UVA照射对黑腹果蝇生物学特性和抗氧化反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然界有很多昆虫具有趋光行为,尽管人类很早就开始利用昆虫的趋光性防治害虫,但有关昆虫趋光的光谱特性、感光生理等方面的研究仍不能阐明昆虫趋光的根本原因。黑腹果蝇(Drosophila melanogaster)是具有趋光性的日行性昆虫,对UVA有强烈趋性。本文以黑腹果蝇为实验材料,研究了不同UVA强度(200±25μw/cm2,10±μw/cm2)和不同时间(1h、2h、3h)的照射对其成虫寿命、繁殖力和子代生长发育等生物学特性的影响,测定了不同UVA照射及不同日龄黑腹果蝇体内脂质过氧化、总抗氧化能力及抗氧化酶活性的变化,以期从生物学和生理学方面探讨昆虫趋光的本质。主要研究结果如下:
     1.UVA照射对黑腹果蝇成虫寿命和繁殖力的影响
     黑腹果蝇成虫寿命UVA组高于对照组,不同照射强度间差异显著(p<0.001),其中,高强度短时间和低强度有利于果蝇存活,而高强度长时间照射导致寿命缩短;在繁殖力测定中,不同UVA强度和照射时间下的总产卵量差异不显著,但经UVA照射的产卵量均高于对照组,而且随着照射时间的延长产卵量不断增加,低强度3h处理组的产卵量增加最多。总之,低强度的UVA照射有利于黑腹果蝇成虫的存活和繁殖。
     2.UVA照射对黑腹果蝇F1代存活率和发育历期的影响
     果蝇成虫经受UVA不同强度和时间照射后,其子代的存活率(从卵到成虫)没有显著差异,只有低强度2h处理组存活率显著高于对照;不同UVA强度对黑腹果蝇雌雄虫发育时间有显著影响(p<0.001),不同照射时间没有显著影响(p=0.097),但二者的交互作用显著(p<0.001),经UVA照射的果蝇,其子代的发育时间均显著延长。这表明UVA照射对果蝇F1代的生长发育存在一定不利的影响。
     3.不同UVA强度和照射时间对黑腹果蝇成虫抗氧化反应的影响
     雌雄虫在丙二醛(MDA)、总抗氧化能力、过氧化氢酶(CAT)和过氧化物酶(POD)四个生理指标上存在显著的性别差异;总抗氧化能力(p<0.001)和CAT活性(p=0.004)在高低两个强度间存在显著差异;对各指标的影响在照射时间上均没有显著差异,但时间和照射强度之间存在一定的交互作用。雄虫在高强度30min时MDA含量显著高于对照组,总抗氧化能力显著低于对照,POD活性显著高于60min组;在低强度120min时CAT和谷胱甘肽S转移酶(GST)活性显著高对照。雌虫在高强度只有60min时的总抗氧化能力显著低于30mmin组;在低强度60mmin和120mmin处理组MDA含量均显著高于对照,总抗氧化能力和超氧化物歧化酶(SOD)活性在60mmin时显著高于对照,CAT活性均显著高于对照,其他均无显著差异。
     4.UVA照射对不同日龄黑腹果蝇成虫抗氧化反应的影响
     雌雄果蝇体内MDA含量和SOD活性均在前期维持在稳定水平,28或42日龄时显著下降后又恢复到之前的水平;POD活性逐渐下降到42日龄的最低水平,随后略有升高;雄虫CAT活性先显著提高而后急剧下降到之前水平,GST先显著下降而后升高到前期水平,雌虫CAT和GST活性均随日龄增加出现持续升高,有利于延长寿命;而总抗氧化能力先显著下降又显著升高,雄虫更是出现显著上升又下降的反复波动,这是SOD、CAT、POD、GST综合作用的结果。
     以上研究表明,UVA照射延长子代发育历期,低强度比高强度更有利于增加黑腹果蝇成虫寿命和繁殖力,果蝇体内各种抗氧化酶综合作用能将UVA照射所产生的活性氧维持在较低水平,在果蝇生命后期内持续高强度UVA照射降低酶活性而加速衰老,UVA照射对昆虫影响与辐射强度和时间有关。
Phototaxis is a common phenomenon in insects, and many insects exhibit positive response to light, which has been used widely to control populations of many types of insect pest. The spectral preferences, physiologic perception of light had been well studied all over the world. However, the mechanism of phototaxis is also not clear. The fruit fly, Drosophila melanogaster, is a diurnal insect display a conspicuous positive photo tactic behavior to light stimuli, especially to black light (UVA). To elucidate the phototaxis mechanism, we test the lifehistory fitness and physiolical responses. We use the high (200±25μw/cm2) and low (10±5μw/cm2) intensity of UVA light to irradiate Drosophila melanogaster for different exposure times (1h,2h,3h), and the effects on adult longevity and fecundity, F1 generation development were reflected. We also test responses of the lipid peroxidation, total antioxidant capacity, and antioxidant enzymes of adult flies under different UVA radiation and during different ages of flies. The main results are as follows:
