HPV16 E2介导的凋亡活化机制与宫颈癌的病源性阻遏
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:宫颈癌是严重威胁妇女生命健康最常见的恶性肿瘤之一,在全球女性恶性肿瘤中其发病率仅次于乳腺癌,在发展中国家则居于首位。近年来,早期宫颈癌的发生,特别是年轻化趋势十分明显,这被证实与人乳头瘤病毒(Human papillomavirus, HPV)感染密切相关。因此,深入探索HPV的致病关键及其与宫颈癌的内在联系,从而靶向病源对宫颈癌发生发展进行干预阻遏,成为宫颈癌防治攻关的重要研究方向。目前研究认为,高危HPV DNA的整合是宫颈癌变的重要机制,在E2基因DNA结合区和转录调节区之间为不稳定的铰链区,被认为是HPV整合入宿主细胞最常见的缺失和断裂部位,而宫颈癌组织中HPV致癌基因E6/E7转录产物的增加是HPV整合导致E2基因缺失的结果。另外,细胞毒性T淋巴细胞(CTL)通过结合Fas/FasL系统诱发靶细胞凋亡是机体免疫系统杀伤病毒感染及肿瘤的重要途径,在HPV相关宫颈癌的发生过程中,其地位不容忽视。近期研究提示HPVE2蛋白可能通过活化caspase-8而激活Fas/FasL外源性凋亡通路诱导细胞凋亡,而cFLIP(cellular FLICE inhibitory protein)由于在结构与序列上与caspase-8相似且能抑制其功能,从而对Fas/FasL介导的凋亡信号转导产生调控作用。本项目选择从高危HPV整合的角度,以HPV16 E2、cFLIP以及caspase-8活化作为研究对象,探讨Fas/FasL系统的下游分子与高危HPV整合、HPVE2缺失引起的宫颈癌发生发展之间的相互作用机制,开发宫颈癌新型防治干预靶点,并利用选择增殖性腺病毒建立新型基因-病毒治疗策略,为宫颈癌的生物治疗奠定实验基础。
     方法:
     1.选取宫颈病变组织存档蜡块,包括正常宫颈、CIN1,2,3及宫颈癌病例。采用改良的蛋白酶K消化法提取蜡片组织DNA,HC-Ⅱ和免疫组化法确定HPV16感染,多重PCR扩增法确定宫颈癌组织中HPV16感染状态并分析其相关临床意义。
     2.构建HPV16 E2全长正义cDNA及其N端反式激活域和C端DNA结合域真核表达载体,RT-PCR和Western Blot检测各载体对SiHa细胞中HPV16 E6/E7基因表达的调控作用。光镜、荧光显微镜和共聚焦显微镜观察转染前后细胞形态变化;MTT、流式细胞仪PI法以及Hoechst33258/PI双染法检测转染前后细胞生长和凋亡变化;细胞黏附实验、Transwell实验检测转染前后细胞侵袭转移能力的变化。
     3.用抗人CD95单抗处理宫颈癌细胞,观察其促凋亡效应以了解宫颈癌细胞中Fas/FasL凋亡通路受抑制状况;构建带有GFP和His标签的HPV16 E2全长正义真核表达载体;激光共聚焦显微镜和流式细胞仪观察转染HPV16 E2真核表达载体对抗人CD95单抗诱导宫颈癌细胞凋亡效应的影响;RT-PCR、Western Blot和免疫组化法检测转染前后宫颈癌细胞内Fas基因及DISC成员基因的表达变化;Western Blot和caspase-3/8活性试剂盒检测转染前后caspase-3/8活性改变;CO-IP法检测HPV16 E2蛋白与FLIP蛋白之间的相互作用。
     4.采用基因重组法构建复制选择性腺病毒载体Adv5/dE1A-HPV16 E2(简称E2-Ad),体外转染E2-Ad观察其对宫颈癌细胞的CPE效应、复制裂解效应;Western Blot检测E2-Ad对E6/E7基因表达的调控作用;流式细胞仪检测E2-Ad对宫颈癌细胞的放化疗增敏作用;细胞黏附实验、Transwell实验检测E2-Ad对宫颈癌细胞侵袭转移能力的影响;体内裸鼠接种实验观察E2-Ad的抗肿瘤效应;免疫组化和TUNNEL法检测裸鼠皮下瘤组织中E6/E7表达和凋亡比率。
     结果:
     1.HPV16整合感染率随着宫颈病变级别增高(CIN1-CIN2-CIN3-Cancer)而逐渐增高,两两之间比较均存在显著性差异;HPV16整合感染的早期宫颈病变更容易出现病程持续和进展。
     2.HPV16 E2可以在mENA和蛋白水平显著降低SiHa细胞内E6/E7基因的表达,并抑制细胞生长、促进细胞凋亡、降低细胞的侵袭转移能力。
     3.带有GFP和His标签的HPV16 E2融合蛋白能在宫颈癌细胞内成功表达,并下调SiHa细胞中HPV16 E6/E7基因的表达;有一定量Fas表达的SiHa细胞和无Fas表达的C33A细胞对抗Fas抗体诱导的凋亡存在抵抗,而HPV16 E2直接诱导其产生凋亡并提高SiHa细胞对抗Fas抗体的敏感性;HPV16 E2诱导细胞内caspase-3/8活化;HPV16 E2降低SiHa细胞内FADD、FLIPS基因表达,而对C33A细胞无明显影响;FLIP可能通过直接作用阻遏HPV16 E2诱导细胞凋亡。
     4.体外转染宫颈癌细胞后,复制选择性腺病毒E2-Ad能在细胞中大量复制,裂解细胞产生CPE效应,特异性地下调E6/E7基因表达,并对宫颈癌细胞的放化疗具有显著的增敏效应;体内实验结果显示E2-Ad能显著抑制SiHa细胞成瘤和生长,并逆转瘤细胞的恶性表型。
