城市径流特征与人工湿地处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进行城市降雨径流的处理对降低我国城市非点源污染、促进城市雨水的资源化利用和缓解城市水危机均具有重要的现实意义。人工湿地处理技术适合城市径流特征,在城市非点源污染控制以及城市雨水的资源化利用中具有极大的潜力。目前,人工湿地应用于城市径流处理领域的研究较少,尤其是结合城市径流水文学特征和径流处理人工湿地运行特点及水力学特征的研究更是十分鲜见,使人工湿地在城市非点源污染控制和雨水资源化利用中的实际应用缺乏相应的理论基础和设计、运行参数。论文对重庆市不同下垫面径流的水文学特征进行了监测和考察,分析了城市径流的水质、水量特征;对棕榈湖人工湿地示范工程进行长期跟踪调研,分析了典型城市径流处理人工湿地的运行特征和存在的问题;通过模拟城市径流处理人工湿地的中试试验,较全面地考察了人工湿地在恒定负荷、间歇运行下的净化效果、污染物去除机理和运行影响参数;模拟城市径流处理冲击负荷条件,进行示踪剂试验和冲击负荷下污染物净化试验,探讨了径流处理人工湿地的水流规律和不同类型冲击负荷下人工湿地的污染物去除效果和特点,建立了非稳态条件下人工湿地水力停留时间分布归一化模型和基于停留时间分布的径流处理人工湿地污染物去除模型。
     城市径流水文学特征研究表明,下垫面性质是城市径流水质的重要的影响因素,有机物和悬浮固体是城市径流污染控制和城市雨水资源化利用应重点考虑的污染物去除对象。在所考察的各下垫面中,CODCr、氨氮、SS、TP、浊度及铅的多场降雨平均浓度EMC A值依次为:屋面径流<住宅区径流<校园径流<高速公路径流,其中,SS的EMC A值分别为9.74、163.97、285.06和645.61mg.L~(-1),SS年污染负荷率分别为118.8、1058.7、2658.5和7410.6 kg.ha~(-1)yr~(-1); CODCr的EMC A值分别为28.86、110.59、179.44和394.68 mg.L~(-1),CODCr年污染负荷率分别为352.0、714.1、1673.5、4530.3 kg.ha~(-1)yr~(-1)。城市径流污染过程具有强烈的随机性,但初始冲刷特征明显,初始冲刷效应强弱与降雨量、降雨类型及污染物类型有关。初期雨量是建立在初始冲刷效应理论基础上、以污染总量控制为目标的降雨径流污染特征参数。论文提出了基于“近似最大雨量Hmax”的初期雨量定义H0/Y%/Hmax,即对于≤Hmaxmm的降雨事件,初期H0mm降雨所产生的径流能携带整场降雨Y%以上的污染物。该定义在传统初期雨量定义的基础上考虑了不同降雨事件总降雨量的影响,使得定义的初期雨量H0值更为准确。
     恒定负荷、间歇运行试验表明,在水深0.4m、0.1114m~3.m~(-2).d~(-1)(HRT为36h)的恒定进水负荷下随机间歇运行,人工湿地对模拟城市径流中的CODCr、SS、TP以及重金属Pb的去除效果良好,各污染物年去除负荷和去除率分别达到2.128kg.m~(-2).yr~(-1)和79.6%、3.581kg.m~(-2).yr~(-1)和94.3%、13.826g.m~(-2).yr~(-1)和59.3%以及2.101g. m~(-2).yr~(-1)和76.8%。温度和季节对COD_(Cr)、SS、氨氮和Pb的去除效果影响不明显,对TP去除有明显的影响。水力停留时间HRT、水深和运行前间隔天数对污染物总体去除率影响的重要程度依次为:HRT>水深>运行前间隔天数,间歇运行的最优工况为HRT36h,水深400mm。运行试验1年内,人工湿地基质内总固体累积物量增加2.06倍,以无机成分为主,平均增长量达10.02mgTSS.g~(-1)填料。硝化是人工湿地除氮的限制步骤,受有机物水解氨化和异养微生物活动对DO竞争的影响,氨氮年去除率和去除负荷仅38.4%和21.632g. m~(-2). yr ~(-1)。植物对磷和铅的年吸收量分别为1.816g.m~(-2).yr~(-1)和16.579 mg.m~(-2)。yr~(-1),占年总磷和总铅去除贡献的13.2%和0.79%;沉积于填料固体累积物内的磷和铅分别为5.372 g.m~(-2).yr~(-1)和1.586g.m~(-2).yr~(-1),分别占年总磷和总铅去除贡献的38.9%和75.02%。在间歇运行停止进水期间,人工湿地水相中COD_(Cr)浓度随停进水天数的增加而持续下降,但有机物芳构化程度UV254/COD_(Cr)增加;停止进水期间,系统内DO浓度上升,氨氮浓度大幅度的降低,停止进水对增大系统中硝化菌的竞争力和促进硝化反应是有利的;人工湿地系统内pH值随停进水天数的延长而降低,导致磷的释放,对后续进水磷的吸附沉淀却造成了不利影响。
     不同水力状态(恒定负荷或冲击负荷)下,人工湿地的水力停留时间分布差异悬殊,采用基于动态流量Q ( s )的时间变量φ(φ= V _(sys)/1∫~t_λQ(t)dt )对RTD曲线时间轴进行归一化处理,可消除流量变化对停留时间分布的影响,将系统的混合、扩散等流态特征独立出来。归一化处理后的无量纲RTD曲线对人工湿地所处的水力负荷状态、示踪剂投加量等因素并不敏感,表现出稳定的停留时间分布特征,较原始的RTD曲线更能代表变负荷条件下人工湿地的特征水流规律。建立了CSTRs+PFD并联模型对归一化后的人工湿地停留时间分布进行模拟。模型含4个参数,可对RTD的峰值时间、峰值高度、倾斜度以及平均停留时间和停留时间分布方差等进行调节。将污染物去除一级反应动力学与污染物在人工湿地内的停留时间分布相结合,建立基于停留时间分布的径流处理人工湿地污染物去除模型,对单场降雨非稳态条件下的出水污染物浓度进行预测。模型参数包括归一化RTD函数C '(φ)和反应容积速率常数kV。通过模拟冲击负荷试验,对COD_(Cr)去除模型进行参数率定,得到试验人工湿地kV为1.580 d~(-1),该模型精确地描述了水力学流态对污染物去除的影响,能良好地模拟人工湿地在不同降雨条件下的出水浓度变化过程,为单场降雨污染物去除效果预测提供了有效途径。按与初始冲刷发生时间的先后分,冲击负荷类型对单场降雨中污染物出水浓度有重要影响,污染物去除效率高低依次为:无冲击>后期单峰冲击>初期单峰冲击>有初期冲击的多次冲击。但值得注意的是,人工湿地单位面积去除负荷大小却依次为:有初期冲击的多次冲击>初期单峰冲击>后期单峰冲击>无冲击,表明人工湿地对冲击负荷具有一定适应性。
     棕榈湖人工湿地示范工程跟踪调研表明,通过由于前置调蓄池的调节作用,人工湿地能在较均匀的间歇进水方式下运行,对提高人工湿地的处理效率效果明显。2007年,在总降雨量为1423.2mm,总降雨天数为143d的气象条件下,棕榈湖一期人工湿地停水闲置天数为135d,进水运行天数为230天,其中恒定进水负荷运行天数204d,出现水量冲击负荷的进水运行天数26d。单场降雨冲击负荷中可能发生污染物出水EMC达标而去除负荷为负值的情况,表明已出现湿地内部滞留污染物的再悬浮、再溶解和输出现象,因此,单场降雨冲击负荷下污染物的去除效果需从浓度控制和总量控制两方面考虑。旱季的主要运行问题为连续停止进水天数过长,人工湿地内持水量不足,导致湿地生态结构受到不利影响,如湿地优势植物种群的衰退;雨季的主要问题为暴雨冲击负荷下湿地内部滞留污染物的再溶解、再悬浮和输出问题。管理上可通过减少或增加湿地进水流量(调蓄池出水流量)的方法来调节旱季或雨季的缺水或水量盈余。另外,雨季可根据径流水质特点,采用溢流后期雨水的方法来避免长时间冲击负荷导致的湿地内部滞留污染物的输出。
Urban runoff treatment is of great importance for non-point pollution prevention, conservation of urban water resource, enhancement of stormwater utilzation and alleviation of municipal water crisis. Constructed wetland is a treatment technology fit for the characteristic of urban runoff, and its application in urban non-point source pollution control and stormwater utilization is urgently expected. However, present researches on constructed wetland for urban runoff treatment is scarce, expecially the research based on the characteristics of running, hydrology and hydraulics of this treament system. As there is lack of basical theory and patameter for design and runing, the development and application of urban runoff treatment constructed wetland are restricted. Precipitation hydrology for different urban cover in Chongqing has been studied and the Characteristics of water qualtity and quality of urban runoff are monitored and analyzed in this study. Demonstration project of palmspring constructed wetland for treatment of urban runoff is under long-period investigetion and its performance trait and problems are discussed. A pilot constructed wetland treating modeled urban runoff is built for experiment study, and performance, mechanism and effecting factors of pollutant removal under intermittent and constant inflow condition is investigated. Under the condition of modeled storm shock loads, tracer study and contaminants removal performance study have been carried out to investigate the hydrodynamics and pollution removal potentials of urban runoff treatment constructed wetlands. Nomalized RTD model and pollutant removal model based on residence time distribution for constructed wetland under non-steady-flow conditions.