     1. The effects of UVA radiation on lifespan and fecundity of fruit fly adults.
     The lifespan showed that the longevity by UVA radiation was longer than the control, and there were significant differences in intensity (p<0.001). The mean lifespan of flies in short exposure time was longer than that of longer exposure time, in the high intensity of UVA. While, in the low intensity, the lifespan both female and male were increasing with the exposure time extending. The fecundity tests showed that there were no significant effects on the lifetime fecundity neither in intensity nor exposure time of UVA radiation. However, all the UVA irradiation assays have more egg production than the ck. With exposure time prolonging, the lifetime reproduction were increasing in both UVA intensity, especially the 3h traits in low UVA intensity increased more. All in all, the low UVA intensity was of benefit to adults'fitness.
     2. The effects of UVA radiation on survivorship and development time of F1 generation of D. melanogaster.
     The survivorship from egg to eclosion showed that there were no significant effects of neither intensity nor the exposure time, only the 2h assay in low UVA had higher survivorship than the control. The development time data revealed a significant effect of main effect of UVA intensity (p< 0.001), but no difference among the exposure times (p =0.097), whereas the differences were reflected in a significant UVA intensity×Exposure time interaction. The flies in all the UVA irradiations developed slower than the control, significantly, among light regimes in high and low intensity. The results of survivorship and development time revealed that the UVA radiation was harmful to pre-adult's fitness, at least a partial effect.
     3. The effects of different intensity and exposure time of UVA radiation on antioxidant responses of D. melanogaster.
     There were significant differences on malonaldehyde (MDA) content, total antioxidant capacity, catalase (CAT) and peroxidases (POD) activity between the sexes. And the total antioxidant capacity (p< 0.001) and CAT (p= 0.004) activity were different between the intensities of UVA. No difference among the exposure time, while the interactions of UVA intensity×Exposure time were existed. To the male, in 30min high UVA radiation, the MDA content was higher, but the total antioxidant capacity was lower than those of ck, POD activity higher than 60min's. And in the low UVA radiation, CAT and glutathione-S-transferase (GST) activity were higher than the ck, which was in 120min. To the female, only 60min of high radiation was lower in total antioxidant capacity than 30min's. And in low intensity, MDA content was higher than ck in 60min and 120min, total antioxidant capacity and superoxide dismutase (SOD) activity were higher in 60min, all the CAT maintain higher activity, compared with ck.
     4. The effects of UVA radiation on antioxidant responses of D. melanogaster in different ages.
     In fly adults, Age-related changes in MDA content and SOD activity followed a bell-shaped trend, with increase during the first 2 or 4 weeks of life followed by a sharp decrease during the latter part of life, whereby the level of activity was similar in the very young and the very old flies. The POD activitie was linearly decline during 42 days, and then slightly increased. The CAT and GST activity were different changes in male and female, and both of them in female were increase with age of the flies, which relate to long life span. But CAT activity tends to slightly increase during young age and sharply decrease in the latter, in contrast GST activity declined first and then increased. The total antioxidant capacity tend was undulate, especially in the male, which is combination of all the antioxidant defenses.
     The above research showed that, the development time of F1 generation was longer in the UVA radiation, and the longevity was longer and egg production was more in UVA radiation, especially in low intensity, but The activity of SOD, CAT, POD and GST were contributing to control the low level of ROS, which caused by UVA radiation. In the old age, the continual high UVA radiation reduced activity of antioxidant enzymes, which was bad work in slowing the senescence down. In total, the effects of UVA radiation are depending on the intensity and exposure time.
引文
1. 陈宁生,罗敬业.中国主要害虫综合防治.北京:科学出版社,1979.
    2.丁岩钦,高慰曾,李典谟.夜蛾趋光特性的研究:棉铃虫和烟青虫成虫对单色光的反应.昆虫学报,1974,17(3):307-317.
    3.段云,武予清,蒋月丽,吴仁海,赵明茜.LED光照对棉铃虫成虫明适应状态和交尾的影响.生态学报,2009,29(9):4727-4731.
    4.段云,武予清,杨淑斐.黄光灯对小菜蛾成虫生物学的影响.植物保护,2007,33(6):110-113.