     结论:
     1.高危型HPV整合状态的存在是宫颈病变恶性转化过程中的高危因素,在HC-Ⅱ的基础上联合应用高危HPV感染状态的检测,有利于提高宫颈癌筛查的靶向性并早期预测宫颈病变的转归。
     2.HPV16 E2对宫颈癌细胞具有强大的抗增殖和促凋亡作用,可望成为宫颈癌治疗的有效靶标。
     3.HPV16 E2通过激活caspase-3/8诱导对Fas凋亡通路存在抵抗的宫颈癌细胞产生凋亡,一方面可能与下调E6/E7基因表达有关,一方面也可能由于HPV16 E2直接与FLIP蛋白相互作用而产生。
     4.复制选择性腺病毒E2-Ad在体内外均具有显著的抗肿瘤效应。
Background and objective: In developing countries, cervical cancer is one of the most frequent neoplastic diseases among women for poor screening and therapeutics procedures. Cervical carcinomas are frequently associated with infection by human papillomaviruses (HPVs). It would be an important work to study the relationship between HPV infection and cervical carcinogenesis (CC) and to reverse CC’s development by targeting HPV oncogenic keypoint. Integration of HPV DNA into the host genome is a major mechanism of cervical carcinogenesis. The HPV E2 open reading frame (ORF) has been identified as the preferential site of integration because it has been found to be disrupted or deleted more frequently than other sites. Therefore, the disruption of E2 dependent negative feedback controlling E6 and E7 transcription is considered a selective event in tumor development and progression. Furthermore, several observations have suggested that other E2 functions are necessary to mediate cellular growth arrest. Recent studies have shown that HPVE2 can induce apoptosis through activation of caspase 8, the Fas/FasL extrinsic pathway effector, but its exact mechanism has not been explored. Since c-FLIP has shown to act as dominant negative inhibitors of FADD, a crucial mediator of Fas/FasL signaling, it was suggested to inhibit death receptor-mediated apoptosis by displacing DED-containing caspase-8 from the death-inducing signaling complex (DISC). This study is designed to explores the relationship among HPV16E2, cFLIP and caspase8 and the regulation between HPV16E2 and the Fas/FasL immune monitoring mediated by CTL,and to set up a series of selective proliferating adenovirus to validate the aforesaid mechanisms in vivo. The aim of this study is to realize efficacious biotherapy for cervical cancer targeting the key carcinogenic factor of HPV and to make a great contribution to cut down the incidence and mortality of cervical cancer.