     Research on hydrology of urban storm runoff indicate that characteristic of catchment cover is one of the most important factors which affect the qualtily of urban runoff, and control of organic matter and suspended solid should be given priority in urban runoff pollution prevention and utilization. Rank of average mean event concentration(EMC_A) of COD_(Cr), NH_4~+-N, SS, TP, turbidity and Pb in different catchment are: roof runoff     Experimental study in intermittent and constant inflow condition indicate that with constant inflow load of 0.1114m3.m~(-2).d~(-1)(HRT 36h)and water depth of 0.4m, the pilot constructed wetland showed a good pollutants removal performance for COD_(Cr)、SS、Tp and Pb. Annual removal loads and rates of these pollutants are 2.128kg.m~(-2).yr~(-1)and 79.6%, 3.581kg.m~(-2).yr~(-1)and 94.3%, 13.826g.m~(-2).yr~(-1)and 59.3% and 2.101g. m~(-2).yr~(-1)and 76.8% respectively. Impact of temperature and season on removal performance of COD_(Cr), SS, NH_4~+-N and Pb is not obvious except for TP. Influence rank of running parameters investigated is: HRT>water depth>resting period, and the most optimal running condition is under HRT of 36h and water depth of 0.4m. Total solid accumulation in substrates of constructed wetland after one year increase about 2.06 times and average 10.02mgTSS.g~(-1)substrate. Nitrification is the most critial process in nitrogen removal, which is affected by ammonification of organic compounds and compitition of DO between nitifiying bacteria and heterotrophic bacteria. Removal rate and load of ammonia are 38.4% and 21.632g. m~(-2). yr ~(-1). Removal of TP and Pb by plants assimilation are 1.816g.m~(-2).yr~(-1)and 16.579 mg.m~(-2)。yr~(-1), which contribute to 13.2% and 0.79% of the total removal respectivly. TP and Pb sink into solid accumulation in substrates of constructed wetland are 5.372 and 1.586g.m~(-2).yr~(-1), which contribute to 38.9% and 75.02%of the total removal respectivly. In resting period of intermittent running condition, concentration of COD_(Cr) in decreased with increasing resting days, the value of UV_(254)/COD_(Cr) , however, increased. DO concentration increased during resting period, and the concentration of ammonia decresed rapidly, which indicate that with no organic pollutant inflow and natural restoration of DO in resting period, competition potential of nitifiying bacteria and nitrification are enhanced. pH value decrease with increasing of resting days, and phosphors release is observed in constructed wetland and have adverse effect on phosphors removal in subsequent influent.
     Residence time distribution of constructed wetland is unstable in different hydrologic conditions such as constant flow and pulsed flow. Time variableφ( (φ= V _(sys)/1∫~t_λQ(t)dt )based on flow rate is used to normalize RTD, and the normalized precedure remove the effects of unstable flow rate, isolating the dipersive and mixing characteristics of the system. Tacer experiment indicated that normalized RTD is relatively stable and not sensitive to effects of flow rate and tracer injection amount. The normalized RTD is modeled with a series of continuous stirred tank in parallel with a plug flow tank with dispersion(CSTRs+PFD). There are four paramters in this model, which can regulate peak time, peak height, lean dgreen, mean residence time and distribution variance of RTD.
引文
[1]中华人民共和国水法导读, 2003.
    [2] 2004年中国环境状况公报.
    [3]建设部关于全国城市污水处理情况的通报,建城[2005]149号.
    [4]杨柳,马克明,郭青海,赵景柱.城市化对水体非点源污染的影响[J].环境科学, 2004, 25(6): 32~39.
    [5]贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学, 1998, 19(5): 87~91.
    [6] Lawrence A. Baker. Introduction to nonpoint source pollution in the United States and prospects for wetland use[J]. Ecological Engineering, 1992, 1(1-2): 1~26.
    [7] Andrzej Tonderski. Landues-based nonpoint source pollution. A threat to water resources in developing countries[J].Wat.Sci.Tech, 1996, 33(4-5): 33~61.
    [8] Jun HO Lee, KI Woong Bang. Characterization of urban stormwater runoff[J].Water Research, 2000, 34(6): 1773~1780.
    [9]鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学, 1996, 16(1): 66~72.
    [10]宫莹,阮晓红,胡晓东我国城市地表水环境非点源污染的研究进展[J].中国给水排水, 2003, 19(3): 21~23.
    [11]王和意,刘敏,刘巧梅,侯立军城市降雨径流非点源污染分析与研究进展[J].城市环境与城市生态, 2003, 16(6): 283~285.