    5.冯从经,戴华国,武淑文.褐飞虱高温条件下应激反应及体内保护酶系活性的研究.应用生态学报,2001,12(3):409-413.
    6.侯无危,李明辉,郭炳群.不同照度对棉铃虫蛾活动的影响.昆虫知识,1997,(1):1-3.
    7.蒋月丽,曹雅忠,李克斌,尹姣,武予清,段云.不同波长光对棉铃虫飞翔活动影响的初步研究.植物保护,2008,(6):36-39.
    8.蒋月丽,段云,武予清.三种不同波长绿—黄光对甜菜夜蛾产卵生物学的影响.植物保护学报,2008,35(5):473-474.
    9.蒋志胜,尚稚珍,万树青,徐汉虹,赵善欢.光活化杀虫剂α-三噻吩的电子自旋共振分析及其对库蚊保护酶系统活性的影响.昆虫学报,2003,46(1):22-26.
    10.靖湘峰,雷朝亮.昆虫趋光性及其机理的研究进展.昆虫知识.2004.41(3):198-203.
    11.靖湘峰.夜行性昆虫的趋光行为及黑光灯对棉铃虫体内酶系的影响.[硕士学位论文].武汉:华中农业大学图书馆,2004.
    12.李培峰,方允中.活性氧对蛋白质的损伤作用.生命的化学(中国生物化学会通讯),1994,(6):1-3.
    13.李毅平,龚和.昆虫体内抗氧化系统研究进展.生命科学,1998,(5):240-243.
    14.李周直,沈惠娟,蒋巧根,嵇保中.几种昆虫体内保护酶系统活力的研究.屠虫学报,1994,37(4):399-403.
    15.刘井兰,于建飞,吴进才,印建莉.昆虫活性氧代谢.昆虫知识,2006,43(6):752-756.
    16.刘淼.UV介导的细胞DNA损伤及损伤后修复的初步研究.[硕士学位论文].西安:陕西师范大学图书馆,2006.
    17.孟建玉.UV胁迫下棉铃虫生理生化响应及蛋白质组学研究.[博士学位论文].武汉:华中农业大学图书馆,2010.
    18.王争艳,鲁玉杰,宫雨乔,王晓克,刘洁.紫光灯对储粮害虫引诱效果的评价.粮油加工,2010,(11):75-77.
    19.魏国树,张青文,周明群,吴卫国.不同光波及光强度下棉铃虫(Helicoverpa armigera)成虫的行为反应.生物物理学报,2000,16(1):89-95.
    20.文镜,张春华,董雨,郭豫.蛋白质羰基含量与蛋白质氧化损伤.食品科学2003,24(10):53-157.
    21.吴福桢,管致和,马世骏等.中国农林百科全书.北京:农业出版社,1990.
    22.武予清,段云,蒋月丽.害虫的灯光防治研究与应用进展.河南农业科学,2009,(9):127-130.
    23.邢岩,逢金柱,田庆伟,王文莹,王永明.番茄红素对果蝇抗衰老作用.中国公共卫生,2008,24(6):707-708.
    24.闫海霞.草蛉感光趋光机制的研究.[硕士学位论文].石家庄:河北农业大学图书馆,2002.
    25.闫海燕.龟纹瓢虫Propylea japonica (Thunberg)感光、趋光机制的研究.[硕士学位论文].石家庄:河北农业大学图书馆,2006.
    26.张长禹.UV胁迫下棉铃虫生殖补偿研究及Hsps基因的克隆与表达.[博士学位论文].武汉:华中农业大学图书馆,2010.
    27.张坤.紫外线诱导的细胞DNA损伤模式研究.[博士学位论文].西安:西北大学图书馆,2009.
    28.张欣文,徐思红.果蝇体内SOD和MDA随增龄变化及其与寿命的关系.中国公共卫生,2000,16(3):222-223.
    29.左玉.脂质过氧化及抗氧化剂抗氧化活性检测方法.粮食与油脂,2009,(2):39-42.
    30. Ahmad S, Duval D L, Weinhold L C and Pardini R S. Cabbage looper antioxidant enzymes:Tissue specificity. Insect Biochem,1991,21(5):563-572.
    31. Ahmad S. Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem Syst Ecol,1992,20(4):269-296.
    32. Antignus Y. Manipulation of wavelength-dependent behaviour of insects:an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Res,2000, 71(1-2):213-220.
    33. Apel, K and Hirt H. REACTIVE OXYGEN SPECIES:Metabolism, Oxidative Stress, and Signal Transduction. Annu Rev Plant Biol,2004,55(1):373-399.
