石墨烯制备及其缺陷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯的出现在科学界激起了巨大波澜,这在于它严格的二维结构具有许多极佳的物理性质,蕴涵着许多潜在的应用。石墨烯是一种零带隙的二维材料,其中的碳原子通过SP2轨道杂化构成了二维蜂窝状结构。石墨烯具有良好的导热性、高强度和超大比表面积,这些良好的物理性质使得其在能量储存、电子器件、复合材料及传感器等方面有着广阔的应用前景。
     本文首先利用氧化还原法制备石墨烯,研究其制备工艺及成核机理,在此基础上通过密度泛函理论的第一性原理方法,首先研究了三种缺陷(单空位缺陷、双空位缺陷和Stone-Wales缺陷)对石墨烯电子结构的影响;其次探索了Fe掺杂对石墨烯电学、磁学属性的影响。论文的主要工作及获得的主要结论如下:
     (1)利用氧化还原法成功制备出石墨烯,在氧化还原法制备石墨烯的过程中,由于氧化石墨被还原后其结构不可能被完全恢复到单层石墨原来的结构状态,因此,所制备的石墨烯结构与理想的单层石墨结构还有一定的差别,石墨烯中会有一定的缺陷存在,包括单、双空位缺陷和Stone-Wales缺陷。
     (2)单、双空位缺陷和Stone-Wales缺陷都可以改变石墨烯的电子结构,它们的引入使石墨烯的禁带得到扩展不再为零带隙,而且不同的缺陷对石墨烯的禁带影响不同,单空位缺陷、双空位缺陷和Stone-Wales缺陷石墨烯的禁带宽度分别为1.591ev、1.207ev和0.637eV。
     (3)本征石墨烯为零带隙,是非磁性材料,但是对石墨烯进行Fe掺杂后既可以改变其禁带宽度,又能实现对石墨烯磁性的改造。Fe掺杂后石墨烯禁带宽度为1.51ev,且有磁性产生。
Due to the magnificent physical properties and potential applications, Graphene stir up a great wave in the community. Graphene is a two-dimension material with zero gaps, whose carbon atoms make up two-dimension cellular structure by SP2 orbitalhybridization. Graphene possesses good thermal conductivity, high strength and extra large specific surface area, which lead the wide application prospects in energy storage, electron device, composite materials and sensors.
     In this work, graphene were prepared by oxidoreduction process, and the mechanism of nucleation was investigated. Beside, the effect of monovacancy defect, bivacancy defect and Stone-Wales defect on the electronic structure of graphene, and the effect of Fe-doping on the electricity and magnetic properties of graphene were calculated by first-principles methods based DFT (Density Functional Theory). The main work and conclusions are following:
     (1) Graphene were successfully fabricated by oxidoreduction process. Owing to the limitation of prepare process, as-prepared graphene have some defects, including monovacancy defect, bivacancy defect and Stone-Wales defect.
     (2) Monovacancy defect, bivacancy defect and Stone-Wales defect can affect the electronic structure of graphene, and have different influence on the gap of graphene. The gaps of graphene with monovacancy defect, bivacancy defect and Stone-Wales defect are 1.591 eV,1.207eV and 0.637eV, respectively.
     (3) Intrinsic graphene is a material with zero gap and nonmagnetic. Fe-doping can change both the gap and the magnetic properties of graphene. Fe-doped graphene owns the gap of 1.51 eV and existence of magnetism.
引文
[1]Zhang Y B, Tan Y W, Stormer H L,et al. Experiment al observation of the quantum hall effect and berry. sphase in graphene[J].Nature,2005,438(7065):2012204.
    [2]Lee C,Wei X D,Kysar J W,et al. Measurement of the elastic properties and in trinsicst rength of monolayer graphene [J].Science,2008,321 (5887):3852388.