    [12] US EPA. National water quality inventory. Report to congress Executive Summery [R]. Washington DC:USEPA.1995.344.
    [13] Ree-Ho Kim, Sangho Lee, Jinwoo Jeong, Jung-Hun Lee, Yeong-Kwan Kim. Reuse of grey water and rainwater using fiber filter media and metal membrane [J].Desilination, 2007, 202: 326~332.
    [14] Villarreal EL, Dixon A. Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrkoping, Sweden. Building and Environment. 2005, 40(9): 1174~84.
    [15]李圭白,李星.水的良性社会循环与城市水资源[J].中国工程科学, 2001, 3(6): 37~40.
    [16] Herrmann T, Schmida U. Rainwater utilisation in Germany: efficiency, dimensioning, hydraulic and environmental aspects. Urban Water 1999, 1(4): 307~316.
    [17] M.J.Braune, A.Wood. Best management practices applied to urban runoff quantity and quality control. Water Science and Technology,1999, 39(12):117~121.
    [18] M.J.Braune, A.Wood. Best management practices applied to urban runoff quantity and qualitycontrol. Water Science and Technology,1999, 39(12):117~121.
    [19] C.Allan. Quebec 2000:Millennyum Wetland Event Program with Abstracts. Canada, 2000, 8:12~56.
    [20] Hammer, D.A. Constructed Wetlands for Wastewater Treatment. Municipal, Industry and Agriculture[M].. Lewis Publishers, Chelsea, MI, USA. 1989: 5~20.
    [21] Cooper P. A review of the design and performance of vertical-flow and hybrid reed bed treatment system[J]. Water Science and Technology, 1999, 40 (3):1~9.
    [22] P. Cooper, B. Green. Reed bed treatment systems for sewage treatment in the United Kingdom-the first 10 years' experience [J]. Water Science and Technology, 1995, 32 (3):317~327.
    [23] Cooper P., Griffin P., Humphries S., Pound A. Design of a hybrid reed bed system to achieve complete nitrification and denitrification of domestic sewage[J]. Water Science and Technology., 1999, 40(3):283~289.
    [24] Johansen, N.H., Brix, H. Design criteria for a two-stage constructed wetland[C].Paper presented at the 5th International Conference on Constructed wetlands System for Water Pollution Control, Vienna, Austria, 1996, 9.
    [25] Lienard, A., Boutin, C., Esser, D. Domestic wastewater treatment with emergent helophye beds in France. In: Constructed wetlands in Water Pollution Control, P.F.Cooper and.
    [26] Burka, U., Lawrence, P. A new community approach to wastewater treatment with higher water plant. In: Constructed wetlands in Water Pollution Control, P.F.Cooper and B.C.Findlater(eds).Pergamon Press, Oxford, UK, 1990:359~371.
    [27] Laber, J., Perfler, R., Haberl, R. Two strategies for advanced nitrogen alimination in Vertical-flow constructed wetlands[J]. Water Science and Technology., 1997, 35(5):71~77.
    [28] G..Sun, K.R.Gray, A.J.Biddlestone, D.J.Cooper. Treatment of agricultural wastewater in a combined tidal flow-down flow reed bed system[J]. Water Science and Technology., 1999, 40(3):139~146
    [29] M.Green, E.Friedler, Y.Ruskol, I.Safrai. Investigation of alternative method for nitrification in constructed wetlands[J]. Water Science and Technology., 1997, 35(5):63~70.
    [30] D.M.Revitt, R.B.E.Shutes, N.R.Llewellyn, P.Worral. Experimental reed bed system for the treatment of airport runoff[J]. Water Science and Technology., 1997, 36(8-9):385~390.
    [31]冯培勇,陈兆平,靖元孝.人工湿地及其去污机理研究进展[J].生态科学, 2002, 21(3): 264~268.
    [32] G.Sun, K.R.Gray, A.J.Biddlestone. Treatment of agriculture wastewater in downflow reed bed:experimental trials and mathematical model[J]. Agric.Eng.Res., 69(1):63~71.
    [33] Hiley PD. The reality of sewage treatment using wetland[C]. ICWS’94 pro, 1994:68~83
    [34] Seidel K. Reinigung von Gewdssern durch hohere Wasserpflazen[J]. Naturwissenschaften, 1966, 53:289~297.
    [35] House CH. Combining constructed wetlands and aquatic and soil filter for reclamation and reuse of water. Ecol eng, 1999, 12:27~38.
    [36] Brix H. Use of constructed wetland in water pollution control: Historical development, present status, and future perspectives[J]. Wat Sci Tech, 1994, 30(8):209~223.
    [37] Kickuth SK. Macrophytes and water purification[A] . Biological Control of Water Pollution[ C]. Philadelphia: .Pensylvania Univercity Press.1976.
    [38] Brix H. The applicability of the wastewater treatment plant in Othfresen as scientific documentation of the root-zone method [J]. Wat Sci Tech, 1986, 19(10):19~24.
    [39] Vrhovsek D, Kuschk R. The use of constructed wetland for landfill leachate treatment[J]. Water Science and Technology., 1997, 35(5):301~306.
    [40] Kadlec H.R, Knight R.L. Treatment wetlands[M]. Bocaraton, FL:Lewis publisher, 1996.
    [41] H Obarska-Pempkowiak, M Gajewska. The removal of nitrogen compounds in constructed wetlands in Poland [J]. Polish Journal of Environmental Studies, 2003, 12(6): 739~746.
    [42]曹蓉,王宝贞,王琳,彭剑峰.东营的生态塘污水处理系统[J].中国给水排水, 2003, 19(13): 153~156.
    [43]胡国光,曹向东,穆瑞林.深圳市沙田人工湿地污水厂简介[J].给水排水, 2003, 29(8):30~31.
    [44]翟俊,何强,肖海文.凉山州泸沽湖镇污水处理厂工程设计[J].,中国给水排水, 2002, 12(28):39~42.
    [45]籍国东,孙铁珩,郭书海,马学军,李陪军.稠油采出水的人工湿地塘床处理系统设计[J].中国给水排水, 2002, 18(5):62~65.
    [46]招文锐,杨兵,朱新民,束文圣.人工湿地处理凡口铅锌矿金属废水的稳定性分析[J].生态科学, 2001, 20(4):16~20.
    [47]王平,周少奇.人工湿地研究进展及应用[J].生态科学, 2005, 24(3):278~281.
    [48] Gopal, B. 1999. Natural and constructed wetlands for wastewater treatment potential problems[J]. Water Science and Technology. , 1999, 40: 27~35.
    [49] Allen, L.H. Mechanics and Rates of Oxygen Transfer to and Through Submerged. Rhizomes and Roots via aerechyma[C]. Soil and Crop Science Society, Florida Proc., 1999, 56:47~54.
    [50] Dunbabin, J.S., Pokorny, J., Bowmer, K.H. Rhizosphere oxygenation by Thpha domingensis pers.in miniature artificial wetland filters used for metal removal from wastewaters[J]. Aquat.Bot., 1988, 29:303~317.
