提高气动阀式脉冲爆震发动机性能的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲爆震发动机作为一种新概念发动机,由于其简单的结构、优良的性能引起世界各国的浓厚兴趣。本文以实验为主要研究手段,研究了倒旋流气动阀的工作特性、热射流点火技术在PDE上的应用、爆震室壁面燃油蒸发技术在PDE上的应用及扇环形管内爆震波的触发与传播特性,获得了大量研究成果,主要包括如下:
     1.提出利用倒流旋转以增大倒流阻力的PDE气动阀设计思想;实验研究了倒旋流气动阀性能参数的影响因素:气动阀的旋流数越大,倒流损失也就越大,单向性越好;在进气道进口处加装一段直管可充分利用气动阀发生倒流时的旋流,进而增加气动阀的单向性能,实验结果表明加装1.5D(D为进气道进口直径)时效果最佳;综合考虑气动阀的单向性和进气的阻力特性,认为采用轴向倒旋流的气动阀更为适合中等尺寸(直径100-200mm)的PDE使用;采用倒旋流设计的气动阀能够有效的减小PDE工作时压力的前传,抑制了70%左右的前传压力;采用数值分析的方法,结果显示:旋流数的增加,可有效的减小倒流量;但太大的旋流数会造成难以承受的进气总压损失,从而使单向阀系数降低,最佳的旋流数约在1.0左右。
     2.为了充分利用气动阀下游、气动雾化喷嘴出口处的回流区内混气紊流强度高、火焰加速快的优点、克服不容易点火的缺点,采用了中心热射流点火技术来实现回流区内的点火,采用的平行直射流点火能够在内径114mm,长约1100mm(10D)的爆震室内获得频率50Hz的爆震波。
     3.为了使爆震室头部燃烧放热强度进一步加强,研究探索了中心旋转射流点火技术在PDE上的应用。将双旋流气动雾化喷嘴与点火电嘴一体化设计,即为PDE提供射流点火的预燃室,系统研究了双旋流预燃室的气动雾化性能及点火性能,研究发现该预燃室可靠的点火范围很宽;实验研究结果表明:采用旋转射流点火技术为PDE提供高效的点火能量是可行的,旋转射流预燃室的设计要与气动阀、爆震室相匹配,本文设计的气动阀,预燃室的喉道面积应选取在气动阀喉道面积的5%-7%之间,效果最佳。
     4.在直径约60mmPDE原理样机上,获得了各个频率下爆震管壁面温度分布规律,并以此PDE样机爆震室为基础,设计了以空气和煤油作为介质的环形蒸发器,系统研究了蒸发器的工作特性,得出了煤油蒸发率随PDE工作频率、蒸发器内空气量、燃油量及油气比等参数改变的变化规律。
     5.用壁面蒸发器获得的煤油蒸汽提供PDE工作时的部分燃料,实验研究发现利用蒸发器蒸发煤油后,可以看到明显提高了煤油混气中爆震波的点火触发和爆震波传播特性;蒸汽器供气量及煤油比例存在一个最佳范围,在此范围内PDE的爆震波传播速度可接近气体燃料,爆震波触发时间和距离最短。
     6.研究了扇环形爆震管内起爆传播特性,发现爆震燃烧过程中下凸面附近反应最剧烈,压力最高,也是整个截面最先起爆位置;由于整个截面反应的剧度不一致导致扇环形爆震管内,爆震波的胞格尺寸沿径向有变化,越靠近外环尺寸越大;煤油/空气混合物在管内的加速过程受空气中氧气含量的影响最显著。研究结果显示当按化学恰当比混合的混气,空气氧质量分数大于等于31.5%时,在设计的管道内能够产生稳态爆震波;混气略微富油一点,对加速完成DDT过程是有益的,DDT过程对富油混气敏感度小于贫油混气;混气温度460K~579K变化时,混气初始温度对管内火焰加速的影响不大;煤油/空气混合物在扇环形截面管内通过DDT方式获得爆震波时,与同截面和体积的圆形爆震管相比,二者获得的比冲特征在变化规律和数值上基本一致。
     7.分析得出在以射流方式进气的PDE推力台架测量实验时,必须考虑台架阻力对推力测量值的影响,利用稳态传感器测量的推力值应该用台架阻力值去加以修正;设计了一台倒旋流型式气动阀、以旋转射流方式点火的PDE样机,爆震室直径114mm,点火频率40Hz,在该样机的爆震室内分别进行了片状扰流钝体和抛物型扰流钝体的组合实验,在考察爆震室尾部测得的压力值和利用弹簧质量系统测得推力值后,认为采用三片状扰流钝体和一片抛物型钝体时对加速DDT和获得推力的最大增益是最好的,获得最大推力增益18.4kg。
As a new concept engine the pulse detonation engine (PDE), due to its simple structure andexcellent performance caused by the strong interest of the countries in the world. The content of thisthesis include inversing-rotating aero-valves, thermal jet ignition technology, surface evaporation ofliquid fuel technology using waste heat of detonation tube and initiation and propagation ofdetonation in annular-sector tube, the study results are as follows:
     1. A new type of aero-valve, called inversing-rotating aero-valve, was advanced by summarizingthe experience of former designers. Experimental results showed that aero-valves with larger swirlnumberS_N, which are fixed straight tubes (1.5D long) ahead of inlet, have more attractive one-wayperformance. The axial inversing-rotating aero-valve shows up more adaptability for PDE with100mm-200mm diameter, while considering pressure loss and one-way performance. Furthermore,the pressure of travelling waves to upstream through valve can be decreased about70%. A series ofnumerical investigation offer a result, that is, the optimum value of swirl number is approximately1.0.
     2. To take full advantage of the flame accelerated fast in the recirculation region located in thedownstream of the aero-valve and to overcome the shortcomings of Ignition difficulties, the thermaljet ignition technology is used in this paper. Using parallel direct thermal jet ignite the Combustiblemixed gas in a PDE model with internal diameter (ID)114mm and length of1100mm (10D) anddetonation waves in the frequency of50Hz is observed.