    34. Arikawa K, Inokuma K and Eguchi E. Pentochromatic visual system in a butterfly. Naturwissenschaften,1987,74:297-298.
    35. Armstrong D, Rinehart R, Dixon L and Reigh D. Changes of peroxidase with age in drosophila. Age,1978,1(1):8-12.
    36. Aucoin R R, Fields P, Lewis M A, Philogene B J R and Arnason J T. The protective effect of antioxidants to a phototoxin-sensitive insect herbivore, Manduca sexta. J Chem Ecol,1990,16(10):2913-2924.
    37. Aucoin R R, Philogene B J R and Arnason J T. Antioxidant enzymes as biochemical defenses against phototoxin-induced oxidative stress in three species of herbivorous lepidoptera. Arch Insect Biochem Physiol,1991,16(2):139-152.
    38. Aucoin R, Guillet G, Murray C, Philogene B J R and Arnason J T. How do insect herbivores cope with the extreme oxidative stress of phototoxic host plants? Arch Insect Biochem Physiol,1995,29(2):211-226.
    39. Ayre G and Semple R. Daylight Light-Trapping:A method for monitoring adult activity of the sugarbeet root maggot, Tetanops myopaeformis (Roder). J Am Soc Sugar Beet Tech.1978.
    40. Bachleitner W, Kempinger L, Wulbeck C, Rieger D and Helfrich-Forster C. Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc Natl Acad Sci USA,2007,104(9):3538-3543.
    41. Banerjee U, Renfranz P J, Pollock J A and Benzer S. Molecular characterization and expression of sevenless, a gene involved in neuronal pattern formation in the Drosophila eye. Cell,1987,49(2):281-291.
    42. Bennett A T D and Cuthill I C. Ultraviolet vision in birds:What is its function? Vision Research,1994,34(11):1471-1478.
    43. Borst A. Drosophila's view on insect vision. Curr Biol,2009,19(1):R36-R47.
    44. Bray R C, Cockle S A, Fielden E M, Roberts P B, Rotilio G and Calabrese L. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem J,1974,139(1):43-48.
    45. Briscoe A D and Chittka L. The evolution of color vision in insects. Annu Rev Entomol,2001,46:471-510.
    46. Chippindale A K, Leroi A M and Kim S B. Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction.J Evolution Biol,1993,6(2):171-193.
    47. Chippindale A K, Leroi A M, Saing H, Borash D J and Rose M R. Phenotypic plasticity and selection in Drosophila life history evolution.2. Diet, mates and the cost of reproduction. J Evolution Biol,1997,10(3):269-293.
    48. Choe K M and Clandinin T R. Thinking about visual behavior; Learning about photoreceptor function. Curr Top Dev Biol,2005,69:187-213.
    49. Costa H S, Robb K L and Wilen C A. Field trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. J Econ Entomol, 2002,95(1):113-120.
    50. Cowan T and Gries G. Ultraviolet and violet light:attractive orientation cues for the Indian meal moth, Plodia interpunctella. Entomol Exp Appl,2009,131(2):148-158.
    51. Crichton M I. A study of captures of trichopteea in a light trap near reading, berkshire. Trans Royal Entomol Soc London,1960,112(12):319-344.
    52. Cronin T W, Marshall N J, Quinn C A and King C A. Ultraviolet photoreception in mantis shrimp. Vision Res,1994,34:1443-1452.
    53. Del Rio D, Stewart A J and Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovas,2005,15(4):316-328.
    54. Diaz B M, Biurrun R, Moreno A, Nebreda M and Fereres A. Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases in festing crisp lettuce. Hortscience,2006,41:711-716.
    55. Dubovskiy I M, Martemyanov V V, Vorontsova Y L, Rantala M J, Gryzanova E V and Glupov V V. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Phys C,2008,148(1):1-5.
    56. Durusoy M, Diril N and Bozcuk A N. Age-related activity of catalase in different genotypes of Drosophila melanogaster. Exp Gerontol,1995,30(1):77-86.
    57. Enayati A A, Ranson H and Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology,2005,14(1):3-8.
    58. Erber J, Hoormann J and Scheiner R. Phototactic behaviour correlates with gustatory responsiveness in honey bees (Apis mellifera L.). Behav Brain Res,2006,174(1): 174-180.
    59. Felton G W and Summers C B. Antioxidant systems in insects. Arch Insect Biochem Physiol,1995,29(2):187-197.
    60. Finkel T and Holbrook N J. Oxidants, oxidative stress and the biology of ageing. Nature,2000,408(6809):239-247.
    61. Fischbach K F. Simultaneous and successive colour contrast expressed in "slow" phototactic behaviour of walking Drosophila melanogaster. J Comp Physiol A,1979, 130(2):161-171.