    [51] Steinberg, S.L., Coonrod, H.S. Oxidation of the root zone by aquatic plants growing in gravel-nutrient solution[J].Journal of environmental quality, 1994, 23:907~913.
    [52] Dierberg F E, DeBusk T A, Jackson S D, et al.Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading[J].Water Research, 2002, 36(6):1409~1422.
    [53] Pantip Klomjek, Suwanchai Nitisoravut. Constructed treatment wetland: a study of eight plant species under saline conditions[J]. Chemosphere, 2005(58):585~593.
    [54] A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate[J]. Water Research,, 2004, 38: 475~485.
    [55] Belmont M. A., Metcalfe C. D. Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants--a laboratory-scale study[J].Environ.Eng., 2003, 21:233~247.
    [56] Noemi Ran , Moshe Agami , Gideon Oron. A pilot study of constructed wetlands using duckweed Lemna gibba L for treatment of domestic primary effluent in Israel[J]., Water Research, 38 (2004), pp. 2241–2248.
    [57]靖元孝,陈兆平,杨丹菁.风车草对生活污水的净化效果及其在人工湿地的应用[J].应用与环境生物学报, 2002, 8(6):614~617.
    [58]廖新俤,骆世明,吴银宝,汪植三.风车草和香根草在人工湿地中迁移养分能力的比较研究[J].应用生态学报, 2005, 16(1):156~160 .
    [59]种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备, 2003, 4(2):36~40.
    [60]赵建刚,杨琼,陈章和,黄正光.几种湿地植物根系生物量研究[J].中国环境科学, 2003, 23(3):290~294.
    [61]成水平,夏宜铮.香蒲、灯芯草人工湿地的研究(Ⅲ):净化污水的机理[J].湖泊科学, 1998, 10(2):66~71.
    [62]靖孝元,杨丹菁,陈章和,陈兆平.两栖榕在人工湿地的生长特性及其对污水的净化效果[J].生态学报, 2003, 20(3):614~619.
    [63]靖孝元,杨丹菁,任延丽,李晓菊.水翁在人工湿地的生长特性及对污水的去除效果[J].环境科学研究, 2005, 18(1):9~13.
    [64]夏汉平.人工湿地处理污水机理与效率[J].生态学杂志, 2002, 21(4):51~59.
    [65] Leigh M., Grade, Jason M. Nicol, John G. Conran. Changes in Vegetation patterns on the margins of a constructed wetland after 10 years[J]. Ecological management & Restoration,2004, 5(2):111~116.
    [66] Lena Johansson. The use of LECA (Light Expanded Clay Aggregrates) for the removal of phosphorus from wastewater [J]. Water Science and Technology., 1997, 35(5):87~93.
    [67] C.A.Arias, M. Del Bubba, H.Brix. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds [J]. Water Research, 2001, 35(5):1159~1168.
    [68] Dong Cheol Seo, Ju Sik Cho, Hong Jae Lee, Jong Soo Heo. Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland [J]. Water Research, 2005, 39:2445~2457.
    [69] Shalla gray John Kinross, Paul read, Angus Marland. The nutrient assimilative capacity of maeral as a substrate in constructed wetland systems for waste treatment[J]. Water Research, 2000, 34(8):2183~2190.
    [70] Andrea S. Brooks, Melissa N. rozenwald, Larry D. Geohring, Leonard W. lion, Tammo S. Steenhuis. Phosphorus removal by wollastonite: a constructed wetland[J].Ecological Engineering, 2000, 15(1-2):121~132.
    [71] Lena Johansson. The use of LECA (Light Expanded Clay Aggregates) for the removal of phosphorus from wastewater[J]. Water Science and Technology., 35(5), 97~93.
    [72] Ann Y, Reddy K R, Delfino J J. Influence of chemical amendments on phosphorus immobilization in soil from a constructed wetland [J]. Ecological Engineering, 2000, 14:157~167.
    [73] Mays, P.A., G.S.Edwards. Comparison of heavy metal accumulation in natural wetland and constructed wetlands receiving acid mine drainage [J]. Ecological Engineering, 2001, 16:487~500.
    [74] Sistani K R, Mays D A, Taylor R W. Development of natural conditions in constructed wetlands: Biological and chemical changes[J]. Ecological Engineering, 1999, 12:125~131.
    [75]朱莉.斯托弗.水危机——寻找解决淡水污染的解决方案[M],科学出版社, 2000, 4:130~148.
    [76] Mays, P.A., G.S.Edwards. Comparison of heavy metal accumulation in natural wetland and constructed wetlands receiving acid mine drainage [J]. Ecological Engineering, 2001, 16:487~500.
    [77] Dunbabin J.S., Bowmer K.H. Potential use of constructed wetlands for treatment of industrial wastewater containing metals. [J]. Science of the Total Environment, 1992, 111: 151~168.
    [78]殷峻,闻岳,周琪.人工湿地中微生物生态的研究进展[J].环境科学与技术, 2007, 30(1):108~110.
    [79] OttováV, BalcarováJ, Vymazal J. Microbial characteristics of constructed wetlands[J]. Wat.Sci.Tceh., 1997, 35(5):117~123.
    [80]梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水, 2003, 19(10):28~31.
    [81]陈能场,童庆宣.根际环境在环境科学中的地位[J].生态学杂志, 1994, 13(3): 45~52.
    [82]周巧红,吴振斌,付贵萍,成水平,贺锋.人工湿地基质中酶活性和细菌生理群的时空动态特征[J].环境科学, 2005, 26(2):108~112.
    [83] Silyn-Roberts G, Lewis G. In situ analysis of nitrosomonas spp.in wastewater treatment wetland biofilms [J]. Water Research, 2001, 35(11):2731~2739.
    [84] Lloyd JR, Klessa DA, Parry DL, et al. Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis[J]. Water Research, 2004, 38(7):1822~1830.
    [85] Somes, N L G, Persson, J, Wong, T H F, Influence of wetland design parameters on the hydrodynamics of stormwater wetlands[J]. Hytrastorm, Adelaide, 1998, 9(27-30):123-128.
    [86] Urban.D.T. Methods of determining residence time distributions in a reconstructed wetland[J]. M.S. thesis, 1990, Illinois Institute of Technology, Chicago, IL.
    [87]付贵萍,吴振斌,任明迅,贺锋.垂直流人工湿地系统中水流规律的研究[J].环境科学学报, 2001, 6:721-7125.
    [88] Levenspiel, O. Chemical Reaction Engineering, 2nd ed.1972, wiley, New York.
    [89] Robert H. Kadlec.Detention and mixing in free water wetlands[J]. Ecological Engineering, 1994, 3(4): 345~-380.
    [90] K.R.Reddy, E.M.D.Angelo. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands[J]. Wat.Sci.Tceh., 1997, 35(5):1~10.
    [91] Aracelly Caselles-Osorio, Joan Garcia. Performance of experimental horizontal subsurface flow constructed wetlands fed with dissolved or particulate organic matter[J]. Water Research, 2006, 40:3603~3611.