     Methods:
     1. A series of archival samples, including squamous cervical carcinomas, cervical intraepithelial neoplasia (CIN) lesions and normal cervical tissues, were subjected to for HPV HC-Ⅱanalysis. Typing HPV-16 infection was analysed by the polymerase chain reaction (PCR) and immunohistochemical staining, and its infection status was assessed with the integrity and disruption of the HPV-16 E2 gene, which was amplified in three overlapping fragments.
     2. Three vectors, which express HPV16 E2, its DNA binding domain and transcriptional domain respectively, were constructed. RT-PCR、WB、Confocal、MTT、FCM、Transwell methods were used to study the role of these vectors in reversing the malignant phenotype of cervical carcinoma cells.
     3. Construct HPV16 E2 expression vector containing GFP or His tag. RT-PCR、WB、Confocal、MTT、FCM methods were used to study the role of these two vectors in inducing apoptosis and the relationship between HPV E2 and FLIP.
     4. Construct selective replicating adenovirus E2-Ad with gene recombination method, transfect it into cervical carcinoma cells to observe CPE effect, adenovirus replication and apoptosis after treated with DDP and irradiation. In vivo antitumor activity of E2-Ad was investigated in human SiHa xenografts.
     Results:
     1. HPV16 E2 disruption was associated closely with cervical lesion severity and its progression.
     2. HPV16 E2 can decrease the expression of E6/E7 gene in SiHa, and inhibit cell growth, promote cell apoptosis, decrease cell transfer activity.
     3. HPV16 E2 can induce apoptosis not only in HPV(+) SiHa cell, but also in HPV(-) C33A cell through activating caspase-8 and caspase-3. In SiHa, other than C33A, HPV16 E2 can decrease the expression of E6/E7、FADD、FLIPS gene. And there exits a direct interaction between HPV16 E2 and FLIP protein.
     4. Transfect E2-Ad into different cervical carcinoma cell can induce selective replication and CPE effect, block E6/E7 expression, and excessively increase the role of irradiation and DDP. In vivo, E2-Ad can significantly retard the growth of the SiHa xenografts.
     Conclusions:
     1. The loss of HPV16 E2 function during viral integration has been an activation mechanism for progression from high grade CINs to invasive CC.
     2. HPV16 E2 would be an effective target for cervical carcinoma treatment.
     3. HPV16 E2 can induce apoptosis through activating caspase-8/3. The mechanism is not only related to the bloke of E6/E7 expression, but also associated with the direct interaction between HPV16 E2 and FLIP protein.
     4. E2-Ad has significant antitumor effect in vivo and in vitro.
引文
1.马丁,奚玲.宫颈癌的流行病学及病因学研究进展.中国实用妇科与产科杂志,2001,17(2):1-2
    2. Klinkhamer PJ, Meerding WJ, Rosier PF, et al. Liquid-based cervical cytology. Cancer,2003,99:263-271
    3. Saslow D, Runowicz CD, Solomon D, et al. American Cancer Society Guideline for the Early Detection of Cervical Neoplasia and Cancer.J Low Genit Tract Dis. 2003 Apr;7(2):67-86.
    4. Gallo G, Bibbo M, Bagella L, et al. Study of viral integration of HPV-16 in young patients with LSIL.J Clin Pathol,2003;56(7):532-536
    5. Nagao S, Yoshinouchi M, Miyagi U, et al. Rapid and sensitive detection of physicalstatus of human papillomavirus type 16 DNA by quantitative real-time PCR. J Clin Microbio,2002,40(3):863-867
    6. Gooswin EC, Dimaio D. Repression of human papillomavirus oncogenes in Hela cervical carcinoma cells causes the orderly reaction of dormant tumor suppressor pathways. Proc.Natl.Acad Sci.USA,2000,97(23):12513-12518
    7.田子强,刘俊峰,张少为,等.普通甲醛固定石蜡包埋组织DNA提取方法的探索.癌症,2004,23(3):342-345
    8. Graham DA, Herrington CS. HPV-16 E2 gene disruption and sequence variation in CIN
    3 lesions and invasive squamous cell carcinomas of the cervix: relation to numerical chromosome abnormalities. Mol Pathol,2000;53(4):201-206