     3. In order to further strengthen the combustion heat release intensity in the head of thedetonation chamber, the central swirling thermal jet ignition technology is used in the PDE. Anintegrated design with double swirl air-blast atomizer and ignition spark plugs, forms a precombustionchamber of PDE. The atomization and ignition performance of precombustion chamber areinvestigated through experimal and numetical method. The results display that the reliable ignitionrange of precombustion room is very wide, and it is efficient to provide ignition energy for PDE. Butit must match the head structure of PDE such as aero-valve and spray device. In this paper,precombustion chamber throat area should be selected between5%-7%of the pneumatic valve throatarea, thus, the best results display.
     4. The surface temperature distribution of detonation tube with60mm ID is obtained withdifferent work frequency of PDE. A annular evaporator is designed, which is injected with air andkerosene. The characteristic of the kerosene in evaporator are given with PDE operating frequency, airmass flow, kerosene mass flow and the ratio air and oil.
     5. Gasous kerosene offerd by evaporator is injected to detonation chamber and ignited,experimental result display the characteristic of initiation and propogation detonation wave areimproved significantly. There is an optimum range about the air mass flow and the proportion ofkeserone in the fuel involved combustion.The PDE detonation wave propagation speed in this rangeclose to the case using the gasous fuel, the detonation wave initiating time and the shortest distance.
     6. In the study about the detonation propagation characteristics in the annular-sector tube, it isfound that the region in the lower convex of the annular-sector tube is the most intense reaction, themaximum pressure and the first initiation position of the entire cross-section in the detonation. Due tothe variance of the reaction in the entire cross-section of the tube, the detonation cell size changesalong the radial direction, that is the more close to the outer ring of the annular-sector tube, the largersize of the detonation cell. It is also found that the influences of the oxygen content in the air on theaccelerated propagation process of kerosene/air mixture in the detonation tube is very significant.The study results show that the steady-state detonation wave will be produced in the condition, whichoxygen content is greater than31.5%, in the chemical appropriate mixture of gas and air; and theDDT process will be faster accelerated in the little oil-rich mixture condition. The sensitivity of DDTprocess to the oil-rich mixture condition is greater than the oil-poor mixture condition. The initialtemperature of the mixed gas has little effect on the flame acceleration in tubes, when the temperatureof mixed gas is changed in the range of460K~579K. The variation and values of specific impulse ofthe fan ring detonation tube in the kerosene/air mixture circumstances is basically similar with that inthe same-area circular detonation tube.