    [92] Baptista J.D.C., Donnelly T., Rayne D., Davenport R.J., Microbial mechanisms of carbon removal in subsurface flow wetlands[J], Wat.Sci.Tceh., 2003, 45(5):127~134.
    [93] Pinney M.L.; Westerhoff P.K.; Baker L. Transformations in dissolved organic carbon through constructed wetlands[J]. Water Research, 2000, 34(6): 1897~1911.
    [94] Johanssona A E, Gustavssonb A M, Oquist M G.Methane emissions from a constructed wetland treating wastewater-seasonal and spatial distribution and dependence on edaphic factors.Water Research, 2004, 38:3960~3970.
    [95] Macttchy G. P., Reddy K. R. Regulation of organic matter decomposition and nutrient releasein a wetland soil[J]. J.Environ.Qual., 1998, 27:1268~1274
    [96] Lloyd JR, Klessa DA, Parry DL, et al. Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis[J]. Water Research, 2004, 38(7): 1822~1830.
    [97] LaRiviere D.J.; Autenrieth R.L.1; Bonner J.S..Redox dynamics during recovery of an oil-impacted estuarine wetland [J]. Water Research, 2003, 37(14): 3307~3318.
    [98] SARA GERKE, LAWRENCE BAKER, YING XU. Nitrogen transformations in a wetland receiving Lagoon effluent: sequential model and implications for water reuse[J].Water Research, 2001, 35(16): 3857~3866.
    [99] Martin J.F., Reddy K.R.. Interaction and spatial distribution of wetland nitrogen processes [J]. Ecological Modelling, 1997, 105(1): 1~21.
    [100] Cooper P F, Job G D, Green M B, Shutes R B E. Reed beds and constructed wetlands for wastewater treatment[M]. Medmenham Marlow, UK:WRc Publications:29~34.
    [101] Borin M, Tocchetto D. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters〔J〕.Science of Ttotal Environment, 2007, 380: 38~47.
    [102] Sun, G., Zhao, Y., Allen, S. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system[J]. Biotechnol, 115:189~197.
    [103] Jayaweera GR, Mikkelsen DS 1991: Assessment of ammonia. volatilization from flooded soil systems[J]. Advances. in Agronomy, 45: 303~356.
    [104]孙亚兵,冯景伟,田园春,等..自动增氧型潜流人工湿地处理农村生活污水的研究[ J ].环境科学学报, 2006,26 (3) : 404~408.
    [105] S.Y.Chan, Y.F.Tsang, L.H.Cui, H.Chua. Domestic wastewater treatment using batch–fed constructed wetland and predictive model development for NH3-N removal[J]. procedd Biochemistry 2008, 43: 297~305.
    [106]任拥政,章北平,海本曾.利用充氧和回流强化波形潜流人工湿地的脱氮效果[J].环境科学, 2007, 28(12):2700~706.
    [107] Michal Green, Eran Friedle, Iris Safrai.Enhancing nitrification in vertical flow constructed wetland utilizing a passive air pump[J]. Water Research, 1998, 32(12):3513~3520.
    [108] Robertston, L.A., Kuenen, J.G. Combined heterotrophic nitrification and aerobic denitrification in. Thiosphaera pantotropha. and other bacteria[J]. Antonie van Leeuwenhoek, 1990, 57:139~152.
    [109] Van Loodstrecht, M.C.M., Jetten, M.C.M. Microbiological conversions in nitrogenremoval[J].Water Sci. Technol, 1998.38(1):1~7.
    [110] Strous, M, Fuerst, JA, Kramer, EHM, Logemann, S, Muyzer, G, van de Pas-Schoonen, KT, Webb, R, Kuenen, JG and Jetten, MSM. Missing lithotroph identified as new planctomycete[J]. Nature1999, 400:446~449.
    [111] Ashna A. Raghoebarsing1, Arjan Pol1, Katinka T. van de Pas-Schoonen1, Alfons J. P. Smolders2, Katharina F. Ettwig1, W. Irene C. Rijpstra3, Stefan Schouten3, Jaap S. Sinninghe Damsté3, Huub J. M. Op den Camp1, Mike S. M. Jetten1, Marc Strous. A microbial consortium couples anaerobic methane oxidation to denitrification[J] Nature ,2006, 440:, 918~921.
    [112] K.A. Third, A.O. Sliekers, J.G. Kuenen and M.S.M. Jetten. The CANON system (Completely Autotrophic Nitrogen-removal Over Nitrite) under ammonium limitation: interaction and competition between three groups of bacteria[J]. Systematic and applied microbiology, 2001, 24(4): 588~596.
    [113] Guangzhi SUN , David Austin. Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: Evidence from a mass balance study[J]. Chemosphere 2007, 68:1120~1128.
    [114] Martin J.F., Reddy K.R.. Interaction and spatial distribution of wetland nitrogen processes [J]. Ecological Modelling, 1997, 105(1): 1~21.
    [115] Cooper, A.B. Nitrate depletion in the riparian zone and stream channel od small headwater catcthment[J] .Hydrobioloia. 1990, 202:13~26.
    [116] Gale, P.M., Reddy, K.R., Graetz, D.A. Denitrification potential of soil from constructed and natural wetlands[J] . Ecological engineering, 1992, 2:119~130.
    [117]谭洪新,刘艳红,周琪,杨殿海.添加碳源对潜流+表面流组合湿地脱氮除磷的影响[J].环境科学, 2007, 28(6):1209~1215.
    [118] Sheng Zhou, Masaaki Hosomi. nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water trwatment using forage rice in Japan[J].Ecological engineering, 2008, 32:147~155.
    [119] Münch, Ch., Kuschk, P., R?ske, I.Root stimulated nitrogen removal: only a local effect or important for water treatment[J]. Water Science and Technology, 2005, 51(9):185~192.
    [120] Ward, B.B.Nitrofication and denitrification :probing in the nitrogen cycle in aquatic environment[J].Microbiology Ecology, 1996, 32:247~261.
    [121] IWA, 2000, Constructed wetland for pollution control—progress, performance design and operation[M].IWA Publishing , London:63~65
    [122] Reddy K R, Angelo E M D. Biogeochemical indicators to evaluate pollutant removalefficiency in constructed wetlands[J].Water Science Technology, 1997, 35(5):1~10.
    [123] Divis, C.B., van der Valk, A.G. .Uptake and release of nutrients by lining and decomposing Typha glauca Godr., tissues at Eagle lake, Iowa.Aquat.Bot. , 1983, 16:75~89.
    [124]李晓东;孙铁珩,李海波,王洪.人工湿地除磷研究进展[J].生态学报, 2007, 27(3): 1226~1232.
    [125] Reddy, K.R., R.H. Kadlec, E. Flaig and P.M. Gale. 1999. Phosphorus assimilation in streams and wetlands: Critical reviews. Env. Science and Tech. 29:1~64.
    [126] Coveney, M. F., Sites, D. L., Lowe., E. F., Battoe, L. E., Conrow, R., Nutrient removal from eutrophic lake water by wetland filtration[J].Ecological Engineering, 2002, 19(2):141~159.