    9.邬素芳,徐茜,陈刚,等.两种引物PCR法检测宫颈刮片中HPV DNA的对比及意义.肿瘤,2004,24(4):410-412
    10. Ho GY, Bierman R, Beardsley L, et al. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med,1998;338(7):4232428.
    11. Klimov E, Vinokourova S, Moisjak E, et al. Human papillomaviruses and cervical tumors mapping of integration sites and analysis of adjacent cellular sequences. BMC Cancer,2002;2:24
    1. C. Demeret, M. Le Moal, M. Yaniv, F. Thierry. Control of HPV18 DNA replication by cellular and viral transcription factors, Nucleic Acids Res. 1995, 23 (): 4777–84.
    2. Alfred A.A, Julie E.B, Olga V.B, et al. Structure of the intact transactivation domain of the human papillomavirus E2 protein. Nature, 2000, 403:805.
    3. Kovelman R et al. J Virol, 1996, 70: 7549
    4. Priami L. Analysis of HPV16, l8, 31 and 35 DNA in pre-invasive and invasive lesions of the uterine cervix. J Clin Pathol,1997,50(7):600
    5. Nagao S, Yoshinouchi M, Miyagi U, et al. Rapid and sensitive detection of physical status of human papillomavirus type 16 DNA by quantitative real-time PCR. J Clin Microbio,2002,40(3):863-867
    6.马丁,奚玲.宫颈癌的流行病学及病因学研究进展.中国实用妇科与产科杂志,2001,17(2):1-2
    7. Robert WT. Human papillomavirus vaccines for cervical cancer. Curr Opin Immunol,1996,8:643
    8. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with P53. Science 1990;248:76-9
    9. Dyson N, Howley PM, Munger K, Harlow E. The human papillomavirus 16-E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989;243:934-7
    10. John D.M. Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and Hela cervical carcinoma cell line. J Gen Virol, 1999, 80:1725-1733
    11. Goodwin EC, DiMaio D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA, 2000, 97(23):12513-12518.
    12. Gaston K, Webster K, Taylor A. Oestrogenaned progesterone increase the levels of apoptosis induced by the human papillomavirus type16 E2 and E7 protein. J Gen Virol,2001,82(pt1):201-213
    13. DeFilippis RA, Goodwin EC, Wu L, et al. Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol, 2003, 77(2):1551-1563.
    1. Lai HC, Sytwu HK, Sun CA, et al. Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int J Cancer, 2004, 112(6): 1084-1085
    2. C. Demeret, A. Garcia-Carranca, F. Thierry, et al. Transcription independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene, 2003, 22:168-175.
    3.罗爱月,王薇,司马妮,等. cFLIP在宫颈癌和宫颈上皮内瘤变组织中表达的意义.中国组织化学与细胞化学杂志, 2006, 15(5): 504-507.
    4. Hougardy BM, van der Zee AG, van den Heuvel FA, et al. Sensitivity to Fas-mediated apoptosis in high-risk HPV-positive human cervical cancer cells: relationship with Fas, caspase-8, and Bid. Gynecol Oncol, 2005; 97(2): 353-64.
    5. Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem, 2004; 279(24): 25729-44.
    6. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature, 1997; 388: 190-5.
    7. Wang W, Wang SX, Song XF, et al. The relationship between c-FLIP expression and human papillomavirus E2 gene disruption in cervical carcinogenesis. Gynecol Oncol, 2007, in press.
    8. Blachon S, Demeret C. The regulatory E2 proteins of human genital papilloma- viruses are pro-apoptotic. Biochimie, 2003; 85(8): 813-9.
    9. Kim KH, Seong BL. Pro-apoptotic function of HBV X protein is mediated by interaction with c-FLIP and enhancement of death-inducing signal. EMBO J, 2003; 22(9): 2104-16.