    [3]张伟娜,何伟,张新荔.石墨烯的制备方法及其应用特性[J].化工新型材料,2010,18:15-18
    [4]HUANG H P,ZHU J J. Preparation of Novel Carbon-based Nanomaterial of Graphene and Its Applications Electrochemistry[J].Chinese Journal of Analytical Chemistry,2011, 39(7):963-971
    [5]李旭,赵卫峰,陈国华.石墨烯的制备与表征研究[J].材料导报,200008,22(8):48-52
    [6]Novoselov K S,Geim A K,Morozov S V,et al. Electric field effect in atomically thin carbon films [J].Science,2004,306:666
    [7]Chae H K, Siberio Perez D Y, Kim J. A route to high surface area, porosity and inclusion of large molecules in crystals[J].Nature,2004,427:523
    [8]Schadler L S,Giannaris S C,Ajayan P M. Load transfer in carbon nanotube epoxy composites [J].Appl Phys Lett,1998,73:3842
    [9]Zhang Y B,Tan J W,Kim P,et al. Experimental observation of the quantum hall effect and berry. sphase in graphene[J]. Nature,2005,438:201
    [10]Novoselov K S, Geim A K, Morozov S V, et al.Two-dimensional atomic crystals [J]. Nature,2005,438:197
    [11]Novoselov K S, McCann E, Morozov S V, et al. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene[J].Nature Phys,2006,2:177
    [12]Kat snelson M I, Novoselov K S, Geim A K. Chiral tunnel ling and the Klein paradox in graphene[J]. Nature Phys,2006,2 (9):620
    [13]Kat snelson M I, Novoselov K S. Graphene:New bridge between condensed matter physics and quantum electrodynamics[J].Solid State Commun,2007,143:3
    [14]李鲜.缺陷石墨烯的第一性原理研究[D].西安:西安电子科技大学,2011
    [15]史永胜,李雪红,宁青菊.石墨烯的制备及研究现状[J].电子元件与材 料,2010,29(8):70-73
    [16]J.Hass, J.E.Millan-Otoya, P.N.First, et al. The interface structure of epitaxial grapheme grown on 4H-SiC(0001)[J].cond-mtrl-sci,2008.8
    [17]C.Riedl, U.Starke. Structural properties of the graphene-SiC(OOO1) interface as a key for the preparation of homogeneous large-terrace graphene surfaces[J]. PHYSICAL REVIES B76,245406(2007):1-8
    [18]Azusa N. Hattori, Takeshi Okamoto, Shun Sadakuni, eyc.Formation of wide and atomically flat graphene layer on ultra precision-figured 4H-SiC(0001) surfaces[J]. Surface Science 605(2011):597-605
    [19]G F Sun, J F Jia, Q K Xun, et al. Atomic-scale imiaging and manipulation of ridges on epitaxial grapene on 6H-SiC(0001)[J]. Hanotechnology 20(2009) 355701
    [20]Walt.A.de Heer, Claire Berger, Ming Ruan, et al.Large area and structured epitaxial grapheme produced by confinement controlled sublimation of silicon carbide[J]. Condensed MATTER-Materials Science,2011
    [21]马文石,周俊文,程顺喜.石墨烯的制备与表征[J].高校化学工程学报,2010,24(4):719-722
    [22]张永辉.石墨烯纳米器件的设计与性质研究[D].兰州:兰州大学,2010
    [23]LIU N, LUO F, WU H X. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized grapheme sheets directly from graphite [J]. Adv Funct Mater,2008,18:1518-1525.
    [24]ANTISARI M V, MONTONE A, JOVIC N, et al. Low energy pure shear milling:A method for the preparation of graphite nano-sheets [J]. Scr Mater,2006,55:1047-1050.
    [25]SUN G L, LI X J, QU Y D, et al. Preparation and characterization of graphite nano sheets from detonation technique [J]. Mater Lett,2008,62:703-706.