     7. It is found that the influence of the resistance of test bench to the measured values of thrustmust be considered in the PDE thrust measurement experiment, and the thrust value, measured by thesteady-state sensor, should be corrected with the bench resistance value. A PDE sample, which isflow-backwards pneumatic valve, rotating jet ignition, detonation chamber diameter of114mm, theignition frequency of40Hz, was invented. We tested the different combination ways of the sheetspoiler blunt and parabolic spoiler blunt, in the PDE sample, and pressure values and thrust valueswere measured in the end of detonation chamber. The results of study show that the maximum thrust,18.4kgf, is acquired when we used three sheet spoiler blunt and a parabolic spoiler blunt.
引文
[1]陈义良,张孝春,孙慈,季鹤鸣编,《燃烧原理》[M],北京,航空工业出版社,1992,p.185-231.
    [2] Anthony J D. A review of PDE development for propulsion application[R].AIAA2007-985.
    [3] Kailasnath, K. Review of propulsion applications of detonation waves. AIAA J. Vol.38,No.9,pp.1698-1708,2000
    [4]严传俊,范玮.脉冲爆震发动机原理及关键技术[M].西安,西北工业大学出版社,2005,10:277-280.
    [5] G.Meholic, An Overview of Detonation Propulsion and Applications,Advanced Space PropulsionResearch Workshop, JPL, May31-June2,2000, Preliminary Design, Performance, andOperability Engineering GE Aircraft Engines,Cincinnati,Ohio
    [6] G. D. Roy, S. M. Frolov, A. A. Borison, D. W. Netzer, Pulse Detonation Propulsion: Challenges,Current status, and Future Perspective, Progress in Energy and Combustion Science30(2004)546-672.
    [7] G.Roy,ONR Activities on pulse detonation engines,in Proc.11th annual propulsionsymposium,propulsion engineering research center,p.39-49,1999
    [8] Kentifield, J.A.C., The Noise-producing Characteristics of Highly Loaded Valvelessl PulseCombustor[R], ASME86-WA Dec.80
    [9] Bertin, J.H.,“Aerodynamic Valve”[Z], U.S. Patent No.2,670,011,54.
    [10] Wislicenus,G.F. Flow control Means For Pulsejet Combustion Units[Z], U.S. PatentNo.2,618,925,52.
    [11] Valaev AA Zhimerin DG Mironov EA, Popov VA. United States Patent3,954,380:May4,1976.
    [12] Yang V, Wu YH, Ma FH. In: Roy GD, Mashayek F, editors.Proceedings of the14th ONRPropulsion Meeting, Chicago,IL: University of Illinois at Chicago;2001. p.165–70.
    [13] Yang V. In: Roy GD, Strykowski PJ, editors. Proceedings of the13th Propulsion Meeting,Minneapolis, MN: University of Minnesota;2000. p.184–9.
    [14] Brophy,C.M.and Netzer,D.W.,Effect of ignition characteristics and geometry on the performanceof a JP-10/O2fueled pulse detonation engines[R],AIAA99-2635,July1999
    [15] Smirnov N.N., Nikitin,V.F.,etc, Control of detonation onset in combustible gases[R],High-SpeedDeflagration and Detonation:Fundamentals and control,edited by G.D.Roys,M.Frolov.,etc,,ELEX-KM Publishers,Moscow,2001,p.3-30
    [16] Achasov,O.V. and Penyazkov,O.G.Some gasdynamic methods for control of detonation initiationand pro pagation[R], High-Speed Deflagration and Detonati on:Fundamentals and control,editedby G.D.Roys,S. M.Frolov,etc,,ELEX-KM Publishers, Moscow,2001,p p.31-44
    [17] Brophy, C.M., Netzer, D.W., Sinibaldi, J.O. and Johnson, R.G.,“Operation of a JP10/air pulsedetonation engine,”36th Joint Propulsion Conference, paper AIAA00-3591, Huntsville,AL(2000).