    62. Fleishiman L J, Loew E R and Leal M. Ultraviolet vision in Hazards. Nature,1993, 365:397.
    63. Ghiselli A, Serafini M, Natella F and Scaccini C. Total antioxidant capacity as a tool to assess redox status:critical view and experimental data. Free Radic Biol Med, 2000,29(11):1106-1114.
    64. Gleadall I G, Hariyama T and Tsukahara Y The visual pigment chromophores in the retina of insect compound eyes, with special reference to the Coleoptera. J Insect Physiol,1989,35(10):787-795.
    65. Gregory E M and Fridovich I. Oxygen Toxicity and the Superoxide Dismutase. J Bacteriol 1973,114(3):1193-1197.
    66. Gunn A. The determination of larval phase coloration in the African armyworm, Spodoptera exempta and its consequences for thermoregulation and protection from UV light. Entomol Exp Appl,1998,86(2):125-133.
    67. Halliwell B and Chirico S. Lipid peroxidation:its mechanism, measurement, and significance. Am J Clin Nutr,1993,57(5):715S-724S.
    68. Halliwell B. Antioxidant defence mechanisms:from the beginning to the end (of the beginning). Free Radical Res,1999,31(4):261-272.
    69. Hardie R C. Electrophysiological analysis of fly retina. I:Comparative properties of R1-6 and R 7 and 8.J Comp Physiol A,1979,129(1):19-33.
    70. Harris E D. Regulation of antioxidant enzymes. FASEB J,1992,6(9):2675-2683.
    71. Harris W A, Stark W S and Walker J A. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol,1976,256(2): 415-439.
    72. Hawryshyn C W. Polarization vision in fishes. American Scientist,1992,80:164-175.
    73. Hay D A and Crossley S A. The design of mazes to study Drosophila behavior. Behav Genet,1977,7(5):389-402.
    74. Hecht S and Wald G. The visual acuity and intensity discrimination of Drosophila. J Gen Physiol,1934,17(4):517-547.
    75. Heisenberg M and Buchner E. The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol A,1977,117(2):127-162.
    76. Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol,2000,30(11):1009-1015.
    77. Herrns W B and Ellsworth J K. Field tests of effeicacy of colored light in trapping insect pests. JEcon Entomol,1934,27:1055-1067.
    78. Hillman W S. Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Amer J Bot,1954,43:89-96.
    79. Hiraizumi Y. Genetics of factors affectiong the life history of Drosophila melanogaster. I. Female production. Genetics,1985,110(3):453-464.
    80. Hiraizumi Y. Negative correction between rate of development and female fertility in Drosophila melanogaster. Genetics,1961,46:615-624.
    81. Hu K G and Stark W S. Specific receptor input into spectral preference in Drosophila. J Comp Physiol A,1977,121(2):241-252.
    82. Imlay J and Linn S. DNA damage and oxygen radical toxicity. Science,1988, 240(4857):1302-1309.
    83. Jacob K G, Willmund R, Folkers E, Fischbach K F and Spatz H C. T-maze phototaxis of Drosophila melanogaster and several mutants in the visual systems. J Comp Physiol A,1977,116(2):209-225.
    84. Jacobs G H. The distribution and nature of colour vision among the mammals. Biol Rev,1993,68(3):413-471.
    85. Joanisse D R and Storey K B. Oxidative stress and antioxidants in stress and recovery of cold-hardy insects. Insect Biochem Mol Biol 1998,28(1):23-30.
    86. Joshi A, Shiotsugu J and Mueller L D. Phenotypic enhancement of longevity by environmental urea in Drosophila melanogaster. Exp Gerontol,1996,31(4): 533-544.
    87. Kamata H and Hirata H. Redox regulation of cellular signalling. Cell Signal,1999, 11(1):1-14.
    88. Kelber A and Pfaff M. True colour vision in the Orchard Butterfly, Papilio aegeus. Naturwissenschaften,1999,86(5):221-224.
    89. Kelber A, Vorobyev M and Osorio D. Animal colour vision—behavioural tests and physiological concepts. Biol Rev Camb Philos Soc,2003,78(1):81-118.
    90. Kelber A. Ovipositing butterflies use a red receptor to see green. J Exp Biol,1999, 202(19):2619-2630.
    91. Kirkwood T B and Rose M R. Evolution of senescence:late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci,1991,332(1262):15-24.
    92. Krogh A and Weis-Fogh T. The respiratory exchange of the desert locust (Schistocerca gregaria) before, during and after flight. J Exp Biol,1951,28:344-357.