    [26]许磊.大富勒烯结构与稳定性的理论研究[D].北京:中国科学技术大,2007
    [27]赵建强.含七元环的非经典富勒烯及其氢化物的理论研究[D].重庆,西南大学,2010
    [28]沈海军,穆先才.C60富勒烯分子的电子传输特性[J].纳米科技,2005,2:51-54
    [29]孙丽莉.小富勒烯和准富勒烯衍生物的结构和稳定性的理论研究[D].长春:东北师范大学,2009
    [30]谢芳,胡慧芳,韦建卫等.拓扑缺陷对单壁碳纳米管电子结构及其光学光谱的影响[J].光谱学与光谱分析,2007,27(7):1267-1270
    [31]黄良锋,李延龄,倪美燕.氢掺杂单层石墨体系的晶格动力学研究[J].物理学报,2009,58:S306-311
    [32]傅强,包信和.石墨烯的化学研究进展[J].科学通报,2009,54(18),2657-2666
    [33]K.S.Novoselov, A.K.Geim, S.V.Morozov, et al. Two-Dimensional Gas of Mass less Dirac Fermions in Graphene[J]. Nature,2005,3:14
    [34]M.Dragoman,D.Dragoman.Graphene-based quantum electronics[J]. Quantum Electronics,2009:1-50
    [35]姚向卫,李德昌.SW缺陷石墨烯铝原子吸附能的第一性原理研究[J].基础理论研究,7(4):2010
    [36]Vadim V. Cheianov, Vladimir I. Falko. Selective transmission of Dirac electrons and ballistic magneo resistance of n-p junctions in graphene[R]. PHYSICAL REVIEWB 74,2006
    [37]Kentaro Nomura Allan H. MacDonald. Quantum Hall Ferromagnetism in Graphene [J]. Physical rewiew letters,2006:1-5
    [38]MikhailI, Katsnelson. Graphene:carbon in two dimensions[J]. Mater. Today 2007, 10:20-27
    [39]Prange R E, Girvin S M. The Quantum Hall Effect[M]. Springer:New YOrk,1987
    [40]Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer. Experimental observation of Quantum Hall effect and Berry's Phase in Graphene[J]. Nature,2005.11,438:201-204
    [41]Geim A. K., Novoselov K. S. The Rise of Graphene[J]. Nature Mater,2007,6:183-191
    [42]毛金海,张海刚,刘奇等.Graphene的物理性质与器件应用[J]. Graphene科学与技术专题,2009,38(6):378-386
    [43]Dimit rakakis G K,Tyl ianakis E,Frou daki s G E.A new 3D network nano structure for enhanced hydrogen storage[J].Nano Lett,2008,8(10):316623170.
    [44]Ataca C, Akturk E,Ciraci S.Hydrogen storage of calcium atoms adsorbed on graphene: First principles plane wave calculation s[J].Phys Rev B,2009,79(041406):124.
    [45]Gan hua L,Ocola L E, Junh on g C.Gas detection using lowt emperature reduced graphene oxide sheet s [J]. Appl Phys Lett,2009,083111 (3):123
    [46]Qiaoliang Bao,Han Zhang, Yu Wang, et al. Atomic-layer graphene as saturable absorber for ultrafast pulsed lasers[J]. ADVANCED FUNCTIONAL MATERALS, 2009,19:3077-3083
    [47]Yan J, Wei T, Shao B, et al. Preparation of a graphene nano sheet polyaniline compos it e with high specific capacitance [J]. Carbon,2009,48:4872493.
    [48]黄桂荣,陈建.石墨烯研究进展[J].化学进展,2009,28(1):35-39
    [49]M.Franz. Fractionalization of charge and statistics in graphene and related structures[J].Phys.Rev.Lett,2008.1
    [50]徐超.基于石墨烯材料的制备及其性能研究[D].南京,南京理工大学,2010
    [51]Brodie B C. Sur le poids atomique du graphite[J]. Ann Chim Phys,1860,59:466-472
    [52]Staudenmaier L.Verfahren zur darstellung der graphitsaure[J].Ber Dt sch Chem Ges, 1898,31:1481-1499
    [53]Hummers W, Offeman R. Preparation of graphitic oxide[J]. Am Chem Soc,1958,80: 1339
    [54]谢普,于杰等.石墨烯的制备与表征[J].贵州化工,2010,35(4):20-22
    [55]闫军锋.菊花状Zn0纳米线簇的制备及其吸波性质研究[D].陕西:西北大学,2009
    [56]李树堂.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990
    [57]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998
    [58]常铁军,祈欣.材料近代分析测试方法[M].哈尔滨:哈尔滨工程大学出版社,2005:114
    [59]赵伯麟.薄晶体电子显微像的衬度理论[M].上海:上海科学技术出版社,1980.
