反对称模式对电子束稳定性的影响,给出了电子束在偏离中心位置处传播时,产生的横向作用力;最后设计了采用上下底板加载介质的矩形波导慢波结构的功率源器件。
     第二点:提出了一种采用光子晶体作为行波管慢波结构屏蔽筒的新方案,论证了方案的可行性,并进行了模式分析。在充分研究光子晶体禁带特性的基础上,计算了光子晶体慢波结构的色散特性和耦合阻抗,对计算结果的分析表明,光子晶体在行波管慢波结构中起到了定向选模的作用,为行波管实现高次模式工作奠定了基础。
     第三点:提出了一种适用于毫米波及THz波行波放大器的光子晶体栅慢波电路,即横向分布光子晶体栅慢波电路,并提出了分析和设计此类光子晶体栅慢波电路的方法。通过计算光子晶体TE极化的带隙和在带隙内将光子晶体栅慢波电路等效为矩形栅波导慢波电路,使得光子晶体栅慢波电路的设计得以分为两步独立进行,从而简化了光子晶体栅慢波电路的设计。对横向分布光子晶体栅慢波电路进行了设计和计算,结果表明,与矩形栅波导慢波电路相比较,横向分布光子晶体栅慢波电路可以降低工作电压并增加带宽,从而可以降低成本。
     第四点:为解决工作在3mm波段及以上频段的折叠波导行波管因加工精度和功率容量的局限性,提出了无渐变规律的有限变周期折叠波导慢波结构,首先给出了这种结构能够有效增大高次空间谐波耦合阻抗的理论基础,并导出了色散和耦合阻抗表达式,然后进行数值计算,给出一组优化后的设计参数,并以此确定行波管的工作点,最后利用MAFIA粒子模拟软件进行大信号互作用模拟,获得有效增益。从而在结构比较大和周期比较大的情况下,实现了相对工作电压比较低的行波管设计。
Traveling wave tube (TWT) is the most important type of microwave vacuumtube. It has been frequently used as millimeter wave radar, guidance, tactical andstrategic communication, electronic countermeasure, remote sense, radiationmeasurement and so on. Its performance directly influences the level of the weaponequipments, and it has importantly realistic significance for the study on the new typeof high power and short mm-wave traveling wave amplifiers. In this dissertation, wehave made detailed study on a type of slow wave structures (SWS). Several importantand valuable results which bring forth new ideas are achieved and listed as thefollowing:
     First, rectangular waveguide structure with dielectric loaded on the up-and-downplates is studied based on dielectric loaded cylindrical waveguide. First, the dispersionrelation is given by equivalent circuit and field matching, and the electromagneticenergy excited by a bunched relativistic electron beam is obtained by calculating theR/Q value. Second, the influence of dipole mode on the stability of electron beam isanalyzed. Finally, we design a high power microwave generation device. Test resultsare in good agreement with the predictions.
     Second, a new scheme using the photonic crystal as the shielding tube of travelingwave tube (TWT) slow wave structure (SWS) is put forward, and the feasibility of thisscheme is proved. Mode analysis is done as to this structure. Based on the forbiddenband characteristic of photonic crystal, the dispersion and coupling impedance ofphotonic crystal SWS are calculated. The analysis of the calculation results shows that,photonic crystal has an important effect on the TWT SWS in oriented selecting mode.The work of this paper lays the foundation for TWT realizing higher mode operation.
     Third, a kind of photonic crystal grating slow-wave circuit, cross-sectiondistributing two-dimensional photonic crystal slow-wave circuit (CD2DPhSWC), wasproposed. And the way of design for CD2DPhSWC was put forward, too. To simplythe design, the way was actualized by two steps. The two steps are the calculation ofthe photonic band gap (PBG) for the TE polarization and the dispersion of the equivalent rectangular waveguide grating. The numerical results explain that thebandwidth of the traveling wave tubes (TWTs) based on CS2DPhSWC is wider, andthe operating voltage is lower, than that of the rectangular waveguide grating.Correspondingly, the cost of the TWTs will decrease.