    1. Chen G, Zhou J, Gao Q, et al. Oncolytic adenovirus-mediated transfer of the antisense chk2 selectively inhibits tumor growth in vitro and in vivo. Cancer gene therapy, 2006, 13(10): 930-939
    2. Gao QL, Zhou JF, Huang XY, et al. Selective targeting of checkpoint kinase 1 in tumor cells with a novel potent oncolytic adenovirus. Molecular therapy, 2006, 13(5): 928-937
    3. Miller R, Curiel DT. Towards the use of replicative adenoviral vectors for cancer gene therapy. Gene therapy, 1996;3:557-59
    4. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Medicine, 2000; 6: 879-85
    5. Zhang ZL, Zou WG, Luo CX, et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res. 2003, 13(6): 481-9
    6. Wentaensen N, Vinokurova S, Magnus VKD. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract [J]. Cancer Res, 2004, 64(6):3878 -3884.
    7. Desaintes C, Demeret C, Goyat S, et al. Expression of the papillomavirus E2 protein in HeLa cells leads to apoptosis. EMBO J, 1997, 16(3): 504-14.
    8. Wells SI, Francis DA, Karpova AY, et al. Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. EMBO J, 2000, 19(21): 5762-71.
    9. Davidson EJ, Sehr P, Faulkner RL, et al. Human papillomavirus type 16 E2- and L1-specific serological and T-cell responses in women with vulval intraepithelial neoplasia. J Gen Virol, 2003, 84(Pt 8): 2089-97.
    [1] Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science, 1990;248: 76-9.
    [2] Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science, 1989;243: 934-7.
    [3] Dowhanick JJ, McBride AA, Howley PM. Suppression of cellular proliferation by the papillomavirus E2 protein. J Virol, 1995;69: 7791-9.
    [4] Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature, 1985;314: 111-4.
    [5] Graham DA, Herrington CS. HPV-16 E2 gene disruption and sequence variation in CIN 3 lesions and invasive squamous cell carcinomas of the cervix: relation to numerical chromosome abnormalities. Mol Pathol, 2000;53: 201-6.
    [6] Maitland NJ, Conway S, Wilkinson NS, Ramsdale J, Morris JR, Sanders CM, Burns JE, Stern PL, Wells M. Expression patterns of the human papillomavirus type 16 transcription factor E2 in low- and high-grade cervical intraepithelial neoplasia. J Pathol, 1998;186: 275-80.
    [7] Stevenson M, Hudson LC, Burns JE, Stewart RL, Wells M, Maitland NJ. Inverse relationship between the expression of the human papillomavirus type 16 transcription factor E2 and virus DNA copy number during the progression of cervical intraepithelial neoplasia. J Gen Virol, 2000;81: 1825-32.
    [8] Kalantari M, Karlsen F, Kristensen G, Holm R, Hagmar B, Johansson B. Disruption of the E1 and E2 reading frames of HPV 16 in cervical carcinoma is associated with poor prognosis. Int J Gynecol Pathol, 1998;17: 146-53.
    [9] zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer, 2002;2: 342-50.
    [10] Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science, 1998;281: 1305-8.
    [11] Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J. Inhibition of death receptor signals by cellular FLIP. Nature, 1997;388: 190-5.
    [12] Panka DJ, Mano T, Suhara T, Walsh K, Mier JW. Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J Biol Chem, 2001;276: 6893-6.
    [13] Muris JJ, Cillessen SA, Vos W, van Houdt IS, Kummer JA, van Krieken JH, Jiwa NM, Jansen PM, Kluin-Nelemans HC, Ossenkoppele GJ, Gundy C, Meijer CJ, Oudejans JJ. Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas. Blood, 2005;105: 2916-23.
    [14] Ganten TM, Haas TL, Sykora J, Stahl H, Sprick MR, Fas SC, Krueger A, Weigand MA, Grosse-Wilde A, Stremmel W, Krammer PH, Walczak H. Enhanced caspase-8 recruitment to and activation at the DISC is critical for sensitisation of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by chemotherapeutic drugs. Cell Death Differ, 2004;11 Suppl 1: S86-96.
    [15] Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ, 2004;11: 915-23.