    [18] Brophy, C.M., and Netzer, D.W.,“Effects of Ignition Characteristics and Geometry on theperformance of a JP10/O2Fueled Pulse Detonation Engine”,35th Joint Propulsion Conference,paper AIAA99-2635Los Angeles, CA (1999).
    [19] Brophy, C. M., Netzer, D. W., and Forester, D.,“Detonation Studies of JP10with Oxygen and Airfor Pulse Detonation Engine Development,” AIAA Paper98-4003, July1998.
    [20] Brophy, C. M., Netzer, D.W., Sinibaldi, J. O., and Johnson, R. G.,“Detonation of a JP10Aerosolfor Pulse Detonation Engine Applications,” High-Speed Deflagration andDetonation:Fundamentals and Control, edited by G. Roy, S. Frolov, D. Netzer, and A. Borisov,ELEX-KM Publishers, Moscow,2001, pp.207–222.
    [21] Brophy, C. M., Sinibaldi, J. O., and Damphousse, P.,“Initiator Performance for Liquid-FueledPulse Detonation Engines,” AIAA Paper2002-0472, Jan.2002.Schauer, F.R., Miser, C.L.,Tucker,K.C., Bradley, R.P. and Hoke, J.L.,“Detonation Initiation of Hydrocarbon-Air Mixtures in aPulsed Detonation Engine,”43rd AIAA Aerospace Sciences Meeting, paper AIAA2005-1343,Reno, NV (2005).
    [22] Schauer, F., Stutrud, J., Bradley, R., Katta, V., and Hoke, J.,“DetonationStudies and PerformanceResults for a Research Pulse Detonation Engine,” Confined Detonations and Pulse DetonationEngines, edited by G. Roy, S. Frolov, R. Santoro, and S. Tsyganov, Torus Press, Moscow,2003,pp.287–302.
    [23] Miser, C.L., King, P.I. and Schauer, F.R.,“PDE Flash Vaporization System for Hydrocarbon FuelUsing Thrust Tube Waste Heat,”41st Joint Propulsion Conference, paper AIAA2005-3511,Tucson, AZ (2005).
    [24] K. Kailasnath, AIAA Journal, Vol.38, No.9, pp.1698-1708,2000.
    [25] K. Kailasanath, AIAA2002-0470,38th Joint Propulsion Conference,2002.
    [26] V. E. Tangirala, B. Varatharajan, and A. J. Dean, AIAA-2003-0716,42nd Aerospace SciencesMeeting, Reno, NV2003.
    [27] V. E. Tangirala, A. J. Dean, A. Rasheed, and D. M. Chapin, ISOABE-2003-1215, XVI, ISOABE,Cleveland, September2003.
    [28] V. E. Tangirala, A. J. Dean, P. F. Pinard, and D. M. Chapin,18th International Colloquium on theDynamics of Explosions and Reactive Systems, Hakone, Japan,2003.
    [29] V. E. Tangirala, A. J. Dean, P. F. Pinard and B. Varatharajan Proc.30th Symp.(Int’l)Combust.The Combustion Institute, PA,2004.
    [30] B. Varatharajan, M. Petrova, F. A. Williams and V. E. Tangirala, Proc.30th Symp.(Int’l)Combust. The Combustion Institute, PA,2004.
    [31] Cambier J L, Adelman H G. Preliminary Numerical Simulation of a Pulse Detonation WaveEngine. AIAA Paper,1988(7):2687.
    [32] Sterling J, Ghorbanian K,Sobota T. Enhanced Combustion Pulsejet Engines for Mach0to3Applications. AIAA Paper,1999:2634.
    [33] Cambier J L, Tegner J K. Strategies for PDE Performance Optimization. Journal of Propulsionand Power,1998,14(4).
    [34] Eidelman S, et al. Air-Breathing Pulsed Detonation Engine Concept: A Numerical Study. AIAAPaper,1990:2420
    [35] Yungster S, Perkins H D. Multiple-Cycle Simulation of a Pulse Detonation Engine Ejector. AIAAPaper,2002:3630.