     Four, for solving the processing precision and power capacity of foldedwaveguide traveling wave tube operating in3mm band and above, a new kind offolded waveguide slow wave structure of which finite periodic structure is irregular isproposed. Firstly, we give the reason why using this structure can enhance couplingimpedance of high harmonic efficiently, and derivative the expressions of thedispersion and coupling impedance. A group of design parameters which are optimizedis obtained by the numerical calculation, and this is the authority of operating point oftraveling wave tube. Finally, the gain is obtained by MAFIA particle simulationsoftware.
引文
[1] P. H. Siegel. Terahertz technology. IEEE Trans. Microwave Theory Tech.,2002,50(3):910-928
    [2] G. Caryotakis. The future of klystrons.1th International Vacuum Electronics Conference,2000
    [3] A. Krasnykh. Employment of second order ruled surfaces in design of sheet beam guns.Proceedings of Particle Accelerator Conference,2007
    [4] S. Russell, B. Carlsten, L. Earley, et al. Circular-to-planar transformations of high-perveanceelectron beams by asymmetric solenoid lenses. Phys. Rev. ST. Accel. Beams,2004,7(6):060401
    [5] S. J. Russell, Z.-F. Wang, W. B. Haynes, et al. First observation of elliptical sheet beamformation with an asymmetric solenoid lens. Phys. Rev. ST. Accel. Beams,2005,8(8):080401
    [6] K.T. Nguyen, J. Pasour, E. L. Wright, et al. High-perveance W-band sheet-beam electron gundesign. IEEE35th International Conference on Plasma Science,2008
    [7] J. E. Atkinson, D. D. Gajaria, T. J. Grant, et al. A high aspect ratio, high current density sheetbeam electron gun.11th International Vacuum Electronics Conference,2010
    [8] D. Gamzina, A. G. Spear, L. R. Barnett, et al. Terahertz sheet beam gun analyzer.11thInternational Vacuum Electronics Conference,2010
    [9] J. Gardelle, P. Modin, L. Courtois, et al. Progress of the microwave coherent Smith-Purcellexperiment at CESTA.36th International Conference on Plasma Science and23rd Symposiumon Fusion Engineering,2009
    [10] A. Srivastava, J. K. So, G. S. Park, et al. Development of high current density sheet beamelectron gun for Terahertz devices.9th International Vacuum Electronics Conference,2008
    [11] R. S. Raju, R. K. Barik, J. Banerjee, et al. Design of sheet beam electron gun. InternationalConference on Microwave,2008
    [12] L. L. Li, Y. M. Wang, W. Liu, et al. Development of high-current sheet beam cathodes forTerahertz sources. IEEE Trans. Electron Devices,2009,56(5):762-768
    [13]胡银富、邢俊毅、邬显平,等.柱面阴极带状注电子枪的计算与模拟.中国电子学会真空电子学分会第十七届学术年会,宜昌,2009,429-432
    [14] S. Y. Yin, Y. Wang, X. X. Wang, et al. Manufacturing for a sheet beam M-type cathode.11thInternational Vacuum Electronics Conference,2010
    [15] Z. Y. Duan, X. K. Guo, F. Guo, et al. Simulation research on the sheet electron beam gun.10thInternational Vacuum Electronics conference, Rome, Italy,2009,28-30
    [16] Z.X. Zhang, W. W. Destler, V. L. Granatstein, et al. Experimental realization of millimeterwave amplification by a sheet beam free electron laser. Appl. Phys. Lett.,1994,66(11):1439-1452