    93. Le Bourg E. Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett,2001,498(2-3):183-186.
    94. Legarrea S, Karnieli A, Fereres A and Weintraub P G. Comparison of UV-absorbing nets in pepper crops:spectral properties, effects on plants and pest control. Photochem Photobiol,2010,86(2):324-330.
    95. Locke M and Nichol H. Iron economy in insects:transport, metabolism, and storage. Annu Rev Entomol,1992,37(1):195-215.
    96. Loew E R, McAlary F A and McFarland W N. Ultraviolet sensitivity in the larvae of two species of marine atherinid fishes. Zooplankton Sensory Ecology & Physiology. Lenz, P H, Hartline, D K, Purcell, J E and Macmillan, D L. Sydney:Gordon & Breach.1996:195-209.
    97. Lopez-Martinez G, Elnitsky M A, Benoit J B, Lee R E and Denlinger D L. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol,2008,38(8):796-804.
    98. Losey G S, Cronin T W, Goldsmith T H, Hyde D, Marshall N J and McFarland W N. The UV visual world of fishes:a review. J Fish Biol,1999,54(5):921-943.
    99. Mazza C A, Izaguirre M M, Zavala J, Scopel A L and Ballare C L. Insect perception of ambient ultraviolet-B radiation. Ecol Lett,2002,5(6):722-726.
    100.Meinertzhagen I A and O'Neil S D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol,1991, 305(2):232-263.
    101.Meng J Y, Zhang C Y and Lei C L. A proteomic analysis of Helicoverpa armigera adults after exposure to UV light irradiation. J Insect Physiol,2010,56(4):405-411.
    102.Meng J Y, Zhang C Y, Zhu F, Wang X P and Lei C L. Ultraviolet light-induced oxidative stress:Effects on antioxidant response of Helicoverpa armigera adults. J Insect Physiol,2009,55(6):588-592.
    103.Menne D and Spatz H C. Colour vision in Drosophila melanogaster. J Comp Physiol A,1977,114(3):301-312.
    104.Menzel R and Backhaus W. Colour vision in insects. In:Gouras P (ed) Vision and visual dysfunction,1991, Ⅶ. Perception of color. MacMillan Press, Houndsmills: 262-293.
    105.Menzel R and Blakers M. Colour receptors in the bee eye—Morphology and spectral sensitivity. J Comp Physiol A,1976,108(1):11-13.
    106.Menzel R and Greggers U. Natural phototaxis and its relationship to colour vision in honeybees. J Comp Physiol A,1985,157(3):311-321.
    107.Menzel R, Ventura D F, Hertel H, de Souza J M and Greggers U. Spectral sensitivity of photoreceptors in insect compound eyes:Comparison of species and methods. J Comp Physiol A,1986,158(2):165-177.
    108.Menzel R. Spectral sensitivity and color vision in invertebrates. Handbook of sensory physiology,1979,7:503-580.
    109.Meyer-Rochow V B and Mishra M. Structure and putative function of dark- and light-adapted as well as UV-exposed eyes of the food store pest Psyllipsocus ramburi Selys-longchamps (Insecta:Psocoptera:Psyllipsocidae). J Insect Physiol,2007,53(2): 157-169.
    110.Missirlis F, Phillips J P and Jackle H. Cooperative action of antioxidant defense systems in Drosophila. Curr Biol,2001,11(16):1272-1277.
    111.Mueller L D. The evolutionary ecology of Drosophila. Evol Biol,1985,19:37-98.
    112.Munday R and Winterbourn C C. Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defence mechanism. Biochem Pharmacol,1989,38(24):4349-4352.
    113.Novoseltsev V N, Arking R, Carey J R, Novoseltseva J A and Yashin A I. Individual fecundity and senescence in Drosophila and medfly. J Gerontol A Biol Sci Med Sci, 2005,60(8):953-962.
    114.Nylin S and Gotthard K. Plasticity in life-history traits. Annu Rev Entomol,1998, 43(1):63-83.
    115.Novoseltsev V N, Novoseltseva J A, Boyko S I and Yashin A I. What fecundity patterns indicate about aging and longevity:Insights from Drosophila studies. J Gerontol a-Biol,2003,58(6):484-494.
    116.Orr W C and Sohal R S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science,1994,263(5150):1128-1130.
    117.Orr W C and Sohal R S. The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys,1992,297(1):35-41.
    118.Orr W C, Arbild L A and Sohal R S. Relationship between catalase activity, life span and some parameters associated with antioxidant defenses in Drosophila melanogaster. Mech Ageing Dev,1992,63(3):287-296
    119.Parkes T L, Elia A J, Dickinson D, Hilliker A J, Phillips J P and Boulianne G L. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet,1998,19(2):171-174.