    [16] Castle PE, Wheeler CM, Solomon D, Schiffman M, Peyton CL. Interlaboratory reliability of Hybrid Capture 2. Am J Clin Pathol, 2004;122: 238-45.
    [17] Wu. S, Xu. Q, Cheng. G. The comparative study on HPV DNA test for cervical scraping smears with PCR mediated by two different primers. Tumor, 2004;24: 410-412.
    [18] Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol, 1987;61: 962-71.
    [19] Meissner JD. Nucleotide sequences and further characterization of human papillomavirus DNApresent in the CaSki, SiHa and HeLa cervical carcinoma cell lines. J Gen Virol, 1999;80 ( Pt 7): 1725-33.
    [20] von Knebel Doeberitz M. New markers for cervical dysplasia to visualise the genomic chaos created by aberrant oncogenic papillomavirus infections. Eur J Cancer, 2002;38: 2229-42.
    [21] Thomas RK, Kallenborn A, Wickenhauser C, Schultze JL, Draube A, Vockerodt M, Re D, Diehl V, Wolf J. Constitutive expression of c-FLIP in Hodgkin and Reed-Sternberg cells. Am J Pathol, 2002;160: 1521-8.
    [22] Mathas S, Lietz A, Anagnostopoulos I, Hummel F, Wiesner B, Janz M, Jundt F, Hirsch B, Johrens-Leder K, Vornlocher HP, Bommert K, Stein H, Dorken B. c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med, 2004;199: 1041-52.
    [23] Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol, 1998;161: 2833-40.
    [24] Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A. The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med, 1999;190: 1025-32.
    [25] Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med, 1999;190: 1033-8.
    [26] Branca M, Ciotti M, Santini D, Di Bonito L, Giorgi C, Benedetto A, Paba P, Favalli C, Costa S, Agarossi A, Alderisio M, Syrjanen K. p16(INK4A) expression is related to grade of cin and high-risk human papillomavirus but does not predict virus clearance after conization or disease outcome. Int J Gynecol Pathol, 2004;23: 354-65.
    [27] Schiffman MH, Bauer HM, Hoover RN, Glass AG, Cadell DM, Rush BB, Scott DR, Sherman ME, Kurman RJ, Wacholder S, et al. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst, 1993;85: 958-64.
    [28] Corden SA, Sant-Cassia LJ, Easton AJ, Morris AG. The integration of HPV-18 DNA in cervical carcinoma. Mol Pathol, 1999;52: 275-82.
    [29] Peitsaro P, Johansson B, Syrjanen S. Integrated human papillomavirus type 16 is frequently foundin cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol, 2002;40: 886-91.
    [30] Hopman AH, Smedts F, Dignef W, Ummelen M, Sonke G, Mravunac M, Vooijs GP, Speel EJ, Ramaekers FC. Transition of high-grade cervical intraepithelial neoplasia to micro-invasive carcinoma is characterized by integration of HPV 16/18 and numerical chromosome abnormalities. J Pathol, 2004;202: 23-33.
    [31] Durst M, Gallahan D, Jay G, Rhim JS. Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology, 1989;173: 767-71.
    [32] Webster K, Parish J, Pandya M, Stern PL, Clarke AR, Gaston K. The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem, 2000;275: 87-94.
    [33] Demeret C, Garcia-Carranca A, Thierry F. Transcription-independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene, 2003;22: 168-75.
    [34] Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem, 1999;274: 1541-8.
    1. Cuschieri KS, Cubie HA, Whitley MW, et al. Multiple high risk HPV infection are common in cervical neoplasia and young women in a cervical screening population [J]. J Clin Pathol, 2004, 57(1):68-72.
    2. Hildesheim A, Wang SS. Host and viral genetics and risk of cervical cancer: a review [J]. Virus Res, 2002, 89(2):229-40.
    3. Berumen J, Ordonez RM, Lazeano E, et al. Asian-American variants of human papillomavirus 16 and risk for cervical cancer: a case-control study [J]. J Natl Cancer Inst, 2000, 93(17):1325-1330.