    [17] M. A. Agafonov, A. V. Arzhannikov, N. S. Binzburg, et al. Generation of Hundred Joulses at4-mm wavelength by FEM with sheet electron beam. IEEE Trans. Plasma Sci.,1998,26(3):531-535
    [18] S. Humphries, S. R. Russell, B. Carsten, et al. Focusing of High-perveance planar electronbeams in a miniature wiggler magnet array. IEEE Trans. Plasma Sci.,2005,33(2):882-891
    [19] B. E. Carlsten, L. M. Earley, F. L. Krawczyk, et al. Stability of an emittance-dominated sheetelectron beam in planar wiggler and periodic permanent magnet structures with natural focusing.Phys. Rev. ST. Accel. Beams,2005,8(6):062001
    [20] M. E. Read, V. Jabotinski, G. Miram, et al. Design of a gridded gun and PPM-focusingstructure for a high-power sheet electron beam. IEEE Trans. Plasma Sci.,2005,33(2):647-653
    [21] J. H. Booske, B. D. Mcvey, T. M. Jr. Antonsen. Stability and confinement of nonrelativisticsheet electron beams with periodic cusped magnetic focusing. J. Appl. Phys.,1993,73(9):4140-4155
    [22] M. A. Basten. Formation and transport of high-perveance electron beams for high-power,high-frequency microwave devices:[Ph. D. Dissertation]. Madison: University of Wisconsin,1996
    [23]邢俊毅,邬显平.两种半无限带状电子注磁聚焦系统的比较.中国电子学会真空电子学分会第十六届学术年会,包头,2007,123-125
    [24]邢俊毅,邬显平.椭圆截面带状注传输理论和模拟计算.中国电子学会真空电子学分会第十七届学术年会,宜昌,2009,433-447
    [25]韩莹,阮存军,王勇,等.带状电子注的聚焦和传输.强激光与粒子束,2010,22(12):2935-2939
    [26]韩莹,阮存军,王勇.带状电子注在周期磁场中传输的稳定性.微波学报,2010,8:438-441
    [27] Z. Y. Duan, T. B. Wang, Y. B. Gong, et al.3D Simulation of Wiggler Field Focusing SheetElectron Beam.9th International Vacuum Electronics conference, Monterey, USA,2008,22-24
    [28]钟杰,段兆云,宫玉彬,等. PPQM聚焦带状电子注的3维粒子模拟.中国真空电子学第十七届学术年会,宜昌,2009,222-225
    [29] Z. L. Wang, Y. B. Gong, Y. Y. Wei, et al. Stable sheet-beam transport in periodicnonsymmetric quadrupole Field. IEEE Trans. Plasma Sci.,2010,38(1):32-38
    [30] B. D. McVey, M. A. Basten, J. H. Booske, et al. Analysis of rectangular waveguide-gratings foramplifier applications. IEEE Trans. Microwave Theory Tech.,1994,42(6):995-1003
    [31] S. Sengele, H. R. Jiang, J. H. Booske, et al. Microfabrication and characterization of aselectively metallized W-Band meander-line TWT circuit. IEEE Trans. Electron Devices,2009,56(5):730-737
    [32] Y.–M. Shin, L. R. Barnett, N. C. Luhmann, et al. Phase-shifted Traveling-Wave-Tube circuitfor ultrawideband high-power submillimeter-wave generation. IEEE Trans. Electron Devices,2009,56(5):706-712
    [33]路志刚.矩形波导栅行波放大器的研究:[博士学位论文].成都:电子科技大学,2008,123-148
    [34] G. Caryotakis. A sheet beam klystron paper design.5th Modulator-Klystron Workshop forFuture Linear Colliders,2001
    [35] G. Caryotakis, A. Krasnykh, M. Neubauer, et al. Design of a11.4GHz,150-MW, sheet beamPPM-focused klystron.6th workshop on high energy density and high power RF,2003,22-33
    [36] G. Scheitrum. Design and construction of a W-band sheet beam klystron.7th Workshop onhigh energy density and high power RF,2005
    [37] B. E. Carlsten, S. J. Russell, L. M. Earley, et al. Technology development for a mm-wavesheet-beam Traveling-Wave Tube. IEEE Trans. Plasma Sci.,2005,33(1):85-93
    [38] N. C. Luhmann, Jr. Miniaturizing Vacuum Electronic Devices, Academic report, Chengdu,2011,18-22