    [36] Wu Y H, Ma F H, Yang V. System performance and Thermodynamic Cycle Analisis ofAirbreathing Pulse Detonation Engines.Journal of Propulsion and Power,2003,19(4):556-567.
    [37] Keitaro Eto,Nobuyuki Tsuboi,A.Koichi Hayashi, Numerical study on three-dimensional C-Jdetonation waves: detailed propagating mechanism and existence of OH radical.Proceedings ofthe Combustion Institude,2005(30)1907-1913.
    [38] Vincent Deledicque, Miltiadis V. Papalexandris. Computational study of Three-dimensionalgaseous detonation structures. Combustion and Flame,2006(144)821-837.
    [39] Sinibaldi J O, Brophy C M and Robinson J P. Ignition Effects on Deflagration-to-DetonationTransition in Gaseous Mixtures, AIAA2000-3590.
    [40] J Kasahara, K Takazawa, T Arai. Experimental Study of Impulse and Heat Transfer on PulseDetonation Engines. AIAA2002-4071.
    [41] S Y Lee, C Conrad, J Watts,et al. Deflagration to Detonation Transition Study UsingSimultaneous Schlieren and OH PLIF Images. AIAA2000-3217.
    [42] T R Meyer, J L Hoke and M S Brown.Experimental Study of Deflagration-To-DetonationEnhancement Techniques in a H2/Air Pulse Detoantion Engine. AIAA2002-3720.
    [43] B de Witt and G Ciccarrelli. Shock Reflection Detonation Initiation Studies for Pulse DetonationEngines. AIAA2004-3747.
    [44] John B. Hinkey, Scott E. Henderson, T.R.A. Bussing, Operation of a Flight-Scale Rotary-ValvedMultiple-Combustor Pulse Detonation Engine (RVMPDE), A9835611,1998.
    [45] S. D. Anderson, J. H. Tonouchi, G. L. Lidstone, K. R. Lupkes, F. J. Alfonso, Performance Trendsfor a Product Scale Pulse Detonation Engine, AIAA2004-3402.
    [46] Barr, L., Pulse detonation engine flies into history, Press Release, Air Force Material Command,May2008.
    [47]刘鸿.六管气动阀式两相脉冲爆震发动机试验研究.南京航空航天大学博士论文.2010.12
    [48] T.E.Bratkovich, M.J. Aamio, J.T.Williams and T.R.A. Bussing, An introduction to pulsedetonation rocket engines[R].33thAIAA/ASME/SAE/ASEE Joint propulsion Conference andExhibit. Seattle. AIAA97-2742.
    [49] Venkat E T, Anthony J D. Investigations of two-phase detonations for performance estimations ofa pulse detonation engine. AIAA2007-1173.
    [50] Dean, A.J.,“Recent Developments in Approaches to Pulsed Detonation Propulsion,”39th JointPropulsion Conference, paper AIAA2003-4510, Huntsville, AL (2003).
    [51] Dean, A. J., Penyazkov, O. G., Sevruk, K.L. and Varatharajan, B.,“Ignition of Aviation Keroseneat High Temperatures,”20th ICDERS, Montreal (2005).
    [52] Li, S.C., Varatharajan, B., and Williams, F.A.,“Chemistry of JP10Ignition,” AIAAJournal,39(12),2351-2356(2001).
    [53] Colket, M.B., and Spadaccini, L.J.,“Scramjet Fuels Autoignition Study,” AIAA Journal ofPropulsion and Power,17(2),315-323(2001).
    [54] J. Lasheras, B. Varatharajan, C. Varga, et al., Studies of Fuel Distribution and DetonationChemistry for Pulse Detonation Engines, ISABE-2001-1174, Bangalore, India, September2001.
    [55]范育新.大管径气动阀式两相脉冲爆震发动机几个关键技术研究[D].南京:南京航空航天大学,2005.
    [56] Arthur H. Lefebvre. Atomization and sprays [M]. Hemisphere publishing corporation, USA,1989:238-261.
    [57]甘晓华。航空燃气轮机燃油喷嘴技术[M],北京,国防工业出版社,2006.4:73-137.
    [58]甘晓华。空气雾化的机理和模型研究[D],北京,北京航空航天大学博士论文,1989.5:4-15.