    4. Grodzki M, Besson G, Clavel C, et al. Increased risk for cervical disease progression of French women infected with the human papillomavirus type 16 E6-350G variant [J]. Cancer Epidemiol Biomarkers Prev, 2006, 15(4):820-822.
    5. Veras VS, Cerqueira DM, Martins CR. L1 sequence of a new human papillomavirus type-58 variant associated with cervical intraepithelial neoplasia [J]. Braz J Med Biol Res, 2005, 38(1):1-4.
    6. Ho CM, Chien TY, Huang SH, et al. Integrated human papillomavirus types 52 and 58 are infrequently found in cervical cancer, and high viral loads predict risk of cervical cancer [J]. Gynecol Oncol, 2006, 102(1):54-60.
    7. Tjalma WA, Van Waes TR, Van den Eeden LE, et al. Role of human papillomavirus in the carcinogenesis of squamous cell carcinoma and adenocarcinoma of the cervix [J]. Best Pract Res Clin Obstet Gynaecol, 2005, 19(4):469-83.
    8. Ferber MJ, Montoya DP, Yu C, et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancer [J]. Oncogene, 2003, 22(24):3813- 3820.
    9. Wentaensen N, Vinokurova S, Magnus VKD. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract [J]. Cancer Res, 2004, 64(6):3878 -3884.
    10. Sherman ME, Schiffman M, Cox JT. Effects of age and HPV viral load on colposcopy triage: data from the randomized atypical squamous cells of undetermined significance/low-grade squamous intraepithelial lesion triage study (ALTS) [J]. J Natl Cancer Inst, 2002, 94(2):102-107.
    11. Lorincz AT, Castle PE, Sherman ME, et al. Viral load of human papillomavirus and risk of CIN3 or cervical cancer [J]. Lancet, 2002, 360(9328):228-229.
    12. Brestovac B, Harnett GB, Smith DW, et al. Multiplex nested PCR (MNP) assay for the detection of 15 high risk genotypes of human papillomavirus [J]. J Clin Virol, 2005, 33(2):116-122.
    13. Munoz N, Bosch FX, de Sanjose s, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer [J]. N Engl J Med, 2003, 348(6):518-527.
    14. EI-Sherif AM, Seth R, Tighe PJ, et al. Quantitative analysis of IL-10 and IFNγmRNA levels in normal cervix and human papillomavirus type 16 associated cervical precancer [J]. J Pathol, 2001, 195(2):179-185.
    15. Lee SJ, Cho YS, Cho MC, et al. Both E6 and E7 oncoproteins of human papillomavirus
    16 inhibit IL-18 induced IFNγproduction in human peripheral blood mononuclear and NK cells [J]. J Immunol, 2001, 167(1):497-504.
    16. Lee KA, Cho KJ, Kim SH, et al. IL-18 E42A mutant is resistant to the inhibitory effects of HPV-16 E6 and E7 oncogenes on the IL-18-mediated immune response [J]. Cancer Lett, 2005, 229(2):261-70.
    17. Jimenez-Flores R, Mendez-Cruz R, Ojeda-Ortiz J, et al. High-risk human papilloma virus infection decreases the frequency of dendritic Langerhans' cells in the human female genital tract [J]. Immunology, 2006, 117(2):220-228.
    18. Uchimura NS, Ribalta JC, Focchi J, et al. Evaluation of Langerhans' cells in human papillomavirus-associated squamous intraepithelial lesions of the uterine cervix [J]. Clin Exp Obstet Gynecol, 2004, 31(4):260-262.
    19. Wu Y, Chen Y, Li L, et al. Polymorphic amino acids at codons 9 and 37 of HLA-DQB1 alleles may confer susceptibility to cervical cancer among Chinese women [J]. Int J Cancer, 2006, 118(12):3006-3011.
    20. Saranath D, Khan Z, Tandle AT, et al. HPV16/18 prevalence in cervical lesions/ cancersand p53 genotypes in cervical cancer patients from India [J]. Gynecol Oncol, 2002, 86(2):157-162.
    21. Ojeda JM, Ampuero S, Rojas P, et al. P53 codon 72 polymorphism and risk of cervical cancer [J]. Biol Res, 2003, 36(2):279-283.