    [127] Kerepeczki E, Gal D, Szabo P, Peker F. Preliminary investigations on the nutrient removal efficiency of a wetland-type ecosystem[J].hydrobiology, 2003, 506:665~700.
    [128] AFM Meuleman, R van Logtestijn, GBJ Rijs, JTA water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment[J] Ecological Engineering, 2003, 20(1):31~44.
    [129] C Schulz, J Gelbrecht, B Rennert. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow[J].Aquaculture, 2003, 217(1-4):207~221.
    [130] Baldwin DS, Mitchell AM. The effects of drying and rewetting on the sediment and soil nutrient dynamics of lowland river floodplain systems:a synthesis. RegulRivers Res Mgmt, 2000, 16:457~467.
    [131] Yong EO, Ross DS. Phosphate release from seasonally flooded siols: a laberatory microcosm study. J Environ Qual, 2001, 30:91~101.
    [132] Nnewsman S, Pietro K. Posphorus storage and release in response to flooding: implications for everglades stormwater treatment areas.Ecol Eng., 2001, 18:23~28.
    [133] Richardson JR, Craft CB. Effective phosphorus retention in wetlands : fact of fiction? In: Moshiri GA, editor. Constructed wetlands for water quality improvement. Boca Raton, FL:Lewis Publisher, 1993, 271~282.
    [134] Drizo A, Comeau Y, Foget C.Chapuis RP, Phosphorus saturation potential:A parameter for estimating the longevity of eonstructed wetland systems[J]. Environ Sci Technol, 2002, 36: 4642~4648.
    [135] US EPA. Constructed wetland treatment of municipal wastewater manualcincinati office of research and development, 2000.
    [136] Maine M A; Su?e N; Hadad H; Sánchez G. Temporal and spatial variation of phosphate distribution in the sediment of a free water surface constructed wetland[J]. The Science ofthe total environment 2007;380(1-3):75~83.
    [137] Caselles-Osorio A, Puigagut J, SegúE, Vaello N, Granés F, García D, García J. Solids accumulation in six full-scale subsurface flow constructed wetlands[J].Water Research, 2007, 41:1388~1398.
    [138]童巍,朱伟,阮爱东.垂直流人工湿地填料的淤堵机理初探[J].湖泊科学2007, 19(1): 25~31.
    [139] Winter KJ, Goetz D. The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands f[J]. Water Sci Technol. 2003,48(5):9~14.
    [140] Dingfang Liu, John J. Sansalone, M.ASCE, Frank K. Cartledge. Comparison of sorptive filter media for treatment of metals in runoff[J].Journal of environmental engineering, 2005, 131(8):1178~1186.
    [141] Jan Vymazal, Jaroslav ?vehla, Lenka Kr?pfelová, Vladislav Chrastny. Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands[J]. Science of The Total Environment2007, 380(1-3): 154~162.
    [142]陈桂葵,陈桂珠.白骨壤模拟湿地系统中Pb的分布、迁移及其净化效应[J].生态科学, 2005, 24(1): 28~30.
    [143]阳承胜,蓝崇钰,束文圣.重金属在宽叶香蒲人工湿地系统中的分布与积累[J].水处理技术, 2002, 28(2):101~103.
    [144] Mahesh W. Jayaweera , Jagath C. Kasturiarachchi , Ranil K.A. Kularatne , Suren L.J. Wijeyekoon. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands Journal of Environmental Management, 2008, 87:450~460.
    [145] R. Chandra, S. Yadav, R.N. Bharagava, R.C. Murthy. Bacterial pretreatment enhances removal of heavy metals during treatment of post -methanated distillery effluent by Typha angustata L. [J]. Journal of Environmental Management, 2008, 88(4):1016~1024.
    [146] Roberto Reinoso, Linda Alexandra Torres, Eloy Bécares. Efficiency of natural systems for removal of bacteria and pathogenic parasites from wastewater[J]. Science of The Total Environment, 2008, 395(2-3):80~86.
    [147] Mercedes García, Félix Soto, Juan M. González, Eloy Bécares. A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems[J]. Ecological Engineering, 2008, 32(3):238~243.
    [148] Thurston J.A., Gerba C.P., Foster K.E. , Kappiscak M.M. Fate of indicator microorganisms, Giardia and Cryptosporidium in subsurface flow constructed wetlands[J]. Water research, 2001, 35(6): 1547~1551.
    [149] Hench, K. R., Bissonnette, G. K., Sextone, A. J., Coleman, J. G., Garbutt, K., and Skousen, J. G. Fate of Physical, Chemical and Microbial Contaminants in Domestic Wastewater Following Treatment by Small Contrusted Wetlands[J].Water Reserch, 2003, 37(4):921~927.
    [150] H. Wanda, G. Vaccab, P. Kuschkb, M. Krügerc and M. K?stnerRemoval of bacteria by filtration in planted and non-planted sand columns[J]. Water Research,2007, 41(1):159~167 .
    [151] MM Karpiscak, CP Gerba, PM Watt, KE Foster and JA Falabi, Multi-species plant systems for wastewater quality improvement and habitat enhancement[J].Water science and technology, 1996.33:231~236.
    [152] Mohammad R. Karim, Faezeh D. Manshadi, Martin M. Karpiscak, Charles P. Gerba. The persistence and removal of enteric pathogens in constructed wetlands[J].Water Reserch., 2004, 38:1831~1837.
    [153] J Perkins, C Hunter. Removal of enteric bacteria in a surface flow constructed wetland in Yorkshire, England[J].Water Reserch., 2000, 34(6):1941~1947.
    [154] O.Decamp, A. Warren. Investigation of Escherichia coli removal in various designs of subsurface flow wetlands used for wastewater treatment[J]. Ecological Engineering, 2000, 14(3): 293~299.
    [155] Solo F., Garcia M., De Luis E., Becares E. Role of Scirpus lacustris in bacterial and nutrient removal from wastewater[J]. Water science and technology, 1999, 40(3): 241~247.
    [156] S.Kirsten, T. Alexandra, L.Günter , H. Raimund. Investigation of bacterial removal during the filtration process in constructed wetlands[J]. Science of the total environment, 2007, 380:173~180.
    [157] Tanner C C, Clayton J S, Upsdell M P. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlandsI: Removal of oxygen demand, suspended solids and faecal coliforms[J]. Ecological Engineering, 1995, 29:17~26.
    [158] G Vacca, H Wand, M Nikolausz, P Kuschk, M K?stner. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands[J]. Water Reserch., 2005, 39(7): 1361~1373.
    [159] K. Hatano, CC Trettin, CH House, and AG Wollum. Microbial Populations and Decomposition Activity in Three Subsurface Flow Constructed Wetlands. In:Moshiri GA, editor. Constructed wetlands for water quality improvment. Lewis Publications, 1993:541~548.
    [160] Rousseau D.P, Vanrolleghem PA, De Pauw N. Model-based design of horizontal subsurfaceflow constructed treatment wetlands: a review[J]. Water Research, 2004,38:1484–1493.
    [161] Kadlec RH. Deterministic and stochastic aspects of constructed performace and design[J]. Water Sci Technol, 1997, 35(5):149~156.