    120.Parkes T L, Hilliker A J and Phillips J P. Genetic and biochemical analysis of glutathione-S-transferase in the oxygen defense system of Drosophila melanogaster. Genome,1993,36(6):1007-1014.
    121.Parkyn D C and Hawryshyn C W. Polarized-light sensitivity in rainbow trout (Oncorhynchus mykiss):characterization from multi-unit responses in the optic nerve. J Comp Physiol A,1993,172:493-500.
    122.Parsons P A. Phototactic responses along a gradient of light intensities for the sibling species Drosophila melanogaster and Drosophila simulans. Behav Genet,1975,5(1): 17-25.
    123.Partridge L and Harvey P H. Evolutionary biology:Costs of reproduction. Nature, 1985,316(6023):20-20.
    124.Partridge L, Fowler K, Trevitt S and Sharp W. An examination of the effects of males on the survival and egg-production rates of female Drosophila melanogaster. J Insect Physiol,1986,32(11):925-929.
    125.Partridge L, Green A and Fowler K. Effects of egg-production and of exposure to males on female survival in Drosophila melanogaster. J Insect Physiol,1987,33(10): 745-749.
    126.Peitsch D, Fietz A, Hertel H, Souza J, Ventura D F and Menzel R. The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A,1992,170(1):23-40.
    127.Pittendrigh C S and Minis D H. Circadian systems:longevity as a function of circadian resonance in Drosophila melanogaster. Proc Natl Acad Sci USA,1972, 69(6):1537-1539.
    128.Rael L T, Thomas G W, Craun M L, Curtis C G, Bar-Or R and Bar-Or D. Lipid peroxidation and the thiobarbituric acid assay:standardization of the assay when using saturated and unsaturated fatty acids. J Biochem Mol Biol,2004,37(6): 749-752.
    129.Rieger D, Fraunholz C, Popp J, Bichler D, Dittmann R and Helfrich-Forster C. The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J Biol Rhythms,2007,22(5):387-399.
    130.Rister J, Pauls D, Schnell B, Ting C-Y, Lee C-H, Sinakevitch I, Morante J, Strausfeld N J, Ito K and Heisenberg M. Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster. Neuron,2007,56(1):155-170.
    131.Rose M R, Nusbaum T J and Chippindale A K. Laboratory Evolution:The Experimental Wonderland and the Cheshire Cat Syndrome. San Diego, Acdemic Press.1996.
    132.Rose M R. Laboratory Evolution of Postponed Senescence in Drosophila melanogaster. Evolution,1984,38(5):1004-1010.
    133.Salcedo E, Huber A, Henrich S, Chadwell L V, Chou W-H, Paulsen R and Britt S G. Blue- and Green-Absorbing Visual Pigments ofDrosophila:Ectopic Expression and Physiological Characterization of the R8 Photoreceptor Cell-Specific Rh5 and Rh6 Rhodopsins. J Neurosci,1999,19(24):10716-10726.
    134.Salcedo E, Zheng L, Phistry M, Bagg E E and Britt S G. Molecular Basis for Ultraviolet Vision in Invertebrates. J Neurosci,2003,23(34):10873-10878.
    135.Salomon C H and Spatz H C. Colour vision in Drosophila melanogaster. Wavelength discrimination. J Comp Physiol A,1983,150(1):31-37.
    136.Schauen M, Hornig-Do H T, Schomberg S, Herrmann G and Wiesner R J. Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death. Free Radic Biol Med,2007,42(4):499-509.
    137.Schumperli R A. Evidence for colour vision in Drosophila melanogaster through spontaneous phototactic choice behaviour. J Comp Physiol A,1973,86(1):77-94.
    138.Seki T and Vogt K. Evolutionary Aspects of the Diversity of Visual Pigment Chromophores in the Class Insecta. Comp Biochem Physiol B,1998,119(1):53-64.
    139.Sheeba V, Chandrashekaran M K, Joshi A and Sharma V K. Persistence of oviposition rhythm in individuals of Drosophila melanogaster reared in an aperiodic environment for several hundred generations. JExp Zool,2001,290(5):541-549.
    140.Sheeba V, Sharma V K, Chandrashekaran M K and Joshi A. Effect of different light regimes on pre-adult fitness in Drosophila melanogaster populations reared in constant light for over six hundred generations. Biol Rhythm Res,1999a,30(4): 424-433.
    141.Sheeba V, Sharma V K, Chandrashekaran M K and Joshi A. Persistence of eclosion rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften,1999b,86(9):448-449.