    [60]杨常玲,刘云芸,孙彦平.石墨烯的制备及其电化学性质[J].研究与设计,2010,34(2):177-180
    [61]黄祖飞.LiMnO,体系结构与性能的第一性原理研究[D].长春:吉林大学,2006
    [62]负江妮.钙钛矿型氧化物半导化掺杂与表面吸附光电特性的理论研究[D].西安:西北大学,2010
    [63]Parr Robert G.., Weitao Robert G. Yang. Density-functional theory of atoms and molecules[C]. New York, NY:Oxford Univ. Press,1995
    [64]Kohn W. Nobel Lecture:Electronic structure of matter-wave functions and density functionals [J].Reviews of Modern Physics,1999,71(5):1253-1266
    [65]Andreas Dreuw, Martin Head-Gordon. Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules[J].Chem. Rev.,2005,105(11):4009-4037
    [66]Max Born, Kun Huang. Dynamical Theory of Crystal Lattices[C]. New York, NY: Oxford Univ. Press,1954
    [67]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社,第四版,1994
    [68]Eberhard K. U. Gross, Reiner M. Dreizler. Density Functional Theory[C]. New York, NY:Plenum Press,1995
    [69]邱娟.Co、Cu掺杂Zn0纳米线磁性的第一性原理研究[D].西安:西北大学,2011
    [70]Samuel B. Trickey., Per-Olov Lowdin. Advances In Quantum Chemistry[C]. San Diego. California:Academic Press, Inc.1990:7-27
    [71]David S. Sholl, Janice A. Steckel. Density Functional Theory:A Practical Introuction [C]. Wiley online library,2009
    [72]Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev.,1965,140(4A):A1133-A1138
    [73]杨可松.掺杂二氧化钛的稳定性、电子结构及相关性质的第一性原理研究[D].济南:山东大学,2010
    [74]Chengteh Lee, Weitao Yang, Robert G.. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J].Phys. Rev. B, 1988,37(2):785-789
    [75]Mark R. Pederson, Richard A. Heaton, Chun C. Lin. Local-density Hartree-Fock theory of electronic states of molecules with self-interaction correction [J].Chemical Physics, 1983,80(5):1972-1975
    [76]Stefano Baroni, Eda Tuncel. Exact-exchange extension of the local-spin-density approximation in atoms:Calculation of total energies and electron affinities [J].Chem. Phys.,1983,79(12):6140-6144
    [77]阚二军.新型磁性材料的第一性原理计算与设计研究[D].北京:中国科学技术大学,20008
    [78]韩同伟,贺鹏飞,王健等.空位缺陷对单层石墨烯薄膜拉伸力学性能的影响[J].同 济大学学报(自然科学版),2010,38(8):1210-1213
    [79]欧阳方平,王焕友,李明君等.单空位缺陷对石墨纳米带电子结构和输运性质的影响[J].物理学报,2008,57(11):7132-7137
    [80]辛焕文.石墨烯的电子结构与磁性[D].吉林:吉林大学,2010
    [81]欧阳方平,徐慧,林峰.双空位缺陷石墨纳米带的电子结构和输运性质研究[J].物理学报,2009,58(6):4132-4135
    [82]李强.单层石墨烯纳米结构的构造、相变及电子输运性质研究[D].北京:北京化工大学,2010
    [83]欧阳方平.碳基纳米材料和器件的第一原理研究与设计[D].长沙:中南大学,2009
    [84]邹琼,宰建陶,刘萍等.中空Fe2O3/GNS纳米复合材料的制备和储锂性能[J].高等学校化学学报,2011,3:630-634
    [85]张燚,陈彪,杨祖培等.Fe3O4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征[J].物理化学学报,2011,27(5):1261-1266
    [86]王志勇,胡慧芳,顾林等.含Stone-Wakes缺陷Zigzag型石墨烯纳米带的电学和光学性质研究[J].物理学报,2011,60(1):1-7
    [87]杜恭贺.石墨烯及其掺杂体系电子结构性质的理论研究[D].西安:西北大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700