    [162] K.C. Bal Krishna, Chongrak Polprasert . An integrated kinetic model for organic snd nutrient removal by duckweed-based wastewater treatment system[J]. Ecological Engineering, 2008, 34(3): 243~250.
    [163] Shepherd, H.L., Tchobanoglous, G..Grismer, M.E. Time-Dependent Retardation Model for Chemical Oxygen Demand Removal in a Subsurface-Flow Constructed Wetland for Winery Wastewater Treatment[J]. Water Environment Research, 2001, 73(5):597~606.
    [164] Drizo A, Frost C A, Grace J, Smith K A. Phosphate and ammonium distribution in a pilot-scale constructed wetland with horizontal subsurface flow using shale as a substrate[J]. Water research, 2000, 34(9): 2483~2490.
    [165] Nitisoravut S, Klomjek P. Inhibition kinetics of salt-affected wetland for municipal wastewater treatment[J]. Water research, , 2005, 39(18): 4413~4419.
    [166] Schierup, H., Brix, H, Lorenzen, B. Spildevandsrensning i Rodzoneanlag. Botanical institue, Aarhus University, Denmark:88.
    [167] Kadlec R.H. The inadequacy of first-order treatment wetland models[J]. Ecological Engineering, 2000;15:105–19.
    [168] Persson J., Somes N.L.G., Wong T.H.F. Hydraulics efficiency of constructed wetlands and ponds[J]. Water science and technology, 1999, 40: 291~300.
    [169] Tony H.F. Wong, Tim D. Fletcher, Hugh P. Duncan, Graham A. Jenkins. Modelling urban stormwater treatment—A unified approach[J]. Ecological Engineering, 2006, 27:58~70.
    [170] Marsili-Libelli S, Checchi N.2005.Identification of dynamic models for horizontal subsurface constructed wetlands.Ecological Modelling, 187:201~218..
    [171] Wymn TM, Liehr SK.2001.Development of a constructed subsurface-flow wetland simulation model.Ecological Engineering, 16:519~536.
    [172] Langeergraber G. simulation tool for subsurface flow constructed wetlands: results and further research needs[J].water science and technology, 2003, 48:157~166.
    [173]重庆气候与气象灾害. http://www.121.cq.cn/service/cqweather.htm#one.
    [174]国家环保总局,水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学科学出版社, 2002.
    [175] Bertrand Krajewski Jean-Luc, Chebbo G, Saget A. Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon[J]. Water research, 1998, 32(8):2341~2356.
    [176] Sansalone J. J. and Buchberger S. G. Partitioning and first flush of metals in urban roadway storm water[J].Environ. Eng. 1997, 123(2):134~143.
    [177] Geiger W F. Characteristic of combined sewer runoff[C]. Proceeding of the 3rd International Conference on urban storm drainage, Goteborg, Sweden, 1984:851~860.
    [178] Ebise S. Storm runo. behaviours and loading of pollutants[J]. JWPR, 1985, 8, 499~504.
    [179]李立青,尹澄清,何庆慈,孔玲莉.武汉市城区降雨径流污染负荷对受纳水体的贡献[J].中国环境科学2007, 27(3): 312~316.
    [180]黄锡荃.水文学[M].高等教育出版社, 1993.
    [181]纪桂霞,王平香,邱卫国.上海市屋面雨水水质监测与处理利用方法研究[J].上海理工大学学报, 2006, 28(6): 594-598.
    [182]黄金良,杜鹏飞,欧志丹,李香梅,等.澳门屋面径流特征初步研究[J].环境科学学报, 2006, 26(7):1076~1081.
    [183]车伍,李俊奇.城市雨水利用技术与管理[M].中国建筑工业出版社, 2006, 8.
    [184]中华人民共和国国家标准.建筑与小区雨水利用工程技术规范GB50400~2006. 2006, 9:68~69.
    [185] Collins P.G, Ridgway J W.Urban storm Runoff quality in southeast Michigan. J of the Envir Engrg ASCE, 1980, 106(EE1): 485~501.
    [186] J.J.Sanlsalone and S G Buchberger.An Introduction Device as a Best Management Practice for Immobilizing Heavy Metals in Urban Highway Runoff[J].Wat Sei Tech, 1995, 332(1):119~125.
    [187] Yamamoto K, Suetsugi T. Estimation of particulate nutrient load using turbidity meter f[J]. Water Sci Technol., 2006, 53(2):311~320
    [188]张亚东等.北京城区道路雨水径流污染指标相关性分析[J].城市环境与城市生态, 2003, 16(6): 182-184.
    [189]赵剑强.城市路面径流雨水水质特性及排污规律[J].长安大学学报, 2002, 22(2): 21-23.
    [190] Gary R M. Revisiting design criteria for stormwater treatment systems. Stormwater , Ecological Engineering, 2005 , 6 (2) :7~12.
    [191] M.S. Buffleben, K. Zayeed, D. Kimbrough, M.K. Stenstrom, I.H. Suffet. Evaluation of urban non-Point source runoff of hazardous metals that enters Santa monica bay California. Water Science and Technology, 2002, 45:263-268.
    [192] Gupta K, Saul AJ1 Specific relationships for the first flush load in combined sewer systems[J]. Water Research , 1996, 30(5) :1244– 12521.
    [193] EPA Manual for combined sewer overflow control[R].EPA report , EPA/625/R-93/007, Cinci-nnati, USA 1993:95.
    [194] Tsihr intzis V A , Hamid R. Modeling and management of urban stormwater runoff quality : a review [J] . Water Resources Management , 1997 , 11(2) : 136~164.
    [195] Deletic A B , Maksimovic C T. Evaluation of Water Quality Factorsin Storm Runoff from Paved Areas [J] . Jounal of EnvironmentEngineering , ASCE, 1998 , 124(9) : 869~879.
    [196]李立青,尹澄清,孔玲莉,何庆慈. 2次降雨间隔时间对城市地表径流污染负荷的影响[J].环境科学, 2007, 28(10): 2287~2293.
    [197] USEPA. National management measures to control nonpoint source pollution from Urban areas. U.S Environmental Protection Agency Office of Wetlands, Oceans, and watersheds, Nonpoint Source Control Branch 1200 Pennsylvania Avenue, N.W. Washington, DC 20460, July 2002.
    [198]刘文兵,史建福,黄时达;人工湿地床示踪剂的研究[J].四川环境; 1995, 4::11~15.
    [199] Vymazal J, Brix H, Cooper PF, Haberl R, perfler R, Laber J. Removal mechanisms and types of constructed wetlands.In: Vymazal J, Brix H, Cooper PF, Green MB, Haberl R, editors. Constructed wetlands for wastewater treatment in Europe. Leiden: Backhuys publishers; 1998:11~60.
    [200] Taylor, T., Bishop, P. Distribution and role bacterial nitrifying population in nitrogen removal in aquatic treatment system. Water Research 1998, 23, 947~955.
    [201] J.F.holland, J.F.Martin, Tiomothy Granata, Virginie Bouchard, Martin Quigley, Larry Brown.Effects of wetland depth and flow rate on residence time distribution characteristics[J]. Ecological Engineering, 2004, 11(3): 189~203.