    [59]《航空发动机设计手册》总编委;胡正义分册主编。航空发动机设计手册-第9册[M],北京,航空工业出版社,2000.6:185-217.
    [60] Kasahara J, Takazawa K, Arai T. Experimental study of impulse and heat transfer on pulsedetonation engines [J]. AIAA2002-4071,2002.
    [61] Hoke J, Bradley R. Heat transfer and thermal management in a pulse detonation engine. AIAA2003-6486,2003.
    [62] Ajmani K, Breisacher K. Numerical and experiment studies of a film cooled pulsed detonationtube. AIAA2005-35092005.
    [63] Kailasanath K.,Liquid-Fueled Detonations in Tubes,Journal of Propulsion and Power,2006,22(6):1261-1268
    [64] Brophy, C. M., Sinibaldi, J. O and Damphousse, P,Initiator Performance for Liquid-FueledPulse Detonation Engines, AIAA2002-0472
    [65]郑龙席,严传俊,范玮等.脉冲爆震发动机模型机爆震室壁温分布实验研究[J].燃料科学与技术,2003,9(4):344-347.
    [66]杨世铭,陶文铨.传热学(第三版)[M].北京,高等教育出版社,2006.
    [67] T. R. A.Bussing, T.E.Bratkovich, J.B.Hinkey Jr. Practical implementation of Pulse DetonationsEngines, AIAA97-2748.
    [68] B. de Witt and G. Ciccarrelli, Shock Reflection Detonation Initiation Studies for PulseDetonation Engines.AIAA2004-3747, July.2004.
    [69]范育新,王家骅,宫继双,多循环PDE利用壁温蒸发煤油的试验研究,工程热物理学会燃烧分会,合肥,2009.
    [70]徐晓峰,解立峰,彭金华,环氧丙烷—空气混合物爆轰波胞格结构的研究。爆炸与冲击,2004,24(2),158-162.
    [71] Shepherd J.E. Detonation in gases. Preceedings of the combustion institute32(2009)83-98.
    [72] Cooper, M., Jackson, S., Austin, J., Wintenberger, E., and Shepherd, J. E..Direct experimentalimpulse measurements for deflagrations and detonations.37th AIAA/ASME/SAE/ASEE JointPropulsion Conference, July8-11,2001, Salt Lake City,UT, AIAA2001-3812.
    [73] Cooper, M.; Jackson, S., Austin, J., Wintenberger, E.,J. E. Shepherd. Direct Experimental ImpulseMeasurements for Detonations and Deflagrations. Journal of Propulsion and Power,20020748-4658vol.18no.5(1033-1041).
    [74] T. W. Chao, E.Wintenberger, J.E. Shepherd. On the Design of Pulse DetonationEngines[R].Graduate Aeronautical Laboratories California Institute of Technology Paradena CA91125U.S.A.
    [75]李建中.煤油/空气气动阀式脉冲爆震发动机研究[D].南京:南京航空航天大学,2005.
    [76]严传俊,范纬等著,脉冲爆震发动机原理及其关键技术,西北工业大学出版社,2004,P293-301
    [77]范育新,王家骅,李扬, PDE在模拟冲压进气条件下的台架推力修正.航空动力学报,第22卷,第10期,2007,10
    [78]张义宁,王家骅,张靖周,多循环吸气式脉冲爆震发动机推力直接测量,推进技术,第27卷,第5期.20012.10
    [79]范育新,王家骅,曹梦源,模拟进气条件对PDE推力测量的影响,推进技术,第24卷,第24卷,第2期,2008.4
    [80]郑龙席,严传俊等,脉冲爆震发动机平均推力特性计算和试验研究.实验流体力学,第19卷第3期,2005年9月.
    [81] Rbert J. Santoro and Sibtoshpal, Thrust Augmentation Measurements Using a pulse detonationejector, NASA/CR-2003-212191,2003.
    [82]张雄等,理论力学.清华大学出版社.2001.
    [83]某某发动机性能摸底试验分析报告,中航天科工集团三院31所内部资料,2009.
    [84] Winner318A工业喷雾激光粒度分析仪使用说明书.济南微纳仪器有限公司.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700