    142.Sheeba V, Sharma V K, Shubha K, Chandrashekaran M K and Joshi A. The effect of different light regimes on adult lifespan in Drosophila melanogaster is partly mediated through reproductive output. J Biol Rhythm,2000,15(5):380-392.
    143.Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y and Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot,2002, 53(372):1305-1319.
    144.Singh S P, Coronella J A, Benes H, Cochrane B J and Zimniak P. Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. Eur J Biochem,2001,268(10): 2912-2923.
    145.Sinha R P and Hader D P. UV-induced DNA damage and repair:a review. Photochem Photobiol Sci,2002,1(4):225-236.
    146.Slepneva I A, Glupov V V, Sergeeva S V and Khramtsov V V. EPR detection of reactive oxygen species in hemolymph of Galleria mellonella and Dendrolimus superans sibiricus (Lepidoptera) Larvae. Biochem Bioph Res Co,1999,264(1): 212-215.
    147.Slepneva I A, Komarov D A, Glupov V V, Serebrov V V and Khramtsov V V. Influence of fungal infection on the DOPA-semiquinone and DOPA-quinone production in haemolymph of Galleriamellonella larvae. Biochem Bioph Res Co, 2003,300(1):188-191.
    148.Smith J and Shrift A. Phylogenetic distribution of glutathione peroxidase. Comp Biochem Physiol B,1979,63(1):39-44.
    149.Sohal R S, Arnold L and Orr W C. Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD in Drosophila melanogaster. Mech Ageing Dev, 1990,56(3):223-235.
    150.Sohal R S, Donato H and Biehl E R. Effect of age and metabolic rate on lipid peroxidation in the housefly, Musca domestica L. Mech Ageing Dev,1981,16(2): 159-167.
    151.Sohal R S, Farmer K J, Allen R G and Cohen N R. Effect of age on oxygen consumption, superoxide dismutase, catalase, glutathione, inorganic peroxides and chloroform-soluble antioxidants in the adult male housefly, Musca domestica. Mech Ageing Dev,1984,24(2):185-195.
    152.Somogyi A, Rosta K, Pusztai P, Tulassay Z and Nagy G. Antioxidant measurements. Physiol Meas,2007,28(4):R41-55.
    153.Stadtman E R and Levine R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids,2003,25(3):207-218.
    154.Stadtman E R. Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, ageing and neutrophil function. Trends Biochem Sci, 1986,11(1):11-12.
    155.Stavenga D G, Smits R P and Hoenders B J. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res,1993,33(8):1011-1017.
    156.Takeda M and Skopik S D. Photoperiodic time measurement and related physiological mechanisms in insects and mites. Annu Rev Entomol,1997,42(1): 323-349.
    157.Tovee M J. Ultra-violet photoreceptors in the animal kingdom — their distribution and function. Trends Ecol Evol,1995,10:455-460.
    158.van Ooik T, Rantala M J and Saloniemi I. Diet-mediated effects of heavy metal pollution on growth and immune response in the geometrid moth Epirrita autumnata. Environ Pollut,2007,145(1):348-354.
    159.Vile G F and Tyrrell R M. UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radical Bio Med,1995,18(4):721-730.
    160.Vivino A A, Smith M D and Minton K W. A DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock. Mol Cell Biol,1986,6(12): 4767-4769.
    161.Wang J Y, McCommas S and Syvanen M. Molecular cloning of a glutathione S-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica). Mol Gen Genet,1991,227(2):260-266.
    162.Wang Y, Oberley L W and Murhammer D W. Antioxidant defense systems of two lipidopteran insect cell lines. Free Radical Bio Med,2001,30(11):1254-1262.
    163.Willmund R. Light induced modification of phototactic behaviour of Drosophila melanogaster. J Comp Physiol A,1979,129(1):35-41.
    164.Yamaguchi S, Desplan C and Heisenberg M. Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci USA,2010, 107(12):5634-5639.
    165. Yang E C, Lee D W and Wu W Y. Action spectra of phototactic responses of the flea beetle, Phyllotreta striolata. Physiol Entomol,2003,28(4):362-367.
    166.Zera A J and Harshman L G. The physiology of life history trade-offs in animals. Pal(?) Alto, CA, ETATS-UNIS, Annu Rev Ecol Syst.2001.
    167.Zhang C Y, Meng J Y, Wang X P, Zhu F and Lei C L. Effects of UV-A exposures on longevity and reproduction in Helicoverpa armigera, and on the development of its F1 generation. Insect Science,2011:no-no.
    168.Zhang P and Omaye S T. β-Carotene and protein oxidation:effects of ascorbic acid and α-tocopherol. Toxicology,2000,146(1):37-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700