    [202] Chin, Y.-P., Aiken, G. and O’Loughlin, E., 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 28, pp. 1853–1858.
    [203] Rousseau, D.P.L., Vanrolleghem, P.A., De Pauw, N.. Constructed wetland in flander: a performance analysis. Ecological Engineering, 2004, 23(3):251~163.
    [204] Winter K J.Goetz D. The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands[J].Water Science and Technology, 2003(5):9~14.
    [205] Thomas R E, Schwartz W A, Bendixen T W. Soil chemical changes and infiltration rate reduction under sewerage spreading[J]. Soil Sci., 1996, 30(11):641~646.
    [206] Chris C tanner, James P S Sukias, Martin P Upsdell. Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters[J]. Water Research, 1998, 32(10):3046~3053.
    [207] Tanner C C, Sukias J P. Accumulation of organic solids in gravel bed constructed wetlands[J].War.Sci.Tech., 1995, 32(3):229~239.
    [208] Kadec R H, Watson J T. Hydraulics and solid accumulation in a gravel bed treatment wetland[A]. Constructed wetland for water quality improvement[M]. Lewis Publisher(MI),1993:227~235.
    [209]詹德昊,吴振斌,张晟,成水平,傅贵萍,贺峰.堵塞对复合垂直流湿地水力特征的影响[J].中国给水排水, 2003, 19(2):1~4.
    [210] Chan SY, Tsang YF, Chua H, Sin SN, Cui LH. Performance study of vegetated sequencing batch coal slag bed treating domestic wastewater in suburban area[J]. Bioresour Technol. 2008, 6 , 99(9):3774~81.
    [211]谭洪新,刘艳红,周琪.新建组合填料潜流湿地脱氮除磷研究[J].上海水产大学学报, 2007,16(1): 73-78.
    [212] Christoph Platzer. Design recommendations for subsurface flow constructed wetlands for nitrification and denitrification[J]. War.Sci.Tech., 1999, 40(3): 257~263.
    [213] Comin F A.Romero J A.Astorga V Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff 1997(5): 255~261.
    [214] K Von Felde, S Kunst . N and COD removal in vertical flow systems[J]. Water Science and Technology, 1997, 35(5):79~85.
    [215] Joan S. Thullen, S.Mark Nelson, Brian S. Cade, James J.Sartoris. Macrophyte decomposition in a surface-flow ammonia dominated constructed wetland:rates associated with environmental and biotic variables[J]. Ecological engineering, 2008, 32:281~290.
    [216] S.Y.Chan, Y.F.Tsang, L.H.Cui, H.Chua. Domestic wastewater treatment using batch–fed constructed wetland and predictive model development for NH3-N removal[J]. procedd Biochemistry 2008, 43: 297~305.
    [217] Ch.Munch, P.Kuschk, I.Roske. Root stimulated nitrogen removal: only a local effect of important for water treatment[J]. Wat.Sci.Tceh., 2005, 51(9):185~192.
    [218] B.B.Ward. Nitrification and denitrification:probing in the nitrogen cycle in aquatic envirnments[J]. Microbiology Ecology, 1996, 32:247~261.
    [219] Jayaweera, Gamani R | Mikkelsen, Duane S. Assessment Of Ammonia Volatilization From Flooded Soil Systems[J]. Advances in Agronomy, 1991, 45:303~356.
    [220] J.Vymazal. Nitrogen removal in constructed wetlands with horizontal subsurface flow-can the key process? Bachhuys Publishers, Leiden, 1999:1~18.
    [221]缪绅裕,陈桂珠,黄玉山.人工污水中的磷在模拟秋茄湿地系统中的分配与循环[J]生态学报, 1999, 3:237~242.
    [222]阳承胜,蓝崇钰,张干. N、P、K在宽叶香蒲人工湿地系统中的分布与积累[J].深圳大学学报理工版, 2005, 7:264~267.
    [223] Janjit Iamchaturapatra, Su Won Yi, Jae Seong Rheea. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland[J]. ecological engineering 2007, 29: 287–293.
    [224]蒋跃平,葛滢,岳春雷,常杰.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004, 8:1720~1725.
    [225] Jan Vymazal. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380:48~65.
    [226] Richardson CJ, Qian SS, Craft BC, Qualls RG. Predictive models forphosphorus retention in wetlands. Wetlands Ecol Manag1997;4:159~75.
    [227] Craft BC, Richardson CJ. Peat accretion and phosphorus accumulationalong a eutrophication gradient in the northern Everglades.Biogeochemistry 1993;22:133~56.
    [228] Richardson CJ. Mechanisms controlling phosphorus retention capacityin freshwater wetlands. Science 1985;228:1424~1427.
    [229] Richardson CJ, Marshall PE. Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecological Monographs, 1986;56:279~302.
    [230] M.S. Buffleben, K. Zayeed, D. Kimbrough, M.K. Stenstrom,I.H. Suffet. Evaluation of urban non-Point source runoff of hazardous metals that enters Santa monica bay California. Water Science and Technology, 2002,45:263~268
    [231] Mary Ellen TuccilloT. Size fractionation of metals in runoff from residential andhighway storm sewers[J]. Science of the Total Environment 2006, 355: 288~300.
    [232]陈桂葵,陈桂珠.白骨壤模拟湿地系统中Pb的分布、迁移及其净化效应[J].生态科学, 2005, 24(1):28~30.
    [233]郑文教,林鹏. 1996.深圳福田白骨壤群落Cu, Pb, Zn和Cd的累积及分布[J].海洋与湖沼, 27(4): 386~393.
    [234] Werner, T.M., Kadlec, R.H. Application of residence time distributions to stormwater treatment system[J].Ecological Engineering, 1996, 7(3):213~234.
    [235] Levenspiel, O. Chemical reaction engineering. 2d ed[M]. 1972 .Wiley, New York.
    [236]李现坡,杨勇,马院红,余兆祥.潜流式湿地系统停留时间分布实验结果分析[J].环境污染与防治, 2008, 30(2):64~67.
    [237]付贵萍,吴振斌,任明迅,贺锋.垂直流人工湿地系统中水流规律的研究[J].环境科学学报, 2001, 6:721~7125.
    [238]成水平,况琪军,夏宜争.香蒲、灯心草人工湿地的研究———Ⅰ.净化污水的效果[J ] .湖泊科学,1997 ,9(4) :351~357.
    [239] M A Maine, N Su?e, H Hadad, G Sánchez . Temporal and spatial variation of phosphate distribution in the sediment of a free water surface constructed wetland[J]. Science of The Total Environment , 2007, 380(1-3):75~83.
    [240] Schiff Kenneth C., Allen M. James , Zeng Eddy Y. , Bay Steven M. Southen California Marine pollution bulletin ,2000, 41: 76~93.
    [241] Thackston, E.L., Shields Jr., F.D. and Schroeder, P.R.. Residence time distributions of shallow basins[J]..Environmental. Engineering,1997,113 (6):1319~1332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700