    [39] Y.–M. Shin, L. R. Barnett, A. Baig, et al.0.22THz sheet beam TWT amplifier: system designand analysis.12th International Vacuum Electronics Conference,2011
    [40] G. M. Borsuk, B. Levush. Vacuum electronics research perspective at the Naval ResearchLaboratory.11th International Vacuum Electronics Conference,2010
    [41] K. Nguyen, L. Ludeking, J. Pasour, et al. Design of a high-gain wideband high-power220-GHzmultiple-beam serpentine TWT.11th International Vacuum Electronics Conference,2010
    [42] C. D. Joye, J. P. Calame, K. T. Nguyen, et al. Microfabrication of wideband distributed beamamplifiers at220GHz.12th International Vacuum Electronics Conference,2011
    [43] J. H. Booske. Plasma physics and related challenges of millimeter-wave-to-terahertz and highpower microwave generation. Phys. of Plasma,2008,15(5):055502
    [44]冯进军.集成高频真空电子学.首届微波真空电子器件高峰论坛,南京,2010,93-102
    [45] T. Itoh. Numerical technology for microwave and millimeter wave passive structure. New York:Willey,1989,43-78
    [46] J. G. Power, M. E. Conde, W Gai, et al. Measurements of the longitudinal wakefields in a multimode, dielectric wakefield accelerator driven by a train of electron bunches. Phys. Rev. Spec.Topics-Accelerators and Beams,3(101302):1-7
    [47] M. E. Conde, W. Gai, R. Konecny, et al. Generation and acceleration of high-charge shortelectron bunches. Phys. Rev. Spec. Topics-Accelerators and Beams,1998,1(041302):1-6
    [48] L. L. Xiao, W. Gai, X. Sun. Field analysis of a dielectric-loaded rectangular waveguideaccelerating structure. Phys. Rev. E,2001,65(016505):1-9
    [49] W. Gai, A. D. Kanareykin, A. L. Kustov, et al. Numerical simulation of intense charged particlebeam propagation in a dielectric wake-field accelerator. Phys. Rev. E,1997,55(3):3481-3488
    [50]阎守胜.固体物理基础.北京:北京大学出版社,2000,65-78
    [51]殷海荣.光子晶体行波管研究:[博士学位论文].成都:电子科技大学,2008,46-67
    [52] A. E. Willner, K. M. Feng, J. Cai, et al. Tunable compensation of channel degrading effectsusing nonlinearly chirped passive fiber Bragg gratings. IEEE J. Sel. Top. Quantum Electron,1999,5(5):1298-1311.
    [53] D. Colton, R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Berlin: SpringerVerlag,1992,124-158
    [54] N. A. Nicorovici, R. C. McPhedran, B. KeDa. Propagation of electromagnetic waves inperiodic lattices of spheres: Green’s function and lattice sums. Phys. Rev. E,1995,51(1):690-702
    [55] H-Y. D. Yang, N. G. Alexopoulos, E. Yablonovitch. Photonic band-gap materials for high-gainprinted circuit antennas. IEEE Trans. Antennas&Propag.,1997,45(1):185-187.
    [56] J. R. Sirigiri. Photonic-band-Gap resonator gyrotron. Phys. Rev. Lett.,2001,86(7):5628-5630.
    [57] Yubin Gong, Hairong Yin, Yanyu Wei, et al. Study of Traveling Wave Tube WithFolded-Waveguide Circuit Shielded by Photonic Crystals. IEEE Trans. On ED,2010,57(5):1137-1145.
    [58] Yin Hai-Rong, Gong Yu-Bin, Wei Yan-Yu, et al. Study of Photonic Crystal Slow-Wave Circuits.J. Infrared Milli Terahz Waves,2009,30(9):982-993.
    [59]殷海荣,宫玉彬,魏彦玉,等.有限开敞介质光子晶体的模式及其带结构分析.物理学报,2008,57(6):3562-3570.
    [60] R. E. Collin. Field Theory of Guided Waves. New York: IEEE Press,1991,98-168
    [61]殷海荣,宫玉彬,魏彦玉,等.非截面二维光子晶体排列矩形波导的全模式分析.物理学报,2007,56(3):1590-1597.