    22. SierraTorres CH, Au WW, Arrastia CD, et al. Polymorphisms for chemical metabolizing genes and risk for cervical neoplasia [J]. Environ Mol Mutagen, 2003, 41(1):69-76.
    23. Au WW. Life style, environmental and genetic susceptibility to cervical cancer [J]. Toxicology, 2004, 198(1-3):117-120.
    24. Branca M, Ciotti M, Santini D, et al. Expression of 16INK4a is related to grade of CIN and high-risk human papillomavirus (HPV) but does not predict virus clearance after cone treatment or disease outcome in cervical cancer [J]. Int J Gynecol Pathol, 2004, 23(4):354-365.
    1. Weinstock H, Berman S, Cates W Jr. Sexually transmitted diseases among American youth: incidence and prevalence estimates, 2000. Perspect Sex Reprod Health 2004;36:6–10.
    2. Brown DR, Shew ML, Qadadri B, et al. A longitudinal study of genital human papilloma- virus infection in a cohort of closely followed adolescent women. J Infect Dis 2005; 191:182–92.
    3. Winer RL, Lee SK, Hughes JP, et al. Genital human papillomavirus infection: incidence and risk factors in a cohort of female university students. Am J Epidemiol 2003;157:218–26.
    4. Smith EM, Ritchie JM, Yankowitz J, et al. Human papillomavirus prevalence and types in newborns and parents: concordance and modes of transmission. Sex Transm Dis2004;31:57– 62.
    5. Moscicki AB, Burt VG, Kanowitz S, et al. The significance of squamous metaplasia in the development of low grade squamous intraepithelial lesions in young women. Cancer 1999;85:1139–44.
    6. Moscicki AB, Hills N, Shiboski S, et al. Risks for incident human papillomavirus infection and low-grade squamous intraepithelial lesion development in young females. JAMA 2001;285:2995–3002.
    7. Moscicki AB, Ellenberg JH, Farhat S, Xu J. Persistence of human papillomavirus infection in HIV-infected and -uninfected adolescent girls: risk factors and differences, by phylogenetic type. J Infect Dis 2004;190:37– 45.
    8. Smith JS, Bosetti C, Munoz N, et al. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case-control study. Int J Cancer 2004;111:431–9.
    9. Bosch FX, Lorincz A, Munoz N, et al. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002;55:244–65.
    10. Munoz N, Bosch FX, de Sanjose S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003;348:518–27.
    11. Schiffman M, Kjaer SK. Chapter 2: natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr 2003;31:14–9.
    12. Stewart B, Kleihues P, eds. World Health Organization World Cancer Report. Lyons, France. World Health Organization, 2003.
    13. Peto J, Gilham C, Deacon J, et al. Cervical HPV infection and neoplasia in a large population-based prospective study: the Manchester cohort. Br J Cancer 2004;91:942–53.
    14. Moscicki AB, Shiboski S, Hills NK, et al. Regression of low-grade squamous intra-epithelial lesions in young women. Lancet 2004;364:1678–83.
    15. Insinga RP, Dasbach EJ, Myers ER. The health and economic burden of genital warts ina set of private health plans in the United States. Clin Infect Dis 2003;36:1397– 403.
    16. Ylitalo N, Josefsson A, Melbye M, et al. A prospective study showing long-term infection with human papillomavirus 16 before the development of cervical carcinoma in situ. Cancer Res 2000;60:6027–32.
    17. Saslow D, Runowicz CD, Solomon D, et al. American Cancer Society guideline for the early detection of cervical neoplasia and cancer. CA Cancer J Clin 2002;52:342– 62.
    18. Guido R. Guidelines for screening and treatment of cervical disease in the adolescent. J Pediatr Adolesc Gynecol 2004;17:303–11.
    19. Sadler L, Saftlas A, Wang W, et al. Treatment for cervical intraepithelial neoplasia and risk of preterm delivery. JAMA 2004;291:2100–6.
    20. Moscicki AB, Ellenberg JH, Crowley-Nowick P, et al. Risk of highgrade squamous intraepithelial lesion in HIV-infected adolescents. J Infect Dis 2004;190:1413–21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700