    [62] N. A. Nicorovici, R. C. McPhedran, L. C. Botten. Photonic band gaps fpr arrays of perfectlyconducting cylinders. Phys. Rev. E,1995,52(1):1135-1145
    [63] B. E. Carlsten. Modal analysis and gain calculations for a sheet electron beam in a ridgedwaveguide slow-wave structure. Phys. Plasmas,2002,9(12):5088-5096
    [64] A. A. Maragos, Z. C. Ioannidis, I. G. Tigelis. Dispersion characteristics of a rectangularwaveguide grating. IEEE Trans.on Plasma Sci.,2003,31(5):1075-1082
    [65] J. Joe, J. Scharer, J. Booske, et al. Wave dispersion and growth analysis of low voltage gratingerenkov amplifiers. Phys. Plasmas,1994,1(1):176-188
    [66] H. P. Freund, T. M. Abu-Elfadl. Linearized field theory of a Smith-Purcell traveling wave tube.IEEE Trans. on Plasma Sci.,2004,32(3):1015-1027
    [67] B. E. Carlsten, J. S.Russell, M. E. Lawrence, et al. Technology development for a mm-wavesheet-beam traveling-wave tube. IEEE Trans. on Plasma Sci.,2005,33(1):85-93
    [68] H. R. Yin, Y. B. Gong, Y. Y. Wei, et al. A method of designing photonic crystal gratingslow-wave circuit for Ribbon--Beam microwave travelling wave amplifiers. Chinese Phys. B,2007,16(9):2737-2744
    [69] E. Yablonovich, T. J. Gmitter. Photonic band structure: The face-centered-cubic case. Phys. Rev.Lett.,1986,63:1950-1953
    [70] C. Chen, B. L. Qian, J. R. Temkin. Photonic Crystal Ribbon-beam Traveling Wave Amplifier.Boston: United States Patent Application Publication,2005
    [71] M. Plihal, A. A. Maradudin. Photonic band structure of two-dimensional systems: Thetriangular lattice. Phys. Rev. B,1991,44(16):8565-8571
    [72] G. Dohler, D. Gagne, D. Gallagher et al. Serpentine Waveguide TWT. International ElectronDevices Meeting, Monterey,1987,485-488
    [73] S. Liu. Folded waveguide circuit for broadband MM wave TWTs. Int. J. Infrared Millim. Waves,1995,16(2):809-815
    [74] A. K. Ganguly, J. J. Choi, C. M. Armstrong. Linear theory of slow cyclotron interaction indouble-ridged folded rectangular waveguide. IEEE Trans. on PS,1995,42(2):348–355
    [75] D. Gallagher, J. Richards, C. Amstrong. Millimeter-wave folded waveguide TWT developmentat Northrop Grumman. Proc. IEEE Int. Conf. Plasma Sci.,1997,161
    [76] Y. H. Na, S. W. Chung, J. J. Choi. Analysis of a broadband Q band folded-waveguidetraveling-wave tube. IEEE Trans. on PS,2002,30(3):1017-1022
    [77] S. Bhattacharjee, J. H. Booske, C. L. Kory, et al. Folded waveguide traveling-wave tube sourcesfor terahertz radiation. IEEE Trans. on PS,2004,32(3):1002–1014
    [78] S.-T. Han, K.-H. Jang, J.-K. So, et al. Low-voltage operation of Ka-band folded waveguidetraveling-wave tube. IEEE Trans. on PS,2004,32(1):60–66
    [79] J. H. Booske, M. C. Converse, C. L. Kory, et al. Accurate parametric modeling of foldedwaveguide circuits for millimeterwave traveling wave tubes. IEEE Trans. on ED,2005,52(5):685–693
    [80] R. Zheng, X. Chen. Design and3-D simulation of microfabricated folded waveguide for a220GHz broadband traveling-wave tube application. Proc. Int. Vac. Electron. Conf.,2009,135–136
    [81] C. Kory, M. Read, R. L. Ives, et al. Design of overmoded interaction circuit for1-kW,95GHz,TWT. Proc. IEEE Int. Vac. Electron. Conf.,2008,193–194
    [82] Carol L. Kory, Michael E. Read, R. Lawrence Ives, et al. Design of Overmoded InteractionCircuit for1-kW95-GHz TWT. IEEE Trans. on ED,2009,56(5):713-720
    [83] Edward Nicholas Comfoltey. Design of an Overmoded W-Band Coupled Cavity TWT.Dissertation of Massachusetts Institute of Technology.2009
    [84] B. Carlsten, L. Earley, W. Haynes, et al. Beam Line Design, Beam Alignment Procedure, andInitial Results for the W-Band Gain Experiment at Los Alamos. IEEE Trans. on PS,2006,34(5):2393-2403
    [85] M. A. Shapiro, J. Sirigiri, R. J. Temkin. Design of an Overmoded W-band TWT. IVEC,2009
    [86] CST.[Online]. Available: http://www.cst-china.